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Computational systems biology [Wol01℄ tries to establish methods andtehniques that enable us to understand the struture of the system, suhas gene/metaboli/signal transdution networks. The modeling of the dy-namis of suh systems is a �rst step towards the ontrol, the design and themodi�ation of the systems in order to ensure some desired properties[Kit02℄.Formal Methods. Formal methods have been used for a deade or morein the area of veri�ation of safety ritial systems. The tehniques andtools that have emerged from this �eld to analyze the behaviors of suhsystems, makes it possible to model and verify omplex onurrent systems(huge number of states) even with ontinuous information (dense time) orparameters. It is then natural to try and use suh tehniques to model andanalyze biologial systems espeially when one wants to �nd properties abouttheir behaviors.Biologial Regulatory Networks. Biologial Regulatory Networks (inthe sequel BRN) modelize interations between biologial entities (RNA orProteins). Their regulations involve a lot of omplex proesses, but it is om-mon to simplify the omplexity of the regulations by taking into aount onlytwo ations: ativation and inhibition. BRNs are statially represented bygraphs: verties abstrat genes and edges represent their interations (ativa-tion or inhibition). Moreover at a given time, a numerial value is assoiatedto eah vertex to desribe the onentration level of the orresponding entity.The René Thomas' boolean approah has been justi�ed as a disretiza-tion of the ontinuous di�erential equation system[Sno89℄, it has been on-fronted to the more lassial analysis in terms of di�erential equations[KT87℄.Then Thomas and Snoussi showed that all steady states an be found viathe disrete approah[ST93℄. More reently Thomas and Kaufman haveshown that the disrete desription provides a qualitative �t of the di�er-ential equations with a small number of possible ombinations of values forthe parameters[TK01℄.Works of René Thomas and o-workers provide the basis to develop aformal omputational framework for gene regulation.Our Contribution. In this paper we propose a semantis for an extendedgene regulatory model of R. Thomas' theory. In our extended model a genean be ativator at a ertain level and inhibitor at another. This is to ourknowledge the �rst time a formal semantis is proposed for BRN. This enablesus to derive automatially a behavioral model of a BRN and use existing toolsfor analyzing �nite state models (e.g. model-heking tools).2



Outline of the Paper. The paper is organized as follows: setion 2 givesthe basis of BRN. The ore of the paper is in setion 3 where we give aformal semantis for BRN. In setion 4 we show on a small example how touse the tool HyTeh [HHWT97℄ to analyze a BRN.2 Biologial Regulatory NetworksNotations Given a �nite set E, jEj denotes the ardinality of E. Wedenote 2E the set of subsets of E. If � is a formula of propositional logiover a set X, [[�℄℄ denotes the set of values of the variables satisfying �. Byonvention, if U = ;, �(x) are propositional formulas, Vx2U �(x) = true.Biologial examples often rely on intervals: an integer interval [a; b℄ standsfor the set of values fx 2 N ; a � x � bg, and we denote [℄ the empty interval.The original model of Biologial Regulatory Networks [KT87℄ makes theassumption that the atual onentration of the produts of the genes anbe approximated by integer levels: the ontinuous onentration funtion isapproximated by a pieewise onstant funtion. Those onstant levels givethe expression levels of the genes. In our formal desription of a BiologialRegulatory Network, a set V of �variables� stands for the genes of the net-work. An oriented edge from a variable x to y indiates that x is a regulator(ativator, inhibitor) of y.De�nition 1 (Biologial Regulatory Networks.) A Biologial Regula-tory Network (BRN) is a 3-uple R = (V;E; �) where:� V is a �nite set of verties,� E � V � V is a �nite set of edges,� � = (�+; ��) with � : E 7! 