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SP if P satis�es all properties required by SP. On the other hand SP should be somedescription of all its correct realizations. These notions can be, probably in the bestway, handled within an observational framework. Consequently, the aim of this paperis to provide an observational semantics of algebraic speci�cations so that the class ofobservational models of SP matches as well as possible the class of its correct realizations.We may follow one of at least two directions in the development of an observationalapproach. The �rst of them was opened by Sannella and Tarlecki [16] (but also indepen-dently by Pepper [14]) and further generalized in [17]. The authors of these papers de�nethe class of observational models (behaviours in their terminology) as an extension ofthe class of the usual models by an equivalence relation (called observational equivalence)between algebras, according to some observations Obs. This leads to a somewhat hetero-geneous framework where the observational features are directly based on the usual ones.In particular the \observational consistency" always coincides with the usual one. Theseshortcomings can be avoided in an observational approach developed according to thesecond direction which mainly aims at de�ning a true observational satisfaction relationas in [8], [13] or [15]. Consequently, our paper follows this direction.spec : SWEuse : LIST, NATsort : Setgenerated by :� : ! Setins: Nat Set ! Setoperations :2 : Nat Set ! Booldel : Nat Set ! Setenum : Set ! Listaxioms :  1 : ins(x,ins(x,s)) = ins(x,s) 2 : ins(x,ins(y,s)) = ins(y,ins(x,s)) 3 : del(x, �) = � 4 : del(x, ins(x, s)) = del(x, s) 5 : x 6= y ) del(x, ins(y, s)) = ins(y, del(x, s)) 6 : x 2 � = false 7 : x 2 ins(x,s) = true 8 : x 6= y ) x 2 ins(y,s) = x 2 s 9 : enum(�) = nil 10 : enum(ins(x,s)) = cons(x, enum(s))Figure 1.1: Speci�cation of sets with enumIn our approach, an equation t = t0 is observationally satis�ed by an algebra if for anyassignment � of variables, the results of the evaluations of both t� and t0� are observa-tionally equal. Unlike in similar approaches, we do not require an observational equalityto be a congruence. This allows to better capture the correct realizations of speci�cationswith some \loose" (underspeci�ed) operations such as choose : Set! Nat: this operation,2



when applied to a nonempty set, should return an element of the set. For instance therealization of sets by lists such that choose returns the head of a list, should be consideredas a correct realization of this speci�cation. In this realization the lists hn;mi and hm;niare observationally equal, since they are viewed as the same set. However choose(hn;mi)and choose(hm;ni) produces two Nat values which should not be observationally equal.The use of an observational equality being non necessarily a congruence allows to have anobservational consistency which does not coincide with the usual one. For instance, theinconsistent speci�cation SWE of sets with enum (see Figure 1.1) can be declared observa-tionally consistent, provided that the inconsistencies are not observed. This is impossiblewithin the approach of [17] since SWE has no behaviours whatever observations are. Anobservational model of this speci�cation will be described in the following sections. Thisexample points out that in our approach, some data types can be speci�ed in a morestraightforward way with less risk of introducing unexpected inconsistencies.Our main contribution is to provide a suitable notion of observation. We claim thatthis notion should reect at the speci�cation level the following paradigm: a user observesthe results of some speci�c computations. Since computations may be represented asevaluations of terms, the part of a speci�cation devoted to observations should be somedescription of a set of (observable) terms. As soon as only some computations can beobserved, it is impossible to distinguish some values from some others. For this reasonour approach fully agrees with the following Indistinguishability Assumption:Two values are indistinguishable with respect to some observations when it isimpossible to establish they are di�erent using these observations.The bridge between observations and the observational equality is provided by an indis-tinguishability relation which is de�ned further according to the above assumption. Froma careful case study it follows that this requires to take into account the continuationsof suspended evaluations