Polybius's square

Polybius, Ancient Greece : communication with torches
How :
encipher a plaintext into a ciphertext to protect its secrecy.
The recipient deciphers the ciphertext to recover the plaintext.
A cryptanalyst shouldn't complete a successful cryptanalysis.
Attacks [6] :
known ciphertext : access only to the ciphertext
known plaintexts/ciphertexts : known pairs
(plaintext,ciphertext) ; search for the key

- chosen plaintext : known cipher, chosen cleartexts; search for the key

Short history

History - ancient Greece

500 BC : scytale of Sparta's generals

Secret key : diameter of the stick

History - Caesar

Goals of cryptology

Change each char by a char 3 positions farther A becomes d, B becomes e...

Why enciphering?

Increasing number of goals :

- secrecy : an enemy shouldn't gain access to information
- authentication : provides evidence that the message comes from its claimed sender
- signature : same as auth but for a third party
- minimality : encipher only what is needed.

The plaintext TOUTE LA GAULE becomes wrxwh od jdxoh.

The tools

- Information Theory : perfect cipher
- Complexity : most of the ciphers just ensure computational security
- Computer science : all make use of algorithms
- Mathematics : number theory, probability, statistics, algebra, algebraic geometry,...

Today, with our numerical environment

- confidentiality
- integrity
- authentication

Ciphers Classification

Monoalphabetical ciphers

Monoalphabetical cipher : bijection between letters from \mathcal{A}_{M} and \mathcal{A}_{C}. If both alphabets are identical : permutation.
Example : Caesar. $\{\mathrm{a}, \ldots, \mathrm{z}\} \equiv\{\mathrm{A}, \ldots, \mathrm{Z}\} \equiv\{0, \ldots, 25\}=\mathbb{Z}_{26}$

Caesar cipher is additive.

Encipher: $\forall x \in \mathbb{Z}_{26}, x \mapsto x+3 \bmod 26$
Decipher: $\forall y \in \mathbb{Z}_{26}, y \mapsto y-3 \bmod 26$

Symmetrical ciphers

Made of [1] :

- plaintext alphabet : $\mathcal{A}_{\mathcal{M}}$
- ciphertext alphabet : $\mathcal{A}_{\mathcal{C}}$
- keys alphabet : $\mathcal{A}_{\mathcal{K}}$
- encipher; application $E: \mathcal{A}_{\mathcal{K}}^{\star} \times \mathcal{A}_{\mathcal{M}}^{\star} \rightarrow \mathcal{A}_{\mathcal{C}}^{\star}$;
- decipher; application $D: \mathcal{A}_{\mathcal{K}}^{\star} \times \mathcal{A}_{\mathcal{C}}^{\star} \rightarrow \mathcal{A}_{\mathcal{M}}^{\star}$
E and D are such that $\forall K \in \mathcal{A}_{\mathcal{K}}^{\star}, \forall M \in \mathcal{A}_{\mathcal{M}}^{\star}$:

$$
D(K, E(K, M))=M
$$

Multiplicative cipher

We consider : $x \mapsto t \cdot x \bmod 26$ for $t \in \mathbb{N}$.
Acceptable values of t are s.t. $\operatorname{gcd}(t, 26)=1 \Leftrightarrow t \nmid 26$ $\varphi(26)$ acceptables values $\{1,3,5,7,9,11,15,17,19,21,23,25\}$ Other values don't ensure the uniqueness of the deciphering (e.g. 2)

a	b	c	d	e	f	g	h	i	j	k	l	m
0	1	2	3	4	5	6	7	8	9	10	11	12
n	o	p	q	r	s	t	u	v	w	x	y	z
13	14	15	16	17	18	19	20	21	22	23	24	25
0	2	4	6	8	10	12	14	16	18	20	22	24

To decipher, we require the existence of t^{-1} modulo 26 .
We use the extended Euclidean algorithm which provides
Bezout coefficients i.e. $x, y \in \mathbb{N}$ st. $d=\operatorname{gcd}(a, b)=a x+b y$.
From Bezout coefficients, one can deduce t^{-1} modulo 26 :

$$
\operatorname{gcd}(t, 26)=1 \Leftrightarrow \exists x, y \in \mathbb{N}: t x+26 y=1 \Leftrightarrow x \equiv t^{-1} \bmod 26
$$