2N � 2N are respetively the ativation andinhibition funtions assoiated to an edge e 2 E. Moreover, we assume:� �+(e) [ ��(e) 6= [℄� 8e 2 E; �+(e)\��(e) = [℄: for a given level, a gene annot be bothativator and inhibitor. �Remark 1 For v 2 V we will use v as well to denote the expression levelof the gene v. �+(x; y) (resp. ��(x; y)) gives the interval inside whih xativates (resp. inhibits) y. Note that �+(x; y) = [℄ (resp. ��(x; y) = [℄),means that x never ativates (resp. inhibits) y. Note also that Def. 1 rulesout edges (x; y) for whih �+(x; y) = ��(x; y) = [℄ whih would have noobservable e�et in the network. 3
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Figure 1: Examples of BRNsExample 1 Figure 1 gives two examples of BRN. In the �rst example, V =fx; y; zg and �(x; y) = ([1; 1℄; [℄): x ativates y when x has the level 1;�(y; x) = ([℄; [1; 1℄): y inhibits x when y has the level 1; �(z; y) = ([1; 1℄; [℄):z ativates y when z has the level 1. The meaning of the seond example isde�ned aordingly.De�nition 2 (Ativators and Inhibitors.) Let R = (V;E; �) be a Bio-logial Regulatory Network, we de�ne the following sets:1. 8x 2 V;R+(x) = fy 2 V; �+(y; x) 6= [℄g is the set of ativators of x,2. 8x 2 V;R�(x) = fy 2 V; ��(y; x) 6= [℄g is the set of inhibitors of x. �Example 2 For example 1 of Figure 1, R+(x) = ;, R�(x) = fyg, R+(y) =fz; xg, R�(y) = ; and R+(z) = ;, R�(z) = ;. In example 2 R+(x) = ;,R�(x) = fyg and R+(y) = fxg, R�(y) = fxg.3 Formal Semantis of Biologial RegulatoryNetworksIn René Thomas' theory, the evolution of the expression levels of the genesis desribed by an original notion of �attrator�. Informally, it represents anupper or a lower bound whih is attained if no hange ours in the rest ofthe BRN. Hene, the omputation of the evolution of onentrations is based4



on the attrators. They are de�ned by a set of parameters. The evolution ofthe BRN highly depends on the hoie of those parameters.In this setion, we formalize the evolution of the states of a BRN by atransition system. This semantis also involves some evolution parameters asde�ned in [KT87℄.3.1 State Spae of a BRNDe�nition 3 (State Spae of a BRN.) LetR = (V;E; �) be a BRN. Thestate spae Sx of a variable x 2 V is de�ned by Sx = [0;maxy2V �+(x; y) [��(x; y) ℄. The state spae of R is de�ned by S(R) = �x2V Sx. A state ofthe network R is a mapping � : V ! N suh that 8x 2 V; �(x) 2 Sx. �The previous de�nition of the set Sx requires that 0 belong to the statespae.Example 3 For the example 2 of Figure 1, Sx = [0; 2℄; Sy = [0; 1℄.3.2 Parameters of a BRNAs already mentioned in the beginning of this setion, the behavior of a BRNdepends on some parameters. Those parameters play the role of attratorsand give the expression levels towards whih a gene is attrated, dependingon whih genes ativate or inhibit it.De�nition 4 (Parameters of a BRN.) Let R = (V;E; �) be a BRN. Theset Para(R) of parameters of R is de�ned byPara(R) = fKx;A;BjA � R+(x); B � R�(x)gA valuation of the parameters Para(R) is a mapping � : Para(R)! N suhthat 8x 2 V;A � R+(x); B � R�(x); �(Kx;A;B) 2 Sx. In the sequel we useKx;U;V instead of �(Kx;U;V ) when the meaning is lear from the ontext. �De�nition 5 (Ativity Assumption.) Let R = (V;E; �) be a BRN and� a valuation for Para(R). � satis�es the ativity assumption i� 8x 2 V :8y 2 R+(x); 9X+ � R+(x); 9X� � R�(x); �(Kx;X+[fyg;X�) > �(Kx;X+;X�)8y 2 R�(x); 9X+ � R+(x); 9X� � R�(x); �(Kx;X+;X�[fyg) < �(Kx;X+;X�)�5