of observable terms. Even if very reasonable, we show that thisassumption has some surprising consequences.2 Basic De�nitionsWe assume that the reader is familiar with algebraic speci�cations (see e.g. [9] and[5]). A signature � consists of a �nite set of sort symbols Sorts[�] and a �nite setof operation names with arities Ops[�] (also denoted by �). We assume that eachsignature � is provided with an S-sorted set of variables X such that Xs is countable foreach s 2 S. We use the following conventions. Given a signature � (resp. �0), S (resp. S0)denotes Sorts[�] (resp. Sorts[�0]) and X (resp. X0) denotes the variables of � (resp. of �0).A signature morphism � : � ! �0 maps each sort of S to a sort of S0, each operation(f : s1 : : : sn ! s) 2 � to an operation �(f) of �0 with the arity �(s1) : : : �(sn)! �(s) andeach variable of Xs to a variable of X0�(s). Moreover, we assume that a signature morphismis always injective on variables1. The signatures with the signature morphisms form theusual category of signatures, written Sig.The de�nition of (total) �-algebras and �-morphisms is the standard one. Thecategory of all �-algebras is denoted by Alg[�]. Given an S-sorted set E, we denote byT�(E) the free �-algebra over E. For instance T� (resp. T�(X)) denotes the �-algebra1Without this assumption, which in a stronger form appears in [7] (page 36, De�nition 55), it wouldbe impossible to establish the satisfaction condition for most institutions.3



of ground terms (resp. terms with variables), T�(A) (resp. T�(A[X)) denotes the �-algebra of ground terms (resp. terms with variables) over the carriers of a �-algebraA. Given a signature morphism � : �! �0 the �-reduct of a �0-algebra A0, written A0j�is de�ned in the usual way and extending it on �0-morphisms we obtain the forgetfulfunctor j� : Alg[�0] ! Alg[�]. In the particular case of an inclusion � � �0, thecorresponding forgetful functor is written j�.From T�(X), the \=" symbol and connectives (:, _, ^, ), etc.) we construct the setW� [�] of well formed �-formulae. The satisfaction relation \j=" between �-algebrasand �-formulae is the standard one.A valuation is a morphism � : X! A which maps each x 2 Xs to a value x� 2 As. Theset of all valuations from X to A is written Val[X;A]. A partial valuation is a valuationpreceded by an inclusion X0 � X. From the freeness of T�(X) any valuation (resp. partialvaluation) � followed by the inclusion A � T�(A) (resp. A � T�(A[X)) extends to aunique morphism (written ambiguously �) from T�(X) to T�(A) (resp. T�(A[X)) whichmaps each term t 2 (T�(X))s to a valued term t� 2 (T�(A))s (resp. partially valuedterm t� 2 (T�(A[X))s). The evaluation morphism from T�(A) to A is de�ned as theunique �-morphism which maps each element of (T�(A))s \ As to itself. This morphismmaps a valued term � to its evaluation result written � .A position p in a term t is a sequence of integers which describe the path from thetopmost position of t (denoted by the empty sequence) to the subterm of t at position pwritten tjp. The set of all the positions of t is denoted by Pos(t). The replacement of tjpby a term r in t is written t[r]p. The multiple replacement at parallel positions p1; : : : ;pnis written t[r1 : : :rn]p1:::pn.De�nition 2.1 An (S-indexed) set of contextual variables is written �, where each �sis a singleton f�sg. Amulticontext (resp. context) over a �-algebra A is a partially valuedterm � with only one (resp. only one occurrence of a) contextual variable. Consequently,the set of all multicontexts over A, written MC�(A[�) (the set of all contexts over A iswritten C�(A[�)) is de�ned as follows:MC�(A[�) = [s2ST�(A[f�sg)Given � 2 MC�(A[�) (resp. � 2 C�(A[�)) we can write � : s ! s0 instead of � 2(T�(A[f�sg))s0. Application of � on a 2 As is written �[a].3 How to Observe and How to CompareAs mentioned in the introduction we need to de�ne an indistinguishability relationon the carriers of an algebra in order to relax the satisfaction relation. Usually this isdone using the concept of observable contexts. Since this concept was given only for sort([8], [10], [13]) or signature1 ([1], [4]) observation, we should start by de�ning it in thesituation when we observe an arbitrary set of terms.In the most usual framework one considers a set of observable sorts SObs which is asubset of the sorts of a speci�cation. Then an observable context is any context � : s! s0with s0 2 SObs. Given an element a 2 As we can observe it via � by evaluating �[a]. Hencewe have the following trivial fact:1In fact these approaches combine signature and sort observations.4



