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Quizz

In current Internet secured protocols (https, gpg, S/MIME), do you
think the data is encrypted with:
⇤ Secret Key
⇤ Public Key
⇤ Other

Correct answer:

Hybrid Encryption (Other)
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Secret Key Cryptography

I Stream cipher (Vernam) ensures perfect security (Information
theoretic)

I Blocks chaining encryption (AES-256-CTR) ensures semantic security
(complexity theoretic)

Pros:

Cleartext and Ciphertext are about the sime size ; quick computation

Cons:

Secret Key transmission
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Public Key Cryptography

Basically RSA encryption (with padding schemes) or ciphers based on
number theory problems (factoring, discrete log.)

Pros:

Public key transmission

Cons:

Slow computation (factor 4k); Ciphertext’s size larger than cleartext
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Hybrid Encryption

Pros:

Public key transmission; Cleartext and ciphertext the same size; quick
computation

Cons:

Not quantum safe. . . (Wait a bit)
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Complete processing chain

Focus on RNG

See [Krasnowski, 2021]’s PhD co-advised with J. Lebrun (Signal processing) for a complete processing chain
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Random Number Generation

I TRNG: uses a nondeterministic source to make randomness. Random
numbers come from measuring unpredictable natural processes (pulse
detectors of ionizing radiation activities, gas discharge tubes, and
leaky capacitors,. . . ).

I QRNG: exploit elementary quantum optic processes that are
intrinsically probablilistic to generate true randomness. Random
numbers are a result of measurement on a quantum system.

I PRNG: runs an algorithm that uses mathematical formulas or
algorithms to produce random numbers.
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Random Generator (rule 30) – Example of RNG

t=0

[Wolfram, 1986]: given i , {x t
i
}tØ0 is pseudo-random.

Used in Mathematica™.
Justified by Knuth’s statistical tests.
Not suitable for cryptography; can be improved [Martin et al., 2014]
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What is a binary random sequence?

A random sequence
I is unpredictable
I is uncompressible (there is no shorter program than the program

which prints out the random sequence)
I passes all (e�ective) statistical tests

No program can generate a true random sequence, only pseudo-random.
Random sequences are obtained by observing natural phenomenon.

Randomness definitions

I TRS: a sequence that is unpredictable
I PRS: a sequence that cannot be distinguished from a TRS by any

PPT algorithm.
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Complete processing chain

Focus on Key Transportation
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Key Transportation

I Today’s PKC: RSA, DH, ECDH
I Based on number theoretic problems
I Increased importance of ECC

(co-advisor with A. Hirschowitz of a PhD on ECC [Virat, 2009])

I Shor’s algorithm in QP
I Simon’s Algo in QP
I 2300 qubits to break

RSA-1024
I IBM Osprey: 433 qubits
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HSP, Simon, Shor

Definition

Given G a group, H Æ G a subgroup, X a finite set, f : G æ X hides H if,
’g1, g2 œ G , f (g1) = f (g2) i� g1H = g2H.

Hidden Subgroup Problem

For a group G , X a finite set, f : G æ X hides H Æ G .
Given f by an oracle using O(log |G | + log |X |) bits and using evaluations
of f via its oracle, determine a generating set for H

I [Simon, 1997] exhibited a quantum algorithm that solves Simon’s
problem (a special case of HSP)

I [Shor, 1999]’s quantum algorithm for factoring and discrete logarithm
computing relies on the ability of quantum computers to solve the
HSP for finite Abelian groups.
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Going Post-Quantum

Replace traditional PKC

I Shor’s and Simon’s algorithms solve in quantum-polynomial time:
I Integer factorization. RSA is dead.
I The discrete-logarithm problem in finite fields1. DSA is dead
I The discrete-logarithm problem on elliptic curves. ECDH is dead

I Post-quantum crypto must resist attacks by quantum computers
I Replace RSA, DSA, ECDH by new standards
I Current standards (2022) rely on the problem Learning With Errors

over arithmetic lattices.
I CRYSTALS-Kyber for encryption

(keysizes: pk=1184, dk=2400, block=1088)
I CRYSTALS-Dilithium for signatures

I In use: OpenSSH, Cloudflare, AWS, IBM backup device

1
DLOG computation requires half the number of qubits required to factor an integer

of the same size
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Going Quantum

Remove PKC

Key transportation with
[Bennett and Brassard, 1984]
or [Ekert, 1991]. Nice
survey [Pirandola et al., 2020]
(approx. 200p)

Pros:

Highly secure

Cons:

Slow throughput; relatively small distance; requires two channels
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Goal achieved

Key transportation

Di�erent ways to transport a secret key.
Either with
I PQC
I QKD

First step

Alice and Bob share a key !

They can use it to encipher a message
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Secret Key Cryptography

Stream cipher (Vernam)

A and B share a random sequence of n bits: the secret key K .
A enciphers M of n bits in C = M ü K . B deciphers C in M = K ü C .

Example

M = 0011, K = 0101
C = 0011 ü 0101 = 0110
M = K ü C .

Pros:

Quick ; high throughput ; perfectly secure

Cons:

Long and perfectly random key ; not reusable
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Secret Key Cryptography

Blocks chaining encryption (AES-256-CTR)

Pros:

Quick ; high throughput ; short key ; semantic security ; quantum safe

Cons:

not perfectly secure
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Quantum attacks against SKC

Searching the key uses [Simon, 1997]’s or [Grover, 1996]’s algorithms.

Grover’s algorithm

Search an element among n items requires time n/2 on the average or
time n in the worst case with a classical computer. It can be done in

Ô
n

steps on a quantum computer.

Pros:

Up to 4 qubits required (for Grover)

Cons:

Exponential algorithm (square root speedup compared with brute-force.)
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Security Notions

I Perfect security is about confidentiality against arbitrary adversaries.
It is based on information theory. It can be achieved with Vernam
Cipher with a TRNG or QRNG

I Semantic security is about confidentiality against computationally
bounded adversaries. It is based on complexity theory and the
adversary is a PPT algorithm. It can be achieved with PRNG

I Quantum safe is about confidentiality against computationally
bounded adversaries. It is based on complexity theory and the
adversary is a quantum algorithm
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Goal achieved

Encryption

Di�erent encryptions to secure a message
I Vernam cipher to achieve perfect security
I Traditionnal ciphers to achieve quantum safety (with a key large

enough at least 256 bits)

Second step

Alice and Bob can communicate securely !
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Going further

Direct connection

I When both quantum and classical links are available (150km).
I QKD can be achieved and the key used to encipher data (with

perfect security or quantum safety)
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Going further

Indirect connection – 1 hop

I When both quantum and classical links are available between end
systems interconnected with a single router

I QKD can be achieved between end systems and the router
I A protocol has to be designed to generate and transport a key
I Quantum safe encryption can be achieved (or better ?)
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Going further

Indirect connection – many hops

I When both quantum and classical links are available between end
systems and routers interconnected with a classical link

I QKD can be achieved between end systems and routers but not
inbetween.

I A protocol has to be designed to generate and transport a key
I Quantum safe encryption can be achieved

23 / 27



Going further

Classical link

I When no quantum links are available
I Key transportation has to be done with post-quantum cryptography
I Quantum safe encryption can be achieved
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Integration

We intend to integrate the previous cases in standard librairies to secure
I IP layer with IPSec
I TCP layer with TLS, which ensures security of classical Internet

protocols (http, smtp, imap,. . . )
with di�erent levels of security.

Thanks for your attention
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