De�nition 6 (Monotoniity Assumption.) Let R = (V;E; �) be a BRNand � be a valuation for Para(R). � satis�es the monotoniity assumptioni�: 8X+ � R+(x), 8X� � R�(x), 8X 0+ � R+(x), 8X 0� � R�(x), X+ �X 0+; X 0� � X� ) �(Kx;X+;X�) � �(Kx;X0+;X0�). �The ativity assumption stands for the observability of the ation of agene on another. Without this assumption it is possible that any ombina-tion of ativators of a gene does not have any observable e�et on the targetgene beause its level of expression would remain the same. It seems thenquite obvious that any valuation of the parameters should satisfy this prop-erty. The monotoniity property is is a biologial experimental fat, alreadypointed out by René Thomas. Anyway our framework does not rely on theseassumptions motivated by biology.Example 4 In the example 2 of Figure 1, a possible valuation of the param-eters is: Kx;;;; = 0; Kx;;;y = 1 and Ky;;;; = 0; Ky;x;; = 0; Ky;z;; = 0; Ky;xz;; =1 and Kz;;;; = 0. Notie that this valuation does not satisfy the ativityproperty as Kx;;;; � Kx;;;y. If we take Kx;;;; = 1; Kx;;;y = 0 this property issatis�ed.3.3 Transition System of a BRNLet us onsider a BRN R = (V;E; �). Following [TGL76, Tho78℄ the evo-lution of the state of the network depends (i) on the expression level of thegenes (ii) on a set of parameters (see Def. 4). The expression level of a genex may either derease or inrease aording to whih other genes of the net-work ativate or inhibit it. If X+ and X� are respetively the set of genesthat urrently ativate x and the set that urrently inhibit x, then the valueof x evolves towards the value de�ned by the parameter Kx;X+;X�. Whihgenes are urrently ativating or inhibiting x is de�ned aording to the lev-els given in the network (e.g. for example 2 of Figure 1, x ativates y whenits expression level is 1, inhibits y when its expression level is 2, and has noe�et on y when it is 0.) We formally de�ne the di�erent on�gurations of anetwork aording to the ativators and inhibitors of a gene x in Def. 7.De�nition 7 (State onstraints of a BRN.) For x 2 V , X+ � R+(x),X� � R�(x), we de�ne Ax;X+, Ix;X� and Cx;X+;X� by:� Ax;X+ = �Vy2X+(y 2 �+(y; x))� ^ �Vy2R+(x)nX+(y =2 �+(y; x))�� Ix;X� = �Vy2X�(y 2 ��(y; x))� ^ �Vy2R�(x)nX�(y =2 ��(y; x))�6



� Cx;X+;X� = Ax;X+ ^ Ix;X� �Cx;X+;X� is true i� the values of the genes in X+ are in the intervals inwhih they ativate x and the values of the genes in X� are in the intervalsin whih they inhibit x.Example 5 For example 2 of Fig. 1 the ativation and inhibition funtionsare: �+(x; y) = [1; 1℄; ��(x; y) = [2; 2℄ and �+(y; x) = ;; ��(y; x) = [1; 1℄.The ativators and inhibitors sets are given by R+(y) = x;R�(y) = x andR+(y) = ;; R�(x) = y. The set of onstraints are given by: Cx;;;; = y =2 [1; 1℄,Cy;x;; = x 2 [1; 1℄ ^ x =2 [2; 2℄ and Cy;;;x = x =2 [1; 1℄ ^ x 2 [2; 2℄.Another feature of the evolution of the state of a network is that theexpression level of a gene x evolves step-by-step i.e. it annot go from 1 to 3in a single step, it must evolve by one unit from 1 to 2 and if some onditionsare met1 will go from 2 to 3. This is aptured in the de�nition of an evolutionoperator :De�nition 8 (Evolution Operator �) Let x 2 N and k 2 N. The evolu-tion operator � is de�ned by:x � k = 8<: x� 1 i� x > kx + 1 i� x < kx otherwise �Notie that in the ase x = k the next value of x will remain equal to k.We an now de�ne a transition system giving the semantis of a BRN.De�nition 9 (Transition System of a BRN.) Let R = (V;E; �) be aBRN and � a valuation of the parameters in Para(R). The semantis ofR with valuation � is the labeled transition system SR(�) = (S(R); V;!)with !� S(R)� V � S(R) suh that:� x! � 0 () 8>><>>: 9A � R+(x); 9B � R�(x); � 2 [[Cx;A;B℄℄^ �(x) 6= Kx;A;B^ � 0(x) = x � Kx;A;B^ 8y 6= x; � 0(y) = �(y) �1it ould be that from level 2 it is impossible to reah level 3.7



