
Public Key Cryptography

Public Keys
Invented recently by Diffie and Hellman [2].

We stand today on the brink of a revolution in

cryptography.

Bright idea : asymmetrical ; enciphering 6= deciphering.
Encipher by means of a public key.
Decipher by means of a private key.
Useful to solve the key distribution problem!
Kerckhoff principle (1883) still useful

The security of an algorithm must not depend upon

the secrecy of the algorithm but only upon the secrecy

of the key.

http://en.wikipedia.org/wiki/Kerckhoffs%27s_principle

What kind of security?

Relies on computational security.

It means that the cryptanalyst must deploy more computational
efforts to recover the plaintext than its life expectancy.

This gives challenges for breaking RSA keys :

• of 140 digits (463 bits in 1999) 2000 mips year

• of 155 digits (512 bits in 1999) 8000 mips year

• of 232 digits (768 bits in 2010)
http://infoscience.epfl.ch/record/173017/files/hetero.pdf
https://en.wikipedia.org/wiki/RSA_numbers

One-way function
Let M and C be two sets and f : M ! C and f (M) is the image
of M by f . f is one-way if

1. 8x 2 M, the computation of f (x) is easy
(f poly-time computable) and

2. it is hard to find, for most of the y 2 f (M) an x 2 M such
that f (x) = y

(this problem must be difficult [3, 4, 1]).
With only point 2., the deciphering problem is as hard as the
cyptanalysis problem.

We need to add another notion for allowing decipherment and
render the cryptanalyst’s life as hard as possible.

! Trapdoor.

Trapdoor one-way function

f : M ! C is a trapdoor function if it is one-way. Computing in
the reverse direction is easy provided we have a private
information, the trapdoor, which allows constructing g s.t.
g � f = Id .

It is easy to compute the image by f but computationally hard to
invert f without knowing g.

Constructing pairs (f , g) must be easy.
The publication of f should not reveal anything on g.

Idea : use two 6= algorithms, f to encipher and g to decipher.

1.st PKC

1978 : RSA ; Rivest Shamir et Adleman were

• seeking a contradiction in the idea of public key

• successful to find the contrary and obtained the Turing
award in 2002 !

http://amturing.acm.org/lectures.cfm

Rivest, Shamir, Adleman (1978)

Relies on the hardness to factor an integer and on the
hardness of deciding whether an integer is a prime.
For instance, is 1829 prime ?
No : given 31 and 59, their product equals 1829, but finding the factors is hard since we do not know either how

many factors we need.

Or, is 7919 composite?
No, but the primality certificate is hard to exhibit.

Some maths

Euler totient function of n 2 N : '(n) : counts how many
integers from [[1, n]] are prime with n. '(1) = 1 and if p is prime,
'(p) = p � 1.

'(n) = card{j 2 {1, . . . , n} : gcd(j , n) = 1}

Computation : factor n in n =
Q

p|n,p prime p↵p then,
'(n) =

Q
p|n,p prime(p

↵p � p↵p�1) = n
Q

p|n(1�
1
p
).

Example : '(12) = (4� 2)(3� 1) = 12(1� 1
2)(1�

1
3) = 4

Theorem (Fermat-Euler)

m
'(n) ⌘ 1 mod n if gcd(m, n) = 1

Compute ab mod n

hbk , bk�1, . . . b0i binary representation of b : b =
P

k

i=0 bi2i .

Modular Exponentiation (a, b, n)
d 1
Let hbk , bk�1, . . . b0i the binary representation of b

For i 0 to k do
d (d .d) mod n

if bi = 1 then
d (d .a) mod n

endif
endfor
return d

By hand

1773 mod 100. 73 = h1001001i

i bi 172i 172i

mod 100 value
0 1 17 17 mod 100 17
1 0 172 289 mod 100 89
2 0 892 7921 mod 100 21
3 1 212 441 mod 100 41
4 0 412 1681 mod 100 81
5 0 812 6561 mod 100 61
6 1 612 3721 mod 100 21

and 1773 mod 100 = 17.1723
.1726

= 17.41.21 mod 100 = 37.

RSA cipher

1. choose p, q primes relatively large approx. 10100

2. compute n = pq and publish n

3. compute '(n) = (p � 1)(q � 1)
4. publish e st gcd(e,'(n)) = 1 (PK, encipher)
5. compute d st d .e ⌘ 1 mod '(n) (private key, decipher)

Encipher : E : M 7! Me mod n provided M < n

Decipher : D : C 7! Cd mod n (d is the trapdoor).
Implementations : software, hardware or mixed.
On dedicated hardware, RSA is 1000 times slower than DES.

Attack on the parameters
Cycles : Eve observes c = me mod n ; she tries to find out ⌫
st.

c
e⌫ ⌘ c mod n, e

⌫ ⌘ 1 mod '(n)

Allowing to find m ⌘ ce⌫�1
mod n

Since ce⌫ ⌘ c mod n, ce⌫�1 ⌘ 1 mod n and, by
Euler-Fermat, one gets e⌫ � 1 ⌘ 0 mod '(n), e⌫ ⌘ 1
mod '(n). Since c = me mod n and de ⌘ 1 mod '(n), we can
take the value d = e⌫�1 to decipher..
Example : Alice publishes her public parameters e et n, 17 and
143. Eve sniffs c = 19 a message to Alice and computes :

i 2 3 4
cei 84 28 19

Eve just has to read m for i = 3, thus 28.

Attack when '(n) is known
Given (n,'(n)) allows to find the factorization of n [3].

We let :
⇢

n = pq

'(n) = (p � 1)(q � 1) and q = n

p
:

'(n)� (p � 1)
✓

n

p
� 1

◆
= 0, p

2 + p ('(n)� n � 1) + n = 0

equation of order two with solutions p and q.
Thus, computing '(n) is as hard as factoring n.

Example
n = p.q = 133 and '(n) = 108. '(n)� (p � 1)

⇣
n

p
� 1

⌘
= 0

, p2 + p ('(n)� n � 1) + n = p2 + p(108�133�1) + 133 =
0, p2 � 26.p + 133 = 0 with

� = (�26)2 � (4.133) = 144 = 122 and of solutions

p = 26±12
2 = {19, 7}.

Sieve of Eratosthenes

Divide n by all odd numbers between 3 and b
p

nc.
Efficient for n < 1012 and known since ancient times.
Sieve of Eratosthenes runs in time O(

p
n).

It’s not polynomial ! The time-complexity is not polynomial in the
length of the input. It is pseudo polynomial.
In addition, in the case of RSA, the modulus n has no small
prime factors.

Security

RSA is as secure as factoring n is hard.
Time complexity of some good factoring algorithms :

quadratic sieve O(e((1+o(1))
p
log n log log n))

elliptic curves O(e((1+o(1))
p

2 log p log log p))

algebraic sieve O(e((1,92+o(1))(log n)1/3(log log n)2/3))

(p : smallest prime factor of n).

Man in the middle
In the transmission of the public keys :

• Bob (client) asks Alice (server) for her public parameters

• Alice sends eS, nS to Bob

• Melchior intercepts eS, nS ; replaces by its values eM , nM

• Bob enciphers by using eM , nM and sends c

• Melchior intercepts c and deciphers it into secret

• Melchior enciphers secret with Alice’s parameters eS, nS

and transmits to Alice. . .

Serveur ClientMelchior
eS,nS eM,nM Serveur

ClienteS,nS eM,nM

secreteM mod nMsecreteS mod nS

Bob should have checked that the data were coming from Alice
(lack of authentication).

Another hard problem

The discrete log problem.
Find the discrete log of y in basis g :

Instance : g, y elements of a finite group G.

Question : find x st gx ⌘ y in G

or, for a large prime p, g a generator of G = Z?
p, gx ⌘ y mod p

and x = logg(y) mod p � 1.

Example

Let G = Z?
7 a cyclic group. For the discrete logarithm in basis 2,

only 1, 2 and 4 have a discrete log. In basis g=3, we have :

number y 1 2 3 4 5 6
logarithm 6 2 1 4 5 3

For instance for number = 1 and log = 6. This means that
log3 1 = 6, which can be checked with 36 mod 7 = 1.

Computing the discrete log

Becomes hard when the cardinal of G grows.
Algo for computing the discrete log : Shanks applies to every
finite group G. Its time complexity is O(

p
|G| log |G|) and its

space complexity is O(
p

|G|).
Idea : construct two lists of the powers of g :

• baby steps : {gi : i = 0..d
p

ne � 1} with n = |G|

• giant steps
n

y

⇣
g�d

p
nej

⌘
: j = 0..d

p
ne

o
.

Then find a common term to the two lists. Then,

g
i0 = y(g�j0d

p
ne) and m = i0 + j0d

p
ne

Example
In Z⇥

113 =< 3 > of order n = 112 ;
p

n = r = 11. We search the
discrete log of y = 57 in basis g = 3 :
Unordered list of baby steps by (exponent, value) :

B = {(0, 1), (1, 3), (2, 9), (3, 27), (4, 81),
(5, 17), (6, 51), (7, 40), (8, 7), (9, 21), (10, 63)}

Unordered list of giant steps by (exponent, value)

L = {(0, 57), (1, 29), (2, 100), (3, 37), (4, 112), (5, 55), (6, 26),
(7, 39), (8, 2), (9, 3), (10, 61), (11, 35)}

3 is common to both lists. It has been generated for i0 = 1 in
the list B and for j0 = 9 in the list L.
The value of the discrete log is x = i0 + r .j0 = 100. Verification :
we compute gx mod 113 = 57.

Other objectives of PKC
• secrecy

• authentication : proof of origin authenticity

• identification : electronic proof of its own identity

• integrity : guarantee that there was no modification

• non repudiation : A service that provides proof of the integrity
and origin of data.

Other cryptographic techniques are required

• signature : the way to associate the sender to a message

• certificate : guarantees the relation (identity, PK)

• trusted third party : authority who delivers certificates

• timestamps : append timestamps to grant uniqueness of the
message.

Signatures

Notion introduced by Diffie and Hellman in [2].

Goal of the signatures : prove the sender’s identity and provide
integrity of the message. The signature depends upon the
sender’s identity and on the message contents.

Must counter two kinds of frauds

• message modification

• change the origin of the message (sender’s identity)

Requirements for sig(M)

• easy to compute by the sender for every message M

• the recipient must be able to check the signature

• a third party must be able to check the signature

• the signature must be hard to forge

• the sender should not be able to say that his signature was
forged

General mechanism for signatures

• a private algorithm for signing denoted sig which, given a
fixed key SK , returns a signature S for the plaintext M ;

sigSK (M) = S

• a verification algorithm ver which, given a fixed key PK

and for every pair plaintext/signature (M,S) checks if the
signature corresponds to the plaintext.

verPK (M,S) =

⇢
true if S = sigSK (M)
false if S 6= sigSK (M)

Signing with RSA

Bob wants to send a signed message M to Alice. They have
their respective RSA parameters :

Private Public
Alice dA nA, eA

Bob dB nB, eB

Signing algorithm :

sigSK (M) = M
dB mod nB = S

Verification algorithm :

verPK (M,S) = true, S
eB mod nB ⌘ M

RSA allows secrecy and
authentication

How can Bob send an authenticated secret message to Alice?

Private Public
Alice DA(C) = CdA mod nA EA(M) = MeA mod nA

Bob DB(C) = CdB mod nB EB(M) = MeB mod nB

Bob sends
C = EA(DB(M))

which is deciphered by Alice :

EB(DA(C))

provided that M < nB < nA.
Why isn’t it a signature?

El Gamal Signature

Let p be a prime for which the discrete log problem is hard in Z?
p and

let ↵ be a generator of Z?
p.

The message M 2 Z?
p and its signature is made of the pair

(M,S) 2 Z?
p ⇥ (Z?

p ⇥ Zp�1). The set of keys is

K = {(p,↵, a,�) : � = ↵a mod p}

Private Public
a p,↵,�

Randomly choose k 2 Z?
p�1 ; keep it secret ; k is st gcd(k , p � 1) = 1.

Signing algorithm :
sig

K
(M, k) = (�, �)

for � = ↵k mod p �/a� + k� ⌘ M mod (p � 1)

Example
Let p = 467 and a = 127. We check that gcd(a, p � 1) = 1. Let
↵ = 2 be a generator of Z⇥

p . We compute

� = ↵a mod p = 2127 mod 467 = 132

If Bob wants to sign the message M = 100 for the random
value k = 213 which verifies gcd(k , p � 1) = 1, he computes
the multiplicative inverse k�1 mod p � 1 by the Extended
Euclidean algo which gives k�1 = 431. Then,

� = ↵k mod p = 2213 mod 467 = 29

and

� = (M�a�)k�1 mod (p�1) = (100�127.29).431 mod 466 = 51

Verification
Given M, � 2 Z?

p and � 2 Zp�1, we define

verK (M, �, �) = true, ���� ⌘ ↵M mod p

If the signature is correct, the verification algorithm validates
the signature since :

���� ⌘ ↵a�↵k� mod p ⌘ ↵M mod p

since a� + k� ⌘ M mod (p � 1).

Example : We verify the signature (100, 29, 51) :

verK (M, �, �) = true, ���� ⌘ ↵M(p), 132292951 ⌘ 2100(p) ⌘ 189

which is correct

G. Brassard.
Cryptologie contemporaine.
Logique, mathématiques, informatique. Masson, 1993.

W. Diffie and M.E. Hellman.
New directions in cryptography.
IEEE Trans. on Inform. Theory, 22(6) :644–654, 1976.

N. Koblitz.
A course in number theory and cryptography.
Graduate texts in mathematics. Springer Verlag, 1987.

A. Salomaa.
Public Key Cryptography.
EATCS monographs. Springer Verlag, 1990.