Iterative computation

Affines Ciphers

Extended Euclidean (q, r) with $q<r$
$\mathrm{Q} \leftarrow(1,0)$;
$R \leftarrow(0,1) ;$
while $r \neq 0$ do
$t \leftarrow q \bmod r$.
$T \leftarrow Q-\lfloor q / r\rfloor R ;$
$(q, r) \leftarrow(r, t) ;$
$(Q, R) \leftarrow(R, T) ;$
end
return $(q, Q) ; q: \operatorname{gcd}$ value and Q provides the coeffs.
end

Extended Euclidean $(11,26)$

q	r	t	Q	$\lfloor q / r\rfloor$	R	T
11	26	11	$(1,0)$	0	$(0,1)$	$(1,0)$
26	11	4	$(0,1)$	2	$(1,0)$	$(-2,1)$
11	4	3	$(1,0)$	2	$(-2,1)$	$(5,-2)$
4	3	1	$(-2,1)$	1	$(5,-2)$	$(-7,3)$
3	1	0	$(5,-2)$	3	$(-7,3)$	$(26,-11)$
1	0		$(-7,3)$		$(26,-11)$	

$\operatorname{pgcd}(11,26)=1$ and Bezout's coefficients are ($-7,3$).
The mult. inverse of $11 \bmod 26=-7=19$.

When combining 26 additive ciphers and 12 multiplicative ones, we get affine ciphers :
given s and $t \in \mathbb{N}$, encipher with : $x \mapsto(x+s) \cdot t \bmod 26$. The key is the pair (s, t) and the deciphering is done by applying successively the previous methods.
There are 26.12=312 possible affine ciphers. Far from the $26!=403291461126605635584000000$ possible ones.

Ciphers defined by keyword

To get all possible monoalphabetical ciphers by :

- a keyword like, for instance CRYPTANALYSIS;
- a key letter like e.

Remove multiple occurrences of the same letter in the keyword -here CRYPTANLSI- then

[^0]
Cryptanalysis

Shannon : a small proportion of letters provides more information than the remaining $2 / 3$ of the text.

By applying a frequency analysis on the letters then of bigrams, ... in the ciphertext.

$$
\text { Solving } a x \equiv b \bmod n
$$

We have used the method for solving the integer equation $a x \equiv b \bmod n$. There are two cases:
$-\operatorname{gcd}(a, n)=1: a x \equiv b \bmod n \Leftrightarrow x \equiv a^{-1} b \bmod n$ with a^{-1} given by the extended Euclidean algorithm.

- $\operatorname{gcd}(a, n)=d \neq 1$ splits into two new cases :
- $d \nmid b$, the equation has no solution;
- $d \mid b a x \equiv b \bmod n \Leftrightarrow d a^{\prime} x \equiv d b^{\prime} \bmod d n^{\prime}$. We divide Ihs and rhs by d and we solve $a^{\prime} x \equiv b^{\prime} \bmod n^{\prime}$. We get a set of solutions : $\left\{x=a^{\prime-1} b^{\prime}+k n^{\prime}: 0 \leq k<d\right\}$.

Monoalphabetical ciphers aren't robust against a frequency analysis.
We need ciphers for which the statistical distribution of the letters tend to be a uniform one.
1.st attempt : use a crypto transformation which associates a set of distinct letters in the ciphertext to the plaintext letters.
We get what is called polyalphabetical ciphers

Vigenère's cipher (1586)

In a polyalphabetical cipher, plaintext characters are transformed by means of a key $K=k_{0}, \ldots, k_{j-1}$ which defines j distinct functions f_{0}, \ldots, f_{j-1} s.t.

$$
\begin{array}{ll}
\forall i, 0<j \leq n & f_{k_{i}}: \mathcal{A}_{M} \mapsto \mathcal{A}_{C}, \forall I, 0 \leq I<j \\
& c_{i}=f_{k_{i} \bmod j\left(m_{i}\right)}
\end{array}
$$

Idea : use j distinct monoalphabetical ciphers.