Remark 2 Note that aording to Def. 7, there is a unique � 0 suh that� x! � 0. The transition system SR(�) is (partially) deterministi in the senseit is deterministi for eah x-transition.Nevertheless, there may be another y-transition from the state � and thusSR(�) is not deterministi. The nondeterminism models the fat that theexpression levels of the genes evolve asynhronously. Note also that there isan x-transition only when x has not reahed the value it tends to get loserto (i.e. Kx;A;B for the right A and B). This will enable us to de�ne thestable states of a network as those states that have no outgoing transitions(the deadlok states).De�nition 10 (Stable State of a BRN.) Let R = (V;E; �) be a BRNand � a valuation of the parameters in Para(R) and SR(�) = (S(R); V;!)its semantis. A state � 2 S(R) is non stable i� 9� 0 2 S(R); x 2 V suhthat � x! � 0. A state � is a stable state if it is not a non stable state (i.e. astable state is a deadlok state). �4 Simple Case-StudyWe onsider in this setion the example 1 of Fig. 1. We use the veri�ationtool Hyteh [HHWT97℄ to automatially ompute the results. Of oursewe ould have hosen any model-heker to analyze our models but Hytehenables us to ompute some onstraints on the parameters suh that ertainproperties are satis�ed (we will not over this in this paper.) The Hytehinput �les and results are given in appendix A.3.The set of ativators and inhibitors are given in Example 2, page 4. Thestate spae is Sx = [0; 1℄, Sy = [0; 1℄ and Sz = [0; 1℄. The parameters areKx;;;;, Kx;;;y (for x); Ky;;;;, Ky;x;;, Ky;z;;, Ky;f x;zg;; (for y) and Kz;;;; (for z).4.1 Example with Regular StabilizationLet us �x the following values for the parameters:Kx;;;; = 1Kx;;;y = 0 Ky;;;; = 0Ky;x;; = 0Ky;z;; = 0Ky;fx;zg;; = 1 Kz;;;; = 0The monotoniity and ativity assumptions are satis�ed by these parameters.For this example we obtain the transition system given in Fig. 2 in theappendix A.1. The Hyteh input �le is given in appendix A.3. We an8



easily ompute the set of stable states and non stable states as given in theoutput �le Figure 5, appendix A.3, 15. Note that the yle reveals indeed anequilibrium state whih is not stable.4.2 Example without Regular StabilizationLet us now �x the parameters to:Kx;;;; = 1Kx;;;y = 0 Ky;;;; = 0Ky;x;; = 1Ky;z;; = 1Ky;xz;; = 1 Kz;;;; = 0The transition system obtained in this ase is given in Fig. 3, appendix A.2.Again the results (Figure 6, appendix A.3, page 16) obtained with Hytehshow that there is no regular stable state in this ase. Note that the yle isindeed a stable state, whih is alled singular in the R.Thomas'approah.5 Conlusion and Future WorkIn this paper we have given a formal semantis for Biologial RegulatoryNetwork. The main advantages of this work are (i) the formal semantisenables us to build automatially a (behavioral) model of a network (ii) thismodel an then be analyzed by veri�ation tools exatly as safety ritialprograms an be (e.g. the formal semantis haraterizes the stable and nonstable states).Our future work will onsist in adding timing onstraints in the networkto build a more aurate model. Our semantis is ready to be extended withtiming onstraints: in this ase we will derive a timed or hybrid automatamodel and use tools for analyzing this types of models to prove properties ofthe network.AknowledgementsThe authors thank genopole r-researh in Evry (H. Pollard and P. Tambourin)for onstant supports. Comments from an anonymous referee have been veryonstrutive.