Fact 3.1 All the elements of a carrier of an algebra have the same observable contextsw.r.t. a set of observable sorts.Notice that it is unreasonable to hope that this fact could be extended to term observation.This a�rmation is motivated by the speci�cation THREE (c.f. Figure 3.1). Let A be aSig[THREE]-algebra. It is clear that g(aA) does not produce an observable value, sinceg(a) is not an observable term. Consequently, we should consider g(�) as an observablecontext of bA and cA only and, for a similar reason, f(�) as an observable context of aAand bA (but not of cA). It follows from the above that observable contexts cannot betaken into account independently of the elements on which they apply. Therefore, weneed to de�ne the observable contexts of a given element of an algebra. Notice thatsuch a de�nition is superuous for observable sorts.spec : THREEsort : Three, Visiblegenerated by :a, b, c : ! Threeoperations :f, g: Three ! Visibleaxioms :a = bb = cobservations : f(a), f(b), g(b), g(c)
spec : AD-HOCuse : Boolsort : Hocgenerated by :a, b, c : ! Hocoperations :f : Hoc Hoc ! Boolg : Hoc ! Hocobservations : f(a, c), f(b, g(c))Figure 3.1: Two exotic speci�cationsSince Fact 3.1 cannot be extended to term observation we have a little trouble todeclare some a; b 2 As indistinguishable. It seems reasonable to compare a and b withthe same observable contexts. Thus in the previous example we compare aA and bA(resp. bA and cA) only via context f(�) (resp. g(�)). We also notice that aA and cA haveno common observable context. Consequently, these two values cannot be compared.However, according to our Indistinguishability Assumption, we do not consider that twoelements can either be indistinguishable, distinguishable or incomparable. Our point ofview is close to �nal semantics ([3], [11], [18]): we consider indistinguishable these pairsof elements, for which we do not observe the contrary. This is stated in the de�nitionbelow (for a while assume already de�ned the notion of observable contexts):De�nition (comparator, version 1) We callW-comparator (or shortly comparator)of elements a and b of a �-algebra, an observable context of a and b w.r.t. a set W of�-terms. We say that a W-comparator � distinguishes a and b i� �[a] 6= �[b]We can now state the following de�nition of indistinguishability:De�nition 3.2 We say that two elements a and b of a given carrier of a �-algebra areindistinguishable w.r.t. a set of terms W 2 T�(X) (or W-indistinguishable) writtena �W b, if there is no W-comparator which distinguishes them.5
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Figure 3.2: A model of the speci�cation AD-HOCNow, the crucial point is to de�ne the observable contexts of an element of an algebra.Below we make a �rst attempt of such a de�nition. Next, this de�nition will be progres-sively re�ned. In this way we are going to introduce the concept of continuations whichis one of the originalities of our approach.De�nition (observable contexts version 1) Let W � T�(X) be a set of terms anda 2 A be an element of a �-algebra. We say that a context � 2 C�(A[�) is an observablecontext of a, if there is a term w 2W, with valuation � : X! A such that w� has a leafl verifying �[l] = w� and such that l is either the constant of � interpreted in A as a orl is already a itself.The underlying intuition of this de�nition is that an instantiated observable term w�denotes an \observable calculus" i.e. a calculus whose result can be directly observed.Consequently, an observable context � of a, instantiated by a represents an observablecalculus with input a. Unfortunately, it is not adequate enough to only rely on inputvalues. For instance consider the speci�cation AD-HOC (c.f. Figure 3.1). According tothe de�nition, the unique observable context of aA (resp. bA) is f(�; c) (resp. f(�; g(c)))independently of the Sig[AD-HOC]-algebra A under consideration. Consequently, aA andbA are indistinguishable (no comparator) in any algebra A. Consider now the algebra Bgiven in Figure 3.2 and try to partially evaluate in b the observable contexts of aB andbB . Since g(c) evaluates to cB , the evaluations of both f(�; c) and f(�; g(c)) yield f(�; cB ).Then the question whether it is not preferable to consider f(�; cB ) as a comparator of aBand bB clearly arises. Notice that this comparator distinguishes these two values.6