Vigenère's square

abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ NOPQRSTUVWXYZABCDEFGHIJKLM BCDEFGHIJKLMNOPQRSTUVWXYZA OPQRSTUVWXYZABCDEFGHIJKLMN CDEFGHIJKLMNOPQRSTUVWXYZAB PQRSTUVWXYZABCDEFGHIJKLMNO DEFGHIJKLMNOPQRSTUVWXYZABC QRSTUVWXYZABCDEFGHIJKLMNOP EFGHIJKLMNOPQRSTUVWXYZABCD RSTUVWXYZABCDEFGHIJKLMNOPQ FGHIJKLMNOPQRSTUVWXYZABCDE STUVWXYZABCDEFGHIJKLMNOPQR GHIJKLMNOPQRSTUVWXYZABCDEF TUVWXYZABCDEFGHIJKLMNOPQRS HIJKLMNOPQRSTUVWXYZABCDEFG UVWXYZABCDEFGHIJKLMNOPQRST IJKLMNOPQRSTUVWXYZABCDEFGH VWXYZABCDEFGHIJKLMNOPQRSTU JKLMNOPQRSTUVWXYZABCDEFGHI WXYZABCDEFGHIJKLMNOPQRSTUV KLMNOPQRSTUVWXYZABCDEFGHIJ XYZABCDEFGHIJKLMNOPQRSTUVW LMNOPQRSTUVWXYZABCDEFGHIJK YZABCDEFGHIJKLMNOPQRSTUVWX MNOPQRSTUVWXYZABCDEFGHIJKL ZABCDEFGHIJKLMNOPQRSTUVWXY
polyalphabetique KSYSSGTUUTZXVKMZ
VENUSVENUSVENUSV

Cryptanalysis...

... becomes more difficult : we tend to a uniform distribution.
But, if we re-arrange the ciphertext in a matrix with as many columns as the key length, all the letters in the same column come from the same monoalphabetical cipher.

Cryptanalysis works as follows :
(1) find the key length
(2) apply the previous methods

2 tests to find the key length : Kasiski and Friedman.

Homophone Ciphers

Goal : smooth the frequency distribution of the letters.
The ciphertext alphabet contains several equivalents for the same plaintext letter.
We thus define a multiple representation substitution.
Thus, letter e from the plaintext, instead of being always enciphered by a 4 could be replaced for instance by $37,38,39$,

These different cryptographic units corresponding to the same plaintext character are called homophones.

letter	frequency	letter	frequency
a	$0,26,27,28,29,30$	n	$13,68,69,70,71,72$
b	1	0	$14,73,74,75,76$
c	$2,31,32,33,34$	p	$15,77,78$
d	$3,35,36$	q	16
e	$4,37, \ldots, 54$	r	$17,79,80,81,82$
f	5,55	s	$18,83,84,85,86,87$
g	6,56	t	$19,88,89,90,91,92,93$
h	7,57	u	$20,94,95,96,97$
i	$8,58,59,60,61,62$	v	21
j	9	w	22
k	10	x	23
l	$11,63,64,65,66$	y	24,98
m	12,67	z	25

Transposition

Vernam cipher (1917)

Implements a permutation of the plaintext letters $\mathcal{A}_{C}=A_{M}$.

$$
\begin{array}{rll}
\forall i, \quad 0 \leq i<0 & f: \mathcal{A}_{M} \rightarrow \mathcal{A}_{M} \\
& \eta: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n} \\
& c_{i}=f\left(m_{i}\right)=m_{\eta(i)}
\end{array}
$$

Is the one-time pad a «perfect» cipher?
A and B share a true random sequence of n bits : the secret key K.
A enciphers M of n bits in $C=M \oplus K$.
B deciphers C by $M=K \oplus C$.

Example
$M=0011, K=0101$
$C=0011 \oplus 0101=0110$
$M=K \oplus C$.
Non-reusability : for every new message, we need a new key.

Why a new key?

... To avoid revealing information on the \oplus of plaintexts.
Eve can sniff $C=\{M\}_{K}$ and $C^{\prime}=\left\{M^{\prime}\right\}_{K}$ and computes:

$$
C \oplus C^{\prime}=(M \oplus K) \oplus\left(M^{\prime} \oplus K\right)=M \oplus M^{\prime}
$$

Given enough ciphertexts, she's able to recover a plaintext by a frequency analysis and with the help of a dictionnary [4].