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A AppendixA.1 Transition System of the Example with RegularStabilization
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Figure 2: Transition system of the BRN of the example 1 of Fig. 1We an notie (Fig. 2) that state (1,0,0) is stable. Moreover, we anobserve a yle (0,0,1) (1,0,1) (1,1,1) (0,1,1).A.2 Transition system of the Example without RegularStabilizationWe an notie (Fig. 3) that there is no regular stable state, but an attratileyle: (0; 0; 0) x! (1; 0; 0) y! (1; 1; 0) x! (0; 1; 0) y! (0; 0; 0) whih an beonsidered as a singular stable state.11
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Figure 3: State graph of BRN of example 1
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A.3 Hyteh FilesFor the example of setion 4, we use the input �le of Fig. 4 to model ournetwork.The results obtained with the input �le of Figure 4 is given in Figure 5.
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-- hyteh input filevar k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O: parameter ; -- parametersx,y,z: disrete ;k: disrete ; -- k hanges on every disrete transitionk1,k2,k3: parameter ; -- used for deteting ylesautomaton rrbsynlabs: ;initially Start ;lo Start:while x>=0 & y>=0 & z>=0 & x<=1 & y<=1 & z<=1 wait {}-- C_x,O,O -> K_x_O_Owhen y < 1 & x > k_x_O_O do {x'=x-1,k'=1-k} goto Start;when y < 1 & x < k_x_O_O do {x'=x+1,k'=1-k} goto Start;-- C_x,O,ywhen y >= 1 & x < k_x_O_y do {x'=x+1,k'=1-k} goto Start;when y >= 1 & x > k_x_O_y do {x'=x-1,k'=1-k} goto Start;-- C_y,O,O -> k_y_O_Owhen x<1 & z<1 & y < k_y_O_O do {y'=y+1,k'=1-k} goto Start;when x<1 & z<1 & y > k_y_O_O do {y'=y-1,k'=1-k} goto Start;-- C_y,x,O -> k_y_x_O_0when x>=1 & z<1 & y < k_y_x_O do {y'=y+1,k'=1-k} goto Start;when x>=1 & z<1 & y > k_y_x_O do {y'=y-1,k'=1-k} goto Start;-- C_y,z,Owhen x<1 & z>=1 & y < k_y_z_O do {y'=y+1,k'=1-k} goto Start;when x<1 & z>=1 & y > k_y_z_O do {y'=y-1,k'=1-k} goto Start;-- C_y,xz,Owhen x>=1 & z>=1 & y < k_y_xz_0 do {y'=y+1,k'=1-k} goto Start;when x>=1 & z>=1 & y > k_y_xz_0 do {y'=y-1,k'=1-k} goto Start;-- C_z,O_Owhen z < k_z_O_O do {z'=z+1,k'=1-k} goto Start;when z > k_z_O_O do {z'=z-1,k'=1-k} goto Start;endvar init_reg, f_reahable, stable_states, non_stable_states,xy_f_reahable, yle_states : region;init_reg := lo[rrb℄=Start & x>=0 & y>=0 & z>=0 & x<=1 & y<=1 & z<=1 &k_x_O_O=1 & k_x_O_y=0 & k_y_O_O=0 & k_y_x_O=1 & k_y_z_O=1 &k_y_xz_0=1 & k_z_O_O=0;prints "initial values for the K_ parameters and x,y,z:" ;print omit rrb loations hide k,k1,k2,k3 in init_reg endhide ;-- ompute the reahable set of states ... must be finite-- even if there is a ylef_reahable := reah forward from init_reg endreah;if empty(f_reahable)then prints "No reahable states ...";else

prints "The reahable states are:";print hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in f_reahable endhide;endif ;-- ompute the projetion on x,y of f_reahablexy_f_reahable := hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in f_reahable endhide;-- ompute the set of non stable states i.e. reahable states-- with a suessor-- define the strit predeessor operator-- here is a trik to do this with Hyteh (otherwise Hyteh omputes-- the set of predeessor of a set inluding the set itself)-- hide k in pre(A & k=0) & k=1 endhide gives the strit predeessor-- of Anon_stable_states := f_reahable &hide k in (pre(f_reahable & k=0) & k=1) endhide;-- print the resultif empty(non_stable_states) thenprints "No non stable states";elseprints "the reahable non stable states are:";print hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in non_stable_states endhide;endif ;stable_states := f_reahable & ~non_stable_states ;if empty(stable_states)then prints "No stable states ... !!!";elseprints "The reahable stable states are:";print hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in stable_states endhide;endif ;-- now look for yles ... easy in hyteh with hide-- (existential quantifiation)-- first we define the strit suessor funtion-- it is a post where k hanges followed by a reahyle_states := x=k1 & y=k2 & z=k3 & f_reahable &reah forward from hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k in(post(x=k1 & y=k2 & z=k3 & f_reahable & k=0) & k=1)endhide endreah;-- print the resultif empty(yle_states)then prints "No infinite path in the system";else prints "There is a yle in the system ! ...from any of these states:";print hide k_x_O_O,k_x_O_y,k_y_O_O,k_y_x_O,k_y_z_O,k_y_xz_0,k_z_O_O,k,k1,k2,k3 in yle_states endhide;endif ;Figure 4: Hyteh Spei�ation of the BRN of Example 1 Figure 1.