This �rst version of the de�nition of observable contexts has also another drawback:the entire carriers of some sorts can be, in an unreasonable way, devoid of observablecontext, as in the case of the speci�cation PASS-BY (c.f. Figure 3.3). Here the elements ofspec : PASS-BYsort : Nat, Hidden, Visiblegenerated by :0: ! Natsucc: Nat ! Natoperations :stage-one: Nat ! Hiddenstage-two: Hidden ! Visibleaxioms : 0 6= succ(x)x 6= succ(x) ) succ(x) 6= succ(succ(x))observations : stage-two(stage-one(x))
spec : SYMuse : BOOLsort : Symgenerated by :a, b : ! Symoperations :f : Sym Sym ! Boolobservations : f(a, a), f(b, b)Figure 3.3: Yet other exotic speci�cationsAHidden have no observable contexts in any algebra A. Thus they are all indistinguishable.Consequently, the algebras with the carrier of Hidden reduced to a singleton should bepresent among the observational models of PASS-BY. However, this could prevent frompreserving the observable properties of Nat. In fact, the speci�cation PASS-BY requiresall reachable elements of Nat to be distinguishable i.e.stage-two(stage-one(succi(0))) 6= stage-two(stage-one(succj(0))) for i 6= jshould hold in any observational model. Of course, this is impossible when the carrierof Hidden is a singleton. We conclude that in the above example we should considerstage-two(�) as an observable context of any element which is reachable by the evaluationof stage-one(x) properly instantiated.The examples PASS-BY and AD-HOC suggest that a better version of the de�nitionof observable contexts should somehow take into account the super-terms of observableterms as well as their partial evaluations. Before to state this version, we need somereminders about partial evaluation.De�nition 3.3 Let A be a �-algebra. We de�ne the partial evaluation relation, written!pEv, on T�(A) as follows. We say that a term �2 2 T�(A) is the result of the partialevaluation of �1 2 T�(A), written �1 !pEv�2, if there is a position p in �1 such that �1[�1jp]p =�2.Fact 3.4 The reexive-transitive closure of !pEv, written �!pEv is an order. 2De�nition 3.5 Let W � T�(X) be a set of terms and A be a �-algebra. The closure bypartial evaluations of W in A, written fWA, is de�ned as follows:fWA = f� 2 T�(A) j 9 w 2W 9 � : X! A w� �!pEv�g7



The last notion can be used to state a better de�nition of observable contexts:De�nition (observable contexts, version 2) Let W 2 T�(X) be a set of observableterms and A be a �-algebra. We say that � 2 C�(A[�) is an observable context ofa 2 As if �[a] 2 fWA.According to this de�nition an observable context � of a 2 As is obtained from somevalued observable term w� (� : X ! A), if a is an intermediate result of its evaluation.In fact, the above de�nition requires the term �[a] to be obtained from w� as a result ofits partial evaluation. Thus the context � represents a calculus waiting for an input. Ifthe value a is given as input, then the carrying out of this calculus corresponds exactlyto a \continuation" of the evaluation of w�. However, the case of the speci�cation SYM(c.f. Figure 3.3) shows that this approach is not yet satisfactory. For instance, let A bea Sig[SYM]-algebra such that f A(aA; aA) = trueA and f A(bA; bA) = falseA. Applying thelast de�nition we obtain:observable contexts of aA : f(�; a); f(a; �)observable contexts of bA : f(�; b); f(b; �)Since the elements aA and bA have no comparator, they are declared indistinguishable.Nevertheless, the evaluation of the terms f(a, a) and f(b, b) allows to distinguish aA andbA. This motivates to consider f(�; �) as a comparator of aA and bA. Consequently,an adequate de�nition of continuation should be based on multicontexts instead ofcontexts.4 The Indistinguishability RelationAccording to the previous discussion, we de�ne continuations as follows:De�nition 4.1 Let W � T�(X) be a set of observable terms and a be an element of a�-algebra A. We say that a multicontext � 2 MC�(A[�) is a W-continuation via a (acontinuation via a, for short) if �[a] 2 fWA. The set of W-continuations via a is writtencontW(a). (If there is no ambiguity we omit the index W in this notation.)The de�nition of indistinguishability (c.f. 3.2) from the last section remains unchangedprovided that we modify the de�nition of comparator which must be based on the notionof continuation.De�nition 4.2 AW-comparator (comparator, for short) of elements a and b of a givencarrier of a �-algebra, is any W-continuation via a and b. The set of all comparators ofa and b is denoted by cmpW(a; b). (If there is no ambiguity we omit the index W in thisnotation.) We say that a W-comparator � distinguishes a and b i� �[a] 6= �[b].We illustrate these concepts by means of the speci�cation SWE (see Figure 1.1).Example 4.3 We equip the speci�cation SWE with the following set of observable termsObsSWE = fx 2 Xg [ (TSig[LIST](X))Bool [ (TSig[LIST](X))NatThe algebra L which we would like to consider as a correct realization of SWE admits twocopies of the carrier of the usual realization of lists: one for lists and the other for sets.8



