COTE
D’AZUR

COTE

sux Finite-state automaton Finite-state automaton

Algorithmics A finite automaton is a quintuplet M = (Q, qo, A, £, §) Algorithmics
for Biology @ Q : finite set of states for Biology Example : Search for pattern ababaca
Jean-Paul

Comet

Jean-Paul

Comet

@ qo : initial state
@ AC Q : set of final states
@ X : finite alphabet

@ 4 is a function from Q X X in Q called the transition function.

Antomata Antomata

The suffix function associated with a pattern P[1..m] :

o tz* : ;{r%(:;, ,mn;i{k | PIL.A] suffix of £} (1) Once the automaton has been constructed, the text traversal algorithm is as
- - follows :
The number o(t) is the size of the largest prefix of the pattern being searched ; det Fl:ieﬁ:????onsearCh(T' detra, m)
for, which is the suffix of the text t. 3 q =0 ;
Example : For P = ab, one have o(€) = 0, o(ccaca) = 1, o(ccab) = 2. g fo; ilztlah;(?:-rl[:;; ;{
If x is suffix of y, o(x) < o(y). 6 if q = m then
b is suffix of ab, O'(b) < O’(ab) ;) print (' 'The pattern appears with the offset'', i-m);

a is suffix of aa, o(a) < o(aa).
Automaton associated with a pattern. This is the automaton for which we are in
state g if and only if the largest prefix we have just read is P[1..q].

Q@ Q= {07 17 () m}

@ g0 = {O}

@ A={m}

@ 4(q,a) = o(Pga) maximum suffix of the concatenation of Py with-a:

Complexity : O(n)

Run the automaton on the string ababacaba.

Example : building the automaton for pattern AAB

Algorithmics Computing the transition function. Algorithmics q a | k Py Pq.a suffix | 60
for Biology The idea is based on the meaning of the different states of the automaton : for Biology q=0 A | min(m,g+1)=min(3,1)=1 | A A yes 1
state i corresponds to the state where the first i letters of the searched el B 1 A B no
pattern have just been read. To build the automaton, we go through all the states " Comet 0 e B yes 0
of the automaton (from O to n, where n is the length of the word we're looking q=1 | A | min(m,g+1) = min(3,2) =2 | AA AA yes 2
for) and for each state i, we go through each letter a of the alphabet. We then B | 2 AA AB no
calculate the longest prefix of the pattern that is a suffix of P[1..i].a. The length 1 A AB no
of this suffix gives the arrival state of the transition starting from i via letter a. 0 € AB yes 0
Antomata 1 def Transition_Function_computation (P, Sigma) Antomata q:2 A min(m’ q+ 1) = min(3’ 3) =3 AAB AAA no
2 m = len(P); 2 AA AAA yes 2
3 for g in ranmge(m): B |3 AAB | AAB yes 3
g for . inmf;%i?q;l); q=3 | A | min(m,q+1)=min(3,4) =3 | AAB | AABA | no
6 while (P[1..k] is not a suffixe of P_g.a) : 2 AA AABA | no
; 4 1tk2_; - 1 A AABA | yes 1
elta(q,a) = k;
9 return(delta); B 3 AAB AABB no
2 no
For this function to be correct, the following convention must be used : ¢ is the 1 no
suffix for all strings. 0 ves 0

Complexity analysis :
@ lines 6-7 : O(m?)
line 4 : O(|X])
line 3: O(m)
Global complexity : O(m3|X|)

o
o
o
@ We can do faster.

.\ COTE

Algorithmics
for Biology

Algorithmics

for Biology

* DAZUR

Knuth-Morris-Pratt algorithm

This algorithm achieves complexity in ©(n + m) by avoiding the transition
function 4. It computes an auxiliar function m[1..m] precomputed from the
pattern in O(m). The array 7 allows the transition function § to be computed on
the fly if necessary.

Pattern prefix function : Correspondence between the motif and its own shifts.

T 1 \2\9\3\5\3\;\ [[T] Texte
S—>la\b\:a\f\i\c\a\Pattern
s =(a[b[a[b[a]c]a]| Paten
\—v—/
P3

Question : how to calculate s’ so that the offset is not invalid ?
Answer : Find a suffix Py, of Pq that is a prefix of P.
The prefix function for the P pattern :
n : {1,2.mf — {0,1..m—-1}
q — Mq] = max{k/k < q and Py is suffix of Pq}
MN[q] is in fact the size of the longest prefix of P which is a proper suffix of Pg.

Algorithm for calculating the prefix function

1 Compute_prefix_Function (P)

2 m = long(P);

3 pil1l = 0;

4 k = 0;

5 for (gq=2; q<=m ; q++) {

6 while (k>0) and P[k+1] != P[ql:
7 {

8 k=pi[k];

9 ¥

10 if P[k+1] == P[q] then k++;
11 pilql = k;

12 ¥

13 return(pi);

Algorithmics
for Biology

Algorithmics
for Biology

Intuition for calculating the prefix function

@ We construct the array [1 starting from index 0. The initialisation is
simple : M[1] =0

@ Now let’s assume that we have calculated MM[i] from i =1 to g — 1. To
calculate M[qg] we have the following situation :

@ Since k is the longest prefix that is a suffix of P;_1, the longest prefix that
is also a suffix of P4 cannot be longer than Py ;. Furthermore, we have

Plk+1] = Plq] <= N[q] = k + 1

@ If P[k + 1] # P[q], look for the largest prefix-suffix of Pg. If we don’t look
at the last letter, the largest prefix-suffix of Py is also a suffix of P,. Now
we know the largest prefix-suffix of Py, which is M[k], already constructed.
Once we have Ppyy), we need to check if it can be extended to the next
letter.