If we respect the above requirements, Vernam cipher guarantees the condition of perfect secrecy.
Condition (perfect secrecy)

$$
\operatorname{Pr}(M=m \mid C=c)=\operatorname{Pr}(M=m)
$$

Intercepting C doesn't reveal any information to the cryptanalyst

Why is it secure?

Vernam ciphers provides perfect secrecy.

We have three classes of information :

- plaintexts M with proba. distribution $\operatorname{Pr}(M) / \sum_{M} \operatorname{Pr}(M)=1$
- ciphertexts C with proba. distribution $\operatorname{Pr}(C) / \sum_{C} \operatorname{Pr}(C)=1$
- keys with proba. distribution $\operatorname{Pr}(K)$ s.t. $\sum_{K} p(K)=1$
$\operatorname{Pr}(M \mid C)=$ proba that M has been sent knowing that C was received (C is the corresponding ciphertext of M). The perfect secrecy condition is defined as

$$
\operatorname{Pr}(M \mid C)=\operatorname{Pr}(M)
$$

The interception of the ciphertext does not provide any information to the crypto-analyst.

Conclusion

Perfect secrecy but difficult to achieve

- generate truly random sequences
- store them and share them with the recipients example of use : «red phone».

Product and iterated ciphers

Improvement : combine substitutions and transpositions
A cipher is iterated if the ciphertext is obtained from repeated applications of a round function to the plaintext At each round, we combine a round key with the plaintext.

Definition

In an iterated cipher with r rounds, the ciphertext is computed by repeated applications of a round function g to the plaintext :

$$
C_{i}=g\left(C_{i-1}, K_{i}\right) \quad i=1, \ldots, r
$$

C_{0} the plaintext, K_{i} round key and C_{r} the ciphertext.
Deciphering is achieved by inverting the previous equation. For a fixed K_{i}, g must be invertible.

Special case, Feistel ciphers.

Feistel ciphers

A Feistel cipher with block size $2 n$ and r rounds is defined by :

$$
\begin{gathered}
g:\{0,1\}^{n} \times\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}^{n} \times\{0,1\}^{n} \\
X, Y, Z \mapsto(Y, F(Y, Z) \oplus X)
\end{gathered}
$$

g function of $2 n \times m$ bits into $2 n$ bits and \oplus denoting the n bit XOR

Operation mode

Given a plaintext $P=\left(P^{L}, P^{R}\right)$ and r round keys K_{1}, \ldots, K_{r}, the ciphertext $\left(C^{L}, C^{R}\right)$ is obtained after r rounds.
Let $C_{0}^{L}=P^{L}$ and $C_{0}^{R}=P^{R}$ and we compute for $i=1, \ldots, r$

$$
\left(C_{i}^{L}, C_{i}^{R}\right)=\left(C_{i-1}^{R}, F\left(C_{i-1}^{R}, K_{i}\right) \oplus C_{i-1}^{L}\right)
$$

with $C_{i}=\left(C_{i}^{L}, C_{i}^{R}\right)$ and $C_{r}^{R}=C^{L}$ and $C_{r}^{L}=C^{R}$
The round keys K_{1}, \ldots, K_{r}, are obtained by a key scheduling algorithm on a master key K.

NBS launches a competition in 1973

- DES (Data Encryption Standard) proposed by IBM in 1975
- adopted in 1977
- security evaluation every 4 years
- replaced by AES or Rijndael [2]
enciphering example of DES in STINSON's book [9]

DES usage

DES was (is ?) widely used (banks, computer security systems with DES as the main component).
Feistel cipher with special properties.

Operation

DES receives as an input :

- a message M of 64 bits;
- a key K of 56 bits.
and outputs a ciphertext of 64 bits.
DES algorithms first applies to M an initial permutation IP
which provides M^{\prime}, a perutation of M.
M^{\prime} is then cut into two 32 bits words :
- L_{0} the left part of M^{\prime}
- R_{0} its right part.

DES then applies 16 iterates of function f combining
substitutions and transpositions.