Consequently, enumL is the bijection between these two copies preserving axioms  9 and 10. In other words LjSig[LIST] and LjSig[SET] are equal up to some appropriate renamingof operations. The continuations of l 2 LList are the following ones:cont(l) = fcar(�);member(n; �) j n 2 LNat; � 2 (MCSig[LIST](L[�))ListgTherefore, �ObsSWE is the set theoretical equality on LList. The continuations of s 2 LSetare the following ones: cont(s) = fn2 �Set j n 2 LNatgThus s; s 0 2 LSet are indistinguishable if they contain the same elements.We give below the �rst important theorem which will be useful in establishing someresults about observational speci�cations w.r.t. the speci�cation-building primitives.Theorem 4.4 Let � : � ! �0 be a signature morphism, W � T�(X) and W0 � T�0(X0)be sets of terms such that �(W) �W0 and A0 be a �0-algebra. For all elements a 2 (A0j�)sand any multicontext � 2 MC�(A0j�[ �) we have:� 2 contW(a) ) �(�) 2 contW0(a)The proof (omitted here) may be found in [12]. Notice that the converse of the abovetheorem does not hold even if �(W) = W0.The de�nition 3.2 express in which situation two elements of a �-algebra are indis-tinguishable. By the way, it de�nes an S-sorted relation �W= (�W)s2S on an algebra,called indistinguishability relation. Since this relation is a step toward our observa-tional semantics, we must study its properties w.r.t. at least the forgetful functor andthe translation of observable terms in order to be able to cope with speci�cation-buildingprimitives.Proposition 4.5 Let � : � ! �0 be a signature morphism, let W � T�(X) and W0 �T�0(X0) be sets of terms such that �(W) �W0 and A0 be a �0-algebra. For all a; b 2 (A0j�)swe have that if a and b are W0-indistinguishable (in A0�(s)) then a and b are also W-indistinguishable (in (A0j�)s).The proof (omitted here) may be found in [12]. Again, the converse result does not holdeven if �(W) = W0. The following fact is obvious from the de�nition of the indistin-guishability relation.Fact 4.6 The indistinguishability relation is reexive and symmetric. 2The next fact fully agrees with our claims:Fact 4.7 The indistinguishability relation is not a congruence in general.Proof It is enough to go back to Example 4.3. Recall that in the algebra L, sets are representedby lists. Let then hn;mi and hm; ni be two representations of the set fn;mg in this algebra.On one hand we have hn;mi �ObsSWE hm; ni but on the other hand enumL(hn;mi) 6�ObsSWEenumL(hm; ni) because of the comparator car(�) which distinguishes them. 29



spec : TRANSuse : BOOLsort : Transgenerated by :a, b, c : ! Transoperations :f, g, h : Trans ! Boolobservations :f(a), f(b), g(b), g(c), h(c), h(a)
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Figure 4.1: Speci�cation TRANS and one of its modelsWe have also an unexpected negative result:Fact 4.8 The indistinguishability relation is not transitive in general.Consider the model A (see Figure 4.1) of the speci�cation TRANS. In this algebra wehave aA �W bA and bA �W cA, but not aA �W cA. The reason is that we did notimpose any restriction on the set of observable terms. Consequently, nothing ensuresthat all the elements of a given data type can be observed in the same way. In thealgebra A each of the elements aA, bA, cA is observed di�erently, each pair among theseelements is compared in some proper way, di�erent from the others. This is the reasonwhy the indistinguishability relation is not transitive. In fact, this surprising propertyresults directly from our Indistinguishability Assumption according to which we have builtde�nitions 3.2, 4.1 and 4.2 but in certain cases this could be explained by an \inconsistent"choice of observations and sometimes should be avoided. The next fact gives a su�cientcondition to avoid this problem.Fact 4.9 Let A be a �-algebra and W be a set of �-terms. If contW(a) = contW(b) forall a; b 2 As then the relation �W is transitive on A.Proof Obvious. 2Fact 4.10 The relation �ObsSWE from Example 4.3 is transitive.Proof Follows directly from the above proposition, since in Example 4.3 we have shown thatthe elements of the same carrier set of L have the same continuations. 210



