
Some aspects of
Test Data Selection from

Formal Specifications
Agnès ARNOULD

Pascale LE GALL

Gilles BERNOT

Plan

■ Main difficulties

■ Contributions of formal methods

■ Probabilistic approach

■ Deterministic approach

■ Focus on Lustre specifications

Introduction

Object : to check adequacy / inadequacy
between :
– the system under test

– the specification reference object

Activities of testing :
– selection of test cases

– execution of tests

– success / failure decision

Selection

■ functional

■ structural

➨ domain → subdomains

■ deterministic

■ probabilistic

➨ coverage criteria

or

or

Test execution

■ good modularity

■ adequate entry points

■ adequate observation points

■ instrumentation

 strong

connection

➨ impact on the early specifications

Success/failure decision (Oracle)

Predictions of the expected outputs ?

➨ formal specifications can solve the problem

Other difficulties:

■ the software gives not enough observations

■ the specification says nothing

■ the specification says nothing usable

➨ increase the number and the size of test cases

Quantitative issues

" I guarantee that the rate of failure will be
less than ε "

Is a non-sense without a risk α to be wrong
w.r.t. this affirmation.

Formal specifications
can let you save money

■ cost of 1 test ≈ 1/2 engineer day

■ computer aided selection and oracle < 1 min

■ automatic manipulations

 ➨ require formal specifications

Testing automation

Generator Submission Oracle

selection criteria

prog. or spec.

test inputs

executable prog. correctness reference
(spec.)

oracle selection
criterias

test outputs succes / failure
decision

testing document

What is a formal specification ?

■ program interface
description

■ properties

sorted : List → Bool

sorted([]) = true

sorted([x]) = true

sorted([x, y | L]) =

(x ≤ y) and sorted([y | L])

What is a formal test ?

Test = formula without variable

operation(inputs) = output

sorted([1, 2, 3]) = true

much better:

observable formula deduced from the specification

sorted([1, 2, 3]) = (1 ≤ 2) and sorted([2, 3])

Plan

■ Main difficulties

■ Contributions of formal methods

■ Probabilistic approach

■ Deterministic approach

■ Focus on Lustre specifications

Probabilistic testing

εε = the vendor affirms to the client "at most Nε
failures for N input values"

αα = the risk that the vendor takes with this
affirmation (over 100 test sets of N tests, almost surely
less than 100α test sets may have more than Nε failures)

N ≥ log(α) / log(1- ε)

Choice of the test cases

How to produce the N relevant test cases:

µµ = a complete distribution on the domain of
variables (has to be discussed with the client)

Problems:

– to formalize the discussion into µ
– to generate test cases according to µ

To automate the probabilistic test

A prototype of generator

■ generates tests from a set description of
domains of variables (cartesien product, union,
recursive definition ...)

■ hides probabilistic manipulations behind set
descriptions: offers default distributions.

Advantages of probabilistic testing

■ allows rough subdomain splitting

■ quantitative estimate of the future system
with an operational profile

■ quantitative estimate of the exceptional
behaviour with other criteria

■ formal specification & domain description

➨ automatic test generation

Deterministic testing

■ cover the definitions case by case

sorted(L)

L = [] L = [x] L = [x, y | L']
where (x≤ y) and sorted([y | L']) = true

L = [x]
where [y | L'] = []

L = [x, y]
where x ≤ y = true

L = [x, y, z | L"]
where ...

ex :

sorted([]) = true

sorted([x]) = true

sorted([x, y | L]) =

 (x ≤ y) and sorted([y | L])

To automate deterministic testing

■ solve constraints for each domain

■ generate any one value in the domain

➨ use constraint solving methods
 (logic programing techniques)

Advantages of deterministic testing

■ automate current practice of functional
testing

■ allows thin subdomain splitting

➨ automatic coverage of exceptional cases

■ extracts the oracle from the specification

■ opens the door to a standardization of
functional coverage criterias

Application to the Lustre langage

Lustre is a functional and dataflow language

a Lustre node as a cyclic behavior

node mem(On : bool ; Of : bool ; Init : bool)
returns (Out : bool) ;
let
Out = if On then (true)

 else (if Of then (false)
 else ((Init) → (pre(Out)))) ;

tel ;

Coverage criteria

■ coverage on the last cycle
 ➨ one stream values per test case

■ A = if B then C else D
– 2 cases: B = (..., true)

 B = (..., false)

■ A = B → C
– 2 cases: last cycle = first cycle

 last cycle = further cycle

Coverage criteria

to cover all operators :
Out = if On then (true)

 else (if Of then (false)
 else ((Init) → (pre(Out)))) ;

produces 4 test cases:
mem((..., true), (..., _), (..., _)) = (..., true)

mem((..., false), (..., true), (..., _)) = (..., false)

mem((false), (false), (V)) = (V)

mem((..., _, false), (..., _, false), (..., _, _)) = (..., V, V)

LOFT, a test generator
(developed by B. MARRE)

■ on one component:
– 1386 lines of Lustre

– 13 nodes

– 101 inputs and 1 output

■ 2 different selection criterias
– 982 test cases genered in 20 s. per case

– 33 test cases genered in 35 s. per case

■ no limit to the test quality

Conclusion

Formals specifications allow to automate
testing activities, including Oracle.

■ functional probabilistic testing becomes
reachable

■ deterministic testing automate current
empirical methods