Operations in

$G F(16) \simeq \mathbb{F}_{2}[x] / x^{4}+x+1$

- $m(x)=x^{4}+x+1$ is an irreducible of \mathbb{F}_{2}
- elements : nibble $b_{0} b_{1} b_{2} b_{3} \stackrel{\theta}{\leftrightarrow} b_{0} x^{3}+b_{1} x^{2}+b_{2} x+b_{3}$
- addition : by adding the coefficients : $\left(x^{3}+x+1\right)+\left(x^{2}+1\right)$
- multiplication : product of polynomials $\bmod m(x)$
- byte encoding : in a quadratic extension $\mathbb{F}_{16}[z] / z^{2}+1$
- beware! $z^{2}+1$ is not invertible in $G F(16)$
- Reminder : to find the multiplicative inverse of an element : Extended Euclidean on polynomials

$$
(x+1, m)=\left(x^{3}+x^{2}+x\right)(x+1)+1 \cdot m
$$

State matrix \& nibbles

Inverses in \mathbb{F}_{16}

- 1 nibble $=4$ bits word (I/O of SAES components)

$$
\begin{array}{l|l|l}
b_{0} b_{1} b_{2} b_{3} & b_{8} b_{9} b_{10} b_{11} \\
\hline b_{4} b_{5} b_{6} b_{7} & b_{12} b_{13} b_{15} b_{15}
\end{array}=\begin{array}{c|c}
s_{0,0} & S_{0,1} \\
\hline S_{1,0} & S_{1,1}
\end{array}
$$

- key representation :

$$
\underbrace{k_{0} k_{1} \ldots k_{7}}_{w[0]} \underbrace{k_{8} \ldots k_{15}}_{w[1]}
$$

1	0001	1	1	0001	1
2	0010	x	$x^{3}+1$	1001	9
3	0011	$x+1$	$x^{3}+x^{2}+x$	1110	e
4	0100	x^{2}	$x^{3}+x^{2}+1$	1101	d
5	0101	$x^{2}+1$	$x^{3}+x+1$	1011	b
6	0110	$x^{2}+x$	$x^{2}+x+1$	0111	7
7	0111	$x^{2}+x+1$	$x^{2}+x$	0110	6
8	1000	x^{3}	$x^{3}+x^{2}+x+1$	1111	f
9	1001	$x^{3}+1$	x	0010	2
a	1010	$x^{3}+x$	$x^{3}+x^{2}$	1100	c

S-box algebraically

1. init the S-box with the nibbles arranged in a 1D array row by row
2. convert each nibble in a polynomial
3. invert each nibbble in \mathbb{F}_{16}
4. associate to the inverse its ploynomial in
$\mathbb{F}_{16}[y] / y^{4}-1=N(y)$
5. compute $a(y) N(y)+b(y) \bmod y^{4}+1$ with $a=y^{3}+y+1$ et $b=y^{3}+1$
Normally $S(0011)=1011 \equiv S(3)=b$

- Shift row : transposition of the nibble bits :

$b_{0} b_{1} b_{2} b_{3} \mapsto b_{2} b_{3} b_{0} b_{1} . \frac{4}{4}$	4			
c	f		4	4
:---	:---			
f	c			

- Mix columns: modifies the polynomial representation of the state's rows $\frac{N_{i}}{N_{j}} \cdot$. $;$ we associate $c(z)=$ $N_{i} z+N_{j} \in \mathbb{F}_{16}[z] / z^{2}+1 ;$ compute $c(z) \cdot\left(x^{2} z+1\right)$ $\bmod z^{2}+1$.

Example
For $4 f \leftrightarrow 01001111 \mapsto c(z)=x^{2} z+x^{3}+x^{2}+x+1$:
$\left(x^{3}+x^{2}+1\right) z+\left(x^{3}+x^{2}\right)=N_{k} z+N_{\ell} \leftrightarrow 11011100$ because $z^{2}=1, x^{4}=x+1$ and $x^{5}=x^{2}+x$.