It is possible to have a de�nition of \�W" which is always transitive. One may statethat a and b are W-indistinguishable if they do in the sense of De�nition 3.2 and ifadditionally contW(a) = contW(b). In our opinion, such a de�nition will distinguishtoo much. For instance, if in a speci�cation we observe only some ground terms then,according to De�nition 3.2, a non reachable value will never be distinguished from anyother value, whereas with the modi�ed version of this de�nition, a non reachable value willalways be distinguished from any reachable value. Consequently we are not enthusiasticabout such a modi�cation.Since the problem of software correctness is the main motivation of our work, wewant to provide a semantical framework which could be further extended with adequatetheorem proving features. Incontestably, proving software correctness w.r.t. an algebraicspeci�cation requires at least equational reasoning. For this reason, an observationalsatisfaction relation cannot be directly based on the indistinguishability relation in con-trast with the usual satisfaction relation based on the usual set-theoretic equality (ofthe elements of an algebra). Its non-transitive character would eliminate all possibilityof equational reasoning. On the contrary, the non-congruence property does not disallowthis possibility, subject to beware on some exotic operations such as enum (see Figure 1.1).For instance we can replace in some term t of SWE its subterm tjp = ins(s(0); ins(0;�))by ins(0; ins(s(0);�)) except when there is some occurrence of enum in t over the positionp1. In addition we believe that there is no reason to expect an \observational equality"to be a congruence (as in [4]). This holds only in the particular case of sort observation(see [8], [13]).5 Observational AlgebrasAt this moment we have a little trouble with the non-transitive character of theindistinguishability relation. Since this aspect seems to be crucial for establishing someproof methods, we introduce in this section a exible concept of observational algebras.De�nition 5.1 Given a signature �, an observational �-algebra is a pair hA;�=i whereA is a �-algebra and �= is an S-sorted equivalence relation on A, called observationalequality on A. We note OAlg[�] the class of all observational �-algebras.Notice that any �-algebra A can be considered in a straightforward way as an observa-tional �-algebra hA;=i. The reader certainly realizes that our de�nition of observationalalgebras is similar to the one of structures in First Order Logic where each predicatesymbol is interpreted by a relation. We consider the equality symbol \=" in the axiomsas a particular predicate symbol. This symbol is explicitly interpreted in an algebra by aparticular relation, namely an observational equality.Example 5.2 Consider L and ObsSWE both de�ned in Example 4.3. Since �ObsSWE is anequivalence relation (c.f. 4.10), the pair hL;�ObsSWE i is an observational Sig[SWE]-algebra.De�nition 5.3 An observational �-morphism � : hA;�=Ai ! hB ;�=B i is any (usual)�-morphism from A to B which preserves observational equalities i.e:8a; b 2 As a �=A b ) �(a) �=B �(b)1More precisely, this replacement is impossible only if each node on the path from p to the closestenum over p (if there is one) is of sort Set. 11



Obviously OAlg[�] provided with the observational �-morphisms forms a category.De�nition 5.4 Let � : � ! �0 be a signature morphism. The �-reduct of an observa-tional �0-algebra hA0;�=0i is the observational �-algebrahA0;�=0ij� = hA0j�; �=0j�iwhere A0j� is the usual �-reduct of the �0-algebra A0 and (�=0j�)s =�=0�(s) for all s 2 S.The mapping j� extends on observational morphisms as in the usual framework. Conse-quently, it de�nes the corresponding forgetful functor from OAlg[�0] to OAlg[�].De�nition 5.5 A solution of an equation l = r in an observational �-algebra hA;�=iis a valuation � : X ! A such that l� �= r�. The set of all the solutions of an equationis written [l=r]hA;�=i. The set of solutions of a formula ' is de�ned recursively w.r.t. theconnectives : and ^:� if ' = : then [']hA;�=i = Val[X;A] c [ ]hA;�=i� if ' =  ^  0 then [']hA;�=i = [ ]hA;�=i \ [ 0]hA;�=iwhere  ; 0 are �-formulae.Since all the connectives of the classical logic can be expressed by means of the connec-tives : and ^, the solutions of an arbitrary formula without quanti�ers (i.e. implicitlyuniversally quanti�ed) are well de�ned by the above de�nition.The following