Example 1

1 2 3 4 5 6 7 8 9 10
a b a b a b a b ¢ a
n: 1 2 3 4 5 6 7 8 9 10

Let's build N : 000 1 2 3 4 5 6 0 1

@ g=2, k=0 no while (k=0)

if P[1]=P[2] (a=b)? no, k=0=MN[2]=0
@ g=3,k=0 no while (k=0)

if P[1] = P[3] (a=a)? yes, k=1=TMN[3]=1
@ g=4,k=1 no while (P[k+1]=P[q])

if P[2] = P[4] (b=b)? yes, k=2=T1[4] =2
@ g=5 k=2 no while (P[k+1]=P[q])

if P[3] = P[5] (a=a)? yes, k=3 =-M[5]=3
@ g=6 k=3 no while (P[k+1]=P[q])

if P[4] = P[6] (b=b)? yes, k=4 =T11[6] =4
@ g=7, k=4 no while (P[k+1]=P[q])

if P[5] = P[7] (a=a)? yes, k=5=MN[7]=5
@ g=8 k=5 no while (P[k+1]=P[q])

if P[6] = P[8] (b=b)? yes, k=6 =—=T1[8] =6
@ g=9 k=6 enter into the while

while P[7] # P[9] (a # ¢) k =T1[6] = 4
while P[5] # P[9] (a # c) k =T[4] =2
while P[3] # P[9] (a # c) k =N[2] =0
if P[1]=P[9] (a=c)? no, k=0=1T1[9] =0
@ g=10, k=0 no while (k=0 & P[k+1]=P[q])
if P[1] = P[10] (a=a)? vyes, k =1 =-[10}=1

oazur Example 2 2t Validity of the prefix function

Algorithmics

gt Algorithmics Let's consider 7*[q] = {q, 7[q], 7%[q], ...7wt[q]} where t is the first natural number
or Biology

for Biology such that wt[q] = 0.

Jean-Paul

Comet

Jean-Paul
Lemma

Let P be a pattern of length m and having the prefix function 7. Then, for
q=1,2,...m, one has w*[q] = {k | Px suffiz of P4}

Consider the following pattern :
1 2 3 4

S N N S

Let’s build the function N :
n: 1 2 3 4

0o 0 0 1
@ g=2,k=0 no while (k=0)
if PIl=P[2] (S#N)? no=MN[2]=0
@ g=3,k=0 no while (k=0)
if P[1]=P[3] (S#N)? no=TM[3]=0
@ g=4,k=0 no while (k=0)
if PI]=P[4] (5=S)?yes, k=1=T[4] =1

Proof :
@ First inclusion : i € 7*[q] = P; suffixe de Pq.
If i € 7*[q],3u | 7¥[q] =i
@ for u =0, i = g and thus P; = P4 and P; is suffix of Pg
@ let us suppose P u[q suffix of Pg for each u < up
Prug = PW[WUO*l[q]] and one have Pw”O*l[q] suffix of Pg and Pru|q
suffix of Pﬂu071[q].
Since the suffix relationship is transitive, we have Pruoq suffix of Py.

@ Conclusion : i € 7*[q] = P; suffix of Pg.

O
o0 Validity of the prefix function 0 25 Validity of the prefix function
Aflgog_thlmics Let's consider 7*[q] = {g, 7[q], 72[q], ...w¢[q]} where t is the first natural number A](IgoIrBiFhImics
e such that 7f[q] = 0. or Biology
Jean-Paul
Lemma Comet em—

Let P be a pattern of length m and having the prefix function . Then, for
q=1,2,..m, one has *[q] = {k | P« suffiz of Pq}

Let P be a pattern of length m and prefix function . For q = 1,2, ..., m,
ifr[g] >0 then w[q]—1€ n*[q—1].

Proof :

If k = m[q] > 0 then Py suffix of P,.

Thus Py _; suffix of P4_1 (by deleting the last character of Py and Py)
According to the previous lemma : k —1 € 7*[q — 1]. O

Proof :

@ let us prove that : {k | Py suffix of P4} C m*[q] Proof by contradiction :
let us assume that there is an integer in the set
{k | Pk suffix of Pq} \ 7*[q].
We denote j the largest of the values.
As g € m*[q] U {k | Pk suffix of Pg} = j < q.
Let j/ be the smallest integer in 7*[q] that is greater than j.

For g = 2,3, ..., m, we define the subset E,_1 C 7*[q — 1] by :
@ P;jis a suffix of Py since it belongs to {k | Py suffix of P4} ord m, we define the subset Eq—1 C "[q — 1] by

@ Py is a suffix of Py since it belongs to 7*[q] Eq1={k| ken*[qg—1] by Plk +1] = Plq]}
Thus P; suffix of Py (trivial because j’ > j)

Moreover j is the largest value of {k | Py suffixe de P4} \ 7*[q]
We should then have =[] = and then j € 7*[q].
Contradiction.

Intuitively, Eq—1 is made up of values k € 7*[q — 1] such that it is possible to
extend Py to Py and obtain a suffix of Py.

25 Validity of the prefix function

Algorithmics
for Biology

Algorithmics
for Biology

Jean-Paul
corrolary

Let P be a pattern of length m and prefix function pi. For ¢ = 2,3, ..., m, Algorithm validity :

. 7[1] = 0 correct because 7[q] < g for all
7[ql =0 if Eg_1 = {} Q ~[1] [al<q q

7lq] =1+ max{k € E;_1} if Eq_1 # {} @ At the start of each loop iteration