Mix columns (matrix)

We work directly on the state :

$$
\left(\begin{array}{cc}
1 & x^{2} \\
x^{2} & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
S_{0,0} & S_{0,1} \\
S_{1,0} & S_{1,1}
\end{array}\right)=\mathbb{F}_{16}\left(\begin{array}{ll}
1 & 4 \\
4 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
S_{0,0} & S_{0,1} \\
S_{1,0} & S_{1,1}
\end{array}\right)
$$

Example

$$
\left(\begin{array}{cc}
1 & x^{2} \\
x^{2} & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
x^{2} & x^{2} \\
x^{3}+x^{2}+x+1 & x^{3}+x^{2}
\end{array}\right)=\left(\begin{array}{cc}
x^{3}+x^{2}+1 & 1 \\
x^{3}+x^{2} & x^{3}+x^{2}+x+1
\end{array}\right)=\left(\begin{array}{cc}
d & 1 \\
c & f
\end{array}\right)
$$

Key scheduling

- initialisation : $w[0]=k_{0} \ldots k_{7} \quad w[1]=k_{8} \ldots k_{15}$
- $2 \leq i \leq 5$
$\{w[i]=w[i-2] \oplus \operatorname{RCON}(i / 2) \oplus \operatorname{SubNib}(\operatorname{RotNib}(w[i-1])) \quad i$ even $\{w[i]=w[i-2] \oplus w[i-1]$

With
RCON $[i]=\mathrm{RC}[i] 0000$
$\mathrm{RC}[i]=x^{i+2} \in \mathbb{F}_{16}\left(\mathrm{RC}[1]=x^{3} \leftrightarrow 1000\right)$

- RotNib $\left(N_{0} N_{1}\right)=N_{1} N_{0}$
- SubNib $\left(N_{0} N_{1}\right)=S\left(N_{0}\right) S\left(N_{1}\right)$ where S denotes the S-box

Example
with $w[0] w[1]=010110010111$ 1010, we have
$w[2]=1101$ 1100, $w[3]=10100101, w[4]=01101100$ and $w[5]=11001010$

Why SAES?

Block ciphers modes of operation

Modes of operation pictured

ECB : electronic codebook mode

The one previously used ; given a plaintext, each block x_{i} is enciphered with the key K, and provides the ciphertext $y_{1} y_{2} \ldots$

CBC - Deciphering

OFB (output feedback mode) and CFB (cipher feedback mode)

Encipher each plaintext block by successive XORing with keys coming from the application of a secret key cipher :

- OFB : sequence of keys comes from the repeated enciphering started on an initial value IV. We let $z_{0}=$ IV and we compute the sequence $z_{1} z_{2} \ldots$ by $z_{i}=e_{K}\left(z_{i-1}\right)$. The plaintext is then enciphered by $y_{i}=x_{i} \oplus z_{i}$
- CFB : We start with $y_{0}=\mathrm{IV}$ and the next key is obtained by enciphering the previous ciphertext $z_{i}=e_{K}\left(y_{i-1}\right)$. Otherwise, everything works like in OFB mode.

CFB enciphering

CFB deciphering

For Message Authentication Code (Modification Detection Code), or message fingerprint (MAC=MDC+IV $=0$).

Possible with CBC and CFB.
We start with IV=0. We build the ciphertext $y_{1} \ldots y_{n}$ with the key K in CBC mode. MAC is the last block y_{n}
Alice sends the message $x_{1} \ldots x_{n}$ and the MAC y_{n}.
Upon reception of $x_{1} \ldots x_{n}$, Bob builds $y_{1} \ldots y_{n}$ by using the secret key K and verifies that y_{n} is the same than the received MAC.

- G. Brassard.

Cryptologie contemporaine
國 J. Daemen and V. Rijmer AES proposal : Rijndael

- J. Daemen and V. Rijmer The Rijndael bloc cipher
E Dawson and L Nielsen Automated cryptanalysis of xor plaintext strings.

國 D. Kahn. La guerre des codes secrets.
R. R.L. Rivest. Cryptography.
W. Stallings. Cryptography and Network Security.
J. Stern. a science du secret.
D. Stinson Cryptographie, théorie et pratique

[^0]: abcdefghijklmnopqrstuvwxyz
 V W X Z C R Y P T A N L S I B E D F G H J K M O Q U