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initial values for the K_ parameters and x,y,z:k_x_O_O = 1 & k_x_O_y = 0 & k_y_O_O = 0& k_y_x_O = 0 & k_y_z_O = 0 & k_y_xz_0 = 1& k_z_O_O = 0 & x <= 1 & y <= 1 & z >= 0& x >= 0 & y >= 0 & z <= 1.Number of iterations required for reahability: 1The reahable states are:Loation: Startx <= 1 & y >= 0 & z <= 1& x >= 0 & y <= 1 & z >= 0the reahable non stable states are:Loation: Startx = 0 & y < 1 & z >= 0 & y >= 0 & z <= 1| y = 1 & x = 1 & z <= 1 & z >= 0| y = 1 & z < 1 & x < 1 & z >= 0 & x >= 0| z = 1 & y >= 0 & x <= 1 & x >= 0 & y <= 1The reahable stable states are:Loation: Starty < 1 & 0 < x & z < 1 & y >= 0& x <= 1 & z >= 0.......Number of iterations required for reahability: 7There is a yle in the system ! ... from any of these states:Loation: Startz = 1 & y = 0 & x = 1| z = 1 & y = 1 & x = 0| z = 1 & y = 1 & x = 1| z = 1 & y = 0 & x = 0=================================================================Max memory used = 0 pages = 0 bytes = 0.00 MBTime spent = 57.24u + 6.24s = 63.48 se total=================================================================Figure 5: Hyteh results for example of Fig. 4 (with Stabilization)15



initial values for the K_ parameters and x,y,z:k_x_O_O = 1 & k_x_O_y = 0 & k_y_O_O = 0 &k_y_x_O = 1 & k_y_z_O = 1 & k_y_xz_0 = 1 &k_z_O_O = 0 & x <= 1 & y <= 1 & z >= 0 &x >= 0 & y >= 0 & z <= 1.Number of iterations required for reahability: 1The reahable states are:Loation: Startx <= 1 & y >= 0 & z <= 1 & x >= 0& y <= 1 & z >= 0the reahable non stable states are:Loation: Startx = 0 & y < 1 & z >= 0 & y >= 0 & z <= 1| y = 1 & x = 1 & z <= 1 & z >= 0| y = 1 & z < 1 & x < 1 & z >= 0 & x >= 0| y = 0 & x = 1 & z < 1 & z >= 0| z = 1 & y >= 0 & x <= 1 & x >= 0 & y <= 1The reahable stable states are:Loation: Start0 < y & z < 1 & x <= 1 & 0 < x & z >= 0 & y < 1| y >= 0 & z < 1 & 0 < x & x < 1 & z >= 0 & y < 1.......Number of iterations required for reahability: 7There is a yle in the system ! ... from any of these states:Loation: Startx = 1 & y = 0 & z >= 0 & z < 1| x = 0 & y = 1 & z >= 0 & z < 1| x = 1 & y = 1 & z >= 0 & z < 1| x = 0 & y = 0 & z >= 0 & z < 1=================================================================Max memory used = 0 pages = 0 bytes = 0.00 MBTime spent = 73.04u + 8.10s = 81.14 se total=================================================================Figure 6: Hyteh results for example of Fig. 4 (with no stabilization)16