theorem relates solutions of a formula and its translation, on an obser-vational algebra and on its �-reduct:Theorem 5.6 Let � : � ! �0 be a signature morphism, hA0;�=0i be an observational�0-algebra and ' be a �-formula. Let � : X! A0j� and � 0 : X0 ! A0j� be valuations suchthat x� = �(x)� 0 for all x 2 X. Then� 2 [']hA0;�=0ij� i� � 0 2 [�(')]hA0;�=0iA slightly di�erent version of this theorem as well as its proof may be found in [12].6 Observational Speci�cationsDe�nition 6.1 An observational �-formula is a pair h';Wi where ' 2 W�[�] is a�-formula and W 2 T�(X) is a set of terms. We note OW� [�] the set of all observational�-formulae.In a straightforward way we consider a set � = f'1; : : : ; 'ng of formulae as a conjunctionof formulae � = '1^: : :^'n. Thus any pair h�;Wi can be viewed as a single observationalformula and consequently, any observational speci�cation can be viewed as composed bya single observational formula:De�nition 6.2 An observational speci�cation OSP is a triple h�;�;Wi, where � isthe signature of OSP and h�;Wi 2 OW�[�].12



One may also de�ne an observational speci�cation as a pair h�;OAxi with OAx =fh�1;W1i; : : : ; h�i;Wii; : : :g. The possibility to associate observations separately to eachaxiom would increase the expressive power. (In particular, it allows an in�nite set OAx.)However, in all examples it seems preferable to attach a unique set of observable termsto the whole speci�cation.We have now all the elements necessary to de�ne an observational satisfaction rela-tion:De�nition 6.3 We say that an observational �-algebra hA;�=i satis�es an observationalformula h ;Wi, written hA,�=i Oj= h ,Wi, i�:[ ]hA;�=i = Val[X;A] (i)�= � �W (ii)Models are de�ned as in the usual approach except that we use the observational satis-faction instead of the usual one:De�nition 6.4 Let OSP = h�;�;Wi be an observational speci�cation. We say that anobservational �-algebra hA;�=i is a model of OSP i�:hA;�=i Oj= h�;WiWe note OAlg[OSP] the class of all observational models of OSP.Notice that OAlg[OSP] with observational �-morphisms is a full subcategory of OAlg[�].Fact 6.5 The observational algebra hL;�ObsSWE i described in Example 5.2, is a model ofthe observational speci�cation SWE.Proof sketch Since the observational equality on hL;�ObsSWEi is just the indistinguishabilityrelation, we only need to prove that for any axiom � of SWE we have[�]hL;�ObsSWE i = Val[X;L]This is obvious for the axioms of LIST since LjSig[LIST] is the usual realization of lists and sincefrom Example 4.3 we know that �ObsSWE is the usual equality on LjSig[LIST].Since the elements observationally equal on LSet are di�erent representations of the sameset, it is clear that for the \standard" axioms  1;  2; : : : ;  8 of sets (c.f. Figure 1.1), we have[ i]hL;�ObsSWE i = Val[X;L]In matters of  9 and  10, it is not di�cult to show that [ 9]hL;=i = [ 10]hL;=i = Val[X;L]Then we can conclude that[ 9]hL;�ObsSWE i = [ 10]hL;�ObsSWE i = Val[X;L]This last step is justi�ed by the fact that the axioms  9 and  10 are equations and that= � �ObsSWE . Obviously, for any �-equation t = t0, any � algebra A and observational equalities�=� � �=� on A, we have [t = t0]hA;�=�i � [t = t0]hA;�=�i 213



In the above example we have considered a model of the form hA;�Wi. Of course, thisis possible only when �W is transitive. Moreover this model has a particular status:it is a terminal object in the category of all observational models formed with a givenalgebra A. This is quite analogous to the �nal data type of [11]. Notice that when �Wis not transitive this category has often no terminal object. For instance, the category ofobservational models of TRANS based on the algebra A (see Figure 4.1) has no terminalobject.We examine now how our satisfaction relation behaves w.r.t. the variance of observa-tional formulae (translation) and the covariance of algebras (�-reduct). We start by the�rst requirement of De�nition 6.3:Proposition 6.6 Let � : � ! �0 be a signature morphism. For any set of terms W �T�(X), any observational �0-algebra hA0;�=0i and any �-formula ' we have:[�(')]hA0;�=0i = Val[X0;A0] i� [']hA0;�=0ij� = Val[X;A0j�]The proof (omitted here) mainly uses Theorem 5.6 and may be found in [12]. The nextstep is to study the second condition of De�nition 6.3 w.r.t. term translation and theforgetful functor. We examine �rst the if part of this condition.Proposition 6.7 Let � : � ! �0 be a signature morphism. For all sets of terms W �T�(X), W0 � T�0(X0) such that �(W) � W0 and for