
Hash functions, certification and
secure protocols

Contents

Hash functions

Certification

Key management

Identification and authentication

Example of real protocols

Hash functions

Signature can be used only for small sized messages.
Naive solution : cut the message to sign into fixed sized
blocks ; then sign independently each block
Many problems

• the size of the signature becomes huge

• signing algorithms are pretty slow

Solution : use a hash function
Use a cryptographic hash function, quick to compute ;
transforms a message of arbitrary length into a fingerprint of
fixed size. Then, sign the fingerprint

message x arbitrary length
#

fingerprint z = h(x) 160 bits
#

signature y = sigsk (z) depends upon the signature

Principle : When Bob signs x he first computes the fingerprint
z = h(x), then he signs with y = sigsk (z) and sends the pair
(x , y). Everyone can check the validity by

1. re-computing the fingerprint ẑ = h(x)
2. using the verification algorithm, verpk (ẑ, y).

Conditions to fulfill

A hash function h computes

z = h(m)

for m a message of arbitrary length ; z is a fixed size fingerprint.
We require h to be one way, i.e.

• h(m) must be easy to compute from m

• z must be hard to invert

Collision of h : pair of distinct words (x , x 0) st h(x) = h(x 0).
h is weak collision resistant if, given a x , it is difficult to find a
collision.
h is strong collision resistant if it is difficult to find any
collision (x , x 0).

Birthday paradox

Given : B = (b1, . . . , bk) 2 {1, 2, . . . , n}k .
Problem : proba p to have at least 2 identical elements in B ?
Let us consider k messages mi randomly chosen with i 2 [1, k]
and we consider the proba that two mi have the same image.
zi = h(mi). Proba that all zi are different :

1�p = q =
1
nk

k�1Y

i=0

(n�i) =
k�1Y

i=1

✓
1 � i

n

◆
= 1

✓
1 � 1

n

◆
· · ·

✓
1 � k � 1

n

◆

Where 1 is the probability to choose z1, (1 � 1
n) the probability

to choose z2 6= z1 (since there is one chance over n that
z1 = z2),. . . , (1 � i

n) the probability to choose zi 6= z1, . . . , zi�1.

We approximate
Qk�1

i=1
�
1 � i

n
�

by
Qk�1

i=1 e� i
n since

e�x = 1 � x + x2

2! �
x3

3! · · · , thus e�x ⇡ 1 � x for x small (which
is our case). Thus, 1 � i

n ⇡ e� i
n .

q =
Qk�1

i=1
�
1 � i

n
�
⇡ e� 1

n
Pk�1

i=1 i = e� (k�1)k
2n

ln q ⇡ � (k�1)k
2n

2n ln(1
q) ⇡ k2

q
2n ln(1

1�p) ⇡ k

p = 1/2, proba to have at least one collision for k ⇡
p

2n ln 2
Example : n = 365, k = 23 people ; we have more that proba
1/2 to have 2 people with the same birthday day.
Application : find the size n of the image by the hash function
to avoid collisions. We have k in O(

p
n).

Attack based on the paradox

Compute and sort as many pairs (x , h(x)) as possible. Detect one
(ore more) collisions.
There are 2n values corresponding to the birthdays ; .
We assume that the images by h are uniformly distributed.
If we consider k inputs, we have more than 1/2 chance to find a
collision when k ⇡ 2 n

2 . Taking the logarithm,

n 50 100 150 200
log2 k 25 50 75 100

Thus, by computing a little bit more than 2n/2 images by h, we can
find a collision with proba > 1/2.
For h strongly resistant, we choose n great enough to avoid that the
computation of the 2n/2 images by h be feasible. Currently, n � 160.

One-way compression function

Like MD5, m is split into n blocs, each of fixed length and the
following is applied :

MD5 MD5 MD5

bloc 1

valeur
initiale

bloc 2 bloc n

valeur
hachée

message

Classical construction

Start from your favorite ek , and build a compression function :

g : {0, 1}m ! {0, 1}n for m, n 2 N, m > n

Use function g to build a hash function :

h : {0, 1}? ! {0, 1}n for n 2 N

Proposition

h collision resistant if g collision resistant

Compression Function

From : ek : {0, 1}n ⇥ {0, 1}n ! {0, 1}n

one can design a compression function

g : {0, 1}n ⇥ {0, 1}n ! {0, 1}n for n 2 N

whose image size is n.
The cipher is used either directly if it is collision-resistant or by
modifying it :

g(k , x) = ek (x)� x
g(k , x) = ek (x)� x � k
g(k , x) = ek (x � k)� x
g(k , x) = ek (x � k)� x � k

Hash Function
Merkle : constructs a hash function from a compression
function g : {0, 1}m ! {0, 1}n.
Let r = m � n > 1. We want to build h : {0, 1}? ! {0, 1}n.
Let x 2 {0, 1}? and ` its length in binary

• fill x with "0" : u = 0i x st |u| ⌘ 0 mod r

• fill ` with "0" : y = 0j` st |y |⌘0 mod r�1

• cut y in blocks of r � 1 bits and add a "1" at the beginning
of each block to form the word v

• build w = u0r v made of t blocks of size r .
Example : r = 4, x = 11101, ` = 101. u = 0001 1101, v = 1101.

w = 0001 1101 0000 1101 = w1w2w3w4 (t = 4)

H inductively defined : H0 = 0n et Hi = g(Hi�1wi), 1 i t

h(x) = Ht

Modern hash functions

The hash functions which are commonly used are designed
according to the previous construction.

name bits round⇥steps relative speed
MD5 128 4⇥16 1
SHA 160 4⇥20 0,28

Application to DSA

Digital Signature Algorithm is a signature standard combining
the use of a hash function (MD5 or SHA) and DSS, the latter
being an improvement of El Gamal’s signature scheme.

Contents

Hash functions

Certification

Key management

Identification and authentication

Example of real protocols

PK Certificate

A certificate of B’s PK contains B’s identity together with PKB
signed by a third party.
Usage : counter MIM attacks
A certificate contains

• the public key

• informations relative to B’s identity (name, e-mail. . .)

• the signature by a third party, Ivan
Ivan signs

• the key

• the informations relative to B
Ivan guarantees the correctness of those informations and that
the public key corresponds to B’s identity.

How it works

Certification is done by the means of a signature scheme.
It consists in [2] :

• signing after hashing

• providing a verification algorithm
Example : if the contents of the certificate follows X509 norm,
we provide a digital id like a numerical identity card.

(X.509) Certificate
Associates a public key to the identity of a subject ; it contains :

• Subject : Distinguished name ; public key

• Issuer : Distinguished name, signature

• Period of Validity : not before, not after

• Administrative Information : version, serial number

• Extended Information :
The information « Distinguised name » contains :

• Common Name : name to be certified Bruno Martin

• Organization| Company : context UNS

• Organizational Unit : more specific Deptinfo

• City/Locality : town Sophia Antipolis

• State/Province : for US PACA

• Country : country code fr

Certification & Verification
IdS,PKS hachage

h
Sign AC Sign AC(h(IdS,PKS))

IdS,PKS

Sign AC(h(IdS,PKS))
Clé de S
certifiée par ACIdS,PKS

AC

hachage
h

VerACSignAC(h(IdS,PKS))

h(IdS,PKS)

oui/non

Clé de S
certifiée par AC

Algorithme public
de vérification de AC

IdS,PKS

IdS,PKS
AC

Certification Chain

CA also provides a certifi-
cate to another CA.
Alice can traverse the cer-
tification chain until she
finds a CA she trusts to
check the validity of the re-
lation (IdS,PKS)

IdAC,KAC
AC1

IdS,PKS
AC

IdC,cléC
ACr

IdB,cléB
ACr

IdAC1,KAC1
ACr

IdACr,KACr
ACr

Root CA creation

Problem of the certification chains : we need a root CA.
This root CA cannot be certified : its certificate is self-signed.
The trust relies on a wide distribution of the root CA’s public key.
Clients and servers are configured to trust some root CA by
default like CertiSign or VeriSign.
Those firms propose techniques to request for signatures, have
procedures for verifying the information and they sell, provide
and manage certificates.
Note that, by default, openssl is not preconfigured with any
trusted root certificates. They’re provided by the OS vendor or
embedded in software applications (firefox).

With no trusted CA...

Contents

Hash functions

Certification

Key management

Identification and authentication

Example of real protocols

Key exchange

All ciphers require the keys to be securely exchanged.
Obvious with symmetrical ciphers and PKC to counter MIM.

What are the solutions?
Some solutions

1. Fix a meeting to exchange the keys
2. Sending the key by surface mail
3. Use a key previously shared by both parties and compute

a new key
First two cases : not always possible ; if two army corps are
isolated.

Key management techniques [1]
Make use of

• enciphering
mechanisms

• key usage
• security policy

counter :

• modification
• unintended

disclosure
• relay
• modification

Ready Active Used

generation

destruction destruction

reactivation

activation desactivation

During the lifetime of the keys, we need to ensure :

secure generation suppression revocation certification
storing distribution destruction installation

Models for key establishment

Process which makes a key available to one or several entities ;
covers :

• key agreement

• key transportation (public, secret)

• key update

• key derivation

Key agreement

Imagine a solution based on the problem hardness (complexity)
which is easy to compute for legitimate users and hard for an
attacker.
We use a one-way function.
A good candidate is the discrete log. problem.

Diffie Hellman key agreement
protocol

Let q be a big prime and a, 1 < a < q.
Each user U

• randomly selects a secret value XU , 1 < XU < q

• publishes YU = aXU mod q
A and B build a shared key only known by them :

• A computes K = (YB)
XA mod q

• B computes K = (YA)
XB mod q

A and B share the key K :

Y XA
B ⌘ (aXB)XA ⌘ aXBXA ⌘

⌘ aXAXB ⌘ (aXA)XB ⌘ Y XB
A mod q

Security

1. Shared keys are secure : if an attacker is able to compute
the key, XA of A from YA = aXA mod q, he must solve DLP

2. Is it possible to find the shared key from the published
information? It is known as hard as solving DLP.

Secret keys transport mechanism

Process which allows to transfer a secret key by an entity to
another entity.
By using ciphers either asymmetrical or symmetrical.
ISO/IEC 11770-2 and 3 define 18 mechanisms, 5 are point to
point, the remaining ones use a trusted third party as key
distribution center. For short : distribution

• in the same domain

• between domains
Other examples, see http://www.microsoft.com/technet/
prodtechnol/windows2000serv/reskit/distrib/dsch_key_
xihm.mspx?mfr=true

Models for key distribution

A B

KDC
1

2
3

Model pull

A B

KDC

1

2
3

4
Model push

A B

KDC

1

2

3

2’

3’

Mix Model

Kerberos

Allow a user connected on a
client to prove his identity to a
service or an application server
without transmitting its creden-
tials over the network.
Requires a trusted third party
acting as a key distribution

center (KDC) for the domain ; it
is made of :

• authentication server (AS)

• ticket granting service
(TGS)

which are both secured

1

2

3

4

5U
,T

G
S,

T,
L

KU(K,N,Tc,tgs)

S,N,T c,tgs ,Ac,tgs

K(Tc,s ,K')

Tc,s ,A
c,s

AS

TGS

serv eur
 S

K'(T+1)

6

Tc,tgs =KTGS (U,C,TGS,T,L,K) tick et TGT
Tc,s =KS(U,C,S,T, L ,K') tick et de session
Ac,tgs =K(C,T) authentificateur pour Tc,tgs
Ac,s =K'(C,T) authentificateur pour Tc,s

U/C

Keys update
Let the key evolve session after session : key update. Process which
allows to share keys previously constructed by updating them by the
means of a session parameter.
A new session key K is defined from :

• a shared key KAB

• a parameter F (random, time stamp, sequence number)

• a key updating function f

Works in two steps :

1. the initiator A chooses a derivation parameter F which is
transmitted to B.

2. A and B compute the new key K by f st

K = f (KAB,F)

Example of function f : crypto hash function h applied to the data
concatenation : K = h(KAB;F)

Contents

Hash functions

Certification

Key management

Identification and authentication

Example of real protocols

Identification & auth

Authentication : process of determining whether someone or
something is, in fact, who or what it is declared to be (I’m Bruno
and here’s the proof of my identity)

Identification : permits to prove the identity of an entity by
means of its identifier (I’m Bruno)

Identification gives the entity’s identity and authentication to
check its validity.

Example of asymmetrical
authentication

msg-alea

DeB(MD(msg-alea)

If we do not use a fingerprint (MD) of the random message, this
protocol can be attacked by a known plaintext/ciphertext
attack : (msg-alea/DeB(msg-alea)).
Requires that Alice knows Bob’s public key prior the use of the
protocol.

Contents

Hash functions

Certification

Key management

Identification and authentication

Example of real protocols

IP Security
Add crypto techniques (IPSec working groups) to the Internet
standard protocols. The IP security architecture provides
security mechanisms (described in RFC1825) which provide
authentication, integrity, access control and confidentiality
services.

SMTP HTTP FTP

TCP (Transmission Control Protocol)

IP Internet Protocol

IP Security Protocol
(AH, ESP)

TCP security

Protocols used to secure TCP :

• Secure Socket Layer used by
netscape

• Private Communication

Technology by Microsoft
(stopped with SSL3)

• Transport Layer Security

IETF standard

SMTP HTTP

TCP (Transmission Control Protocol)

IP (Internet Protocol)

Transport Layer Security

(SSL, TLS)

Current libraries for TLS : BoringSSL designed by Google
(2015) OpenSSL, LibreSSL coming from OpenBSD and
GnuTLS.

SSL & TLS

SSL provides authentication, compression, integrity,
confidentiality.
allows several auth. or confidentiality mechanisms and secures
all applicative protocol.
SSL becomes TLS, a standard, by IETF. It contains two layers :

• Agreement or Handshake Protocol

• Communication or Record Protocol
which provide the following services :

• connection confidentiality by AES, Camellia, DES, 3DES

• connection integrity by a MAC using a non-zero IV
(SHA-1 or SHA256 or SHA384)

Authentication

This is how Alice verifies Bob’s identity.
Let us call SKB Bob’s private key and PKB its public key

A ! B r = a random message
B ! A c = {r}SKB

But signing a random message r given by someone and
sending the signature can be dangerous.
An idea would be to use a hash function h : Bob signs h(r) but
the danger remains.

Authentication

It’s better if Bob signs a message he has chosen provided he
avoids sending m and its signature together :

A ! B "Hi, are you Bob?"
B ! A m = "Alice, I’m Bob"

c = {h(m)}SKB

Identification

Alice does not know Bob’s PK in advance. How to securely
send his PK?

A ! B "Hi"
B ! A "Hi, I’m Bob. Here’s my PK" PKB
A ! B "Prove it."
B ! A m = "Alice, I’m Bob"

c = {h(m)}SKB

Anybody can usurp Bob’s identity for Alice by giving his own PK
(MIM).

Transmit a certificate

A certificate provides evidence between an identity and the
corresponding PK.

A ! B "Hi"
B ! A "Hi, I’m Bob. Here’s my certificate" certB
A ! B "Prove it."
B ! A m = "Alice, I’m Bob"

c = {h(m)}SKB

Marjorie could usurp Bob’s identity during the 3 first exchanges
but it would fail after. (Tell when it might not be the case)

Exchange a secret

Securing communications with public key crypto is costly. Once
the authentication step is completed, it’s better to share a
secret key to use a symmetrical cipher.

A ! B "Hi"
B ! A "Hi, I’m Bob. Here’s my certificate" certB
A ! B "Prove it".
B ! A m = "Alice, I’m Bob"

c = {h(m)}SKB
A ! B "Ok Bob, here’s our secret :"

s = {secret}PKB
B ! A m0 = {message from Bob}secret

Attack

Melchior, the man in the middle can be active during the 5 first
steps. At step 6, he can scramble Bob’s message and Alice
receives an un-readable message :

B ! M m0 = {message from Bob}secret
M ! A m0 changed

Alice has no proof of Melchior’s existence, even if she finds
suspicious Bob’s last message.

SSL
To counter this attack, it’s better to use a MAC :

M = h(message from Bob||secret)

A ! B "Hi"
B ! A "Hi, I’m Bob. Here’s my certificate" certB
A ! B "Prove it".
B ! A m = "Alice, I’m Bob"

c = {h(m)}SKB
A ! B "Ok Bob, here’s our secret :"

s = {secret}PKB
B ! A m0 = {message from Bob}secret||h(message from Bob||secret)

Melchior can scramble everything, but Alice will be warned of
Melchior’s existence.

Communication

This protocol allows to send messages of arbitrary size. It splits
it into blocks, eventually compresses, adds a MAC, enciphers
and adds a sequence number to ensure integrity.

References

W. Fumy.
Key management techniques.
In State of the art in applied cryptography, number 1528 in LNCS, pages 209–223. Springer Verlag, 1997.

RSA Laboratories.
PKCS]1 v2.0, RSA cryptography standard.
Technical report, RSA Data Security, 1998.