any observational �0-algebra hA0;�=0iwe have: �=0 � �W0 ) �=0j� � �Wwhere �W0 and �W are the indistinguishability relations respectively on A0 and A0j�.The proof may be found in [12].The next step should be to prove the converse of the above proposition restricted toW0 = �(W). Unfortunately this does not hold in general1. Consequently the satisfactioncondition (see [6] or [7]) does not hold in our approach without additional assumptions.Nevertheless an institution can be de�ned within this framework, under some restrictionson either signature morphisms or the set of observable terms (see [12]).Up to now, we have not been studying modularity issues. We have only de�nedthe semantics of \at" speci�cations. In fact, as in [1], our observational semantics easilyextends to a strati�ed loose observational semantics without additional assumptions. Thenext theorem shows that our observational semantics is compatible w.r.t. enrichment andrenaming:Theorem 6.8 Let � : � ! �0 be a signature morphism. For all observational speci�ca-tions OSP = h�;�;Wi and OSP0 = h�0;�0;W0i such that �(�) � �0 and �(W) �W0 wehave: OAlg[OSP0]j� � OAlg[OSP]Proof From de�nitions 6.4 and 6.3 it is enough to prove:8 hA0;�=0i 2 OAlg[�0] [�0]hA0;�=0i = Val[X0;A0] ) [�]hA0;�=0ij� = Val[X;A0j�] (i)and 8 hA0;�=0i 2 OAlg[�0] �=0 � �W0 ) �=0j� � �W (ii)1An example illustrating this fact may be found in [12].14



� Proof of (i)Let hA0;�=0i 2 OAlg[�0] such that [�0]hA0;�=0i = Val[X0;A0]Since �(�) � �0, by de�nition of solution of a conjunction of formulae (c.f. 5.5) we have�(�)hA0;�=0i � �0hA0;�=0i. Hence [�(�)]hA0;�=0i = Val[X0;A0] which according to Proposition6.6 implies that [�]hA0;�=0ij� = Val[X;A0j�]� Proof of (ii) follows directly from Proposition 6.7. 2This last result deserves some comments. Indeed, it is somehow surprising that we obtainsuch a strong result, without any further hypotheses w.r.t. the axioms of the speci�ca-tion, while similar results hold for other observational approaches only when axioms arerestricted to equations. It is quite important to note that, in our approach, observationalalgebras are algebras equipped with some observational equality. To obtain a model ofa given observational speci�cation, this observational equality should be \compatible"with the given axioms and observations. The point is that this observational equality ispreserved by forgetful functors. In other approaches, one could de�ne as well an obser-vational equality, but this equality is deduced from the speci�ed observations. Hence,when we apply some forgetful functor, the set of observations is modi�ed (and so is thecorresponding observational equality), and the result of Theorem 6.8 cannot be obtainedwithout very strong restrictions on the axioms and on the observations.7 Concluding RemarksWe have provided a suitable notion of observation based on terms. First, we haveinvestigated how the elements of a carrier of an algebra should be observed through terms.We have pointed out that an adequate notion of observation in this framework requiresto take into account multicontexts and partial evaluations of observable terms. In thisway, we have introduced the concept of continuations which underlies our de�nition ofthe indistinguishability relation. We have shown that this relation is neither a congruencenor an equivalence relation. These both results fully agree with our IndistinguishabilityAssumption. Notice that when we restrict to sort observation, our indistinguishabilityrelation becomes a congruence similar to the Nerode congruence [8]. However, unlikein [13], in our approach, two observational algebras di�ering on non observable junk donot necessarily satisfy the same observational formulae. We do not privilege reachableelements, since this is most suitable for de�ning the observational semantics of parame-terized speci�cations in a loose framework (which is the topic of our current research).Moreover, one could think that our indistinguishability relation coincide with Reichel'sI-indistinguishability [15] when we restrict our approach to sort observation and Reichel'sone to total algebras. This is not true, since we use multicontexts from MC�(A[�) in-stead of MC�(�). Consequently, in our approach non observable junk can inuence theindistinguishability of two elements of a carrier of an algebra while it cannot in otherworks. Thus the roles of reachable and non reachable values are symmetric w.r.t. ourindistinguishability relation. 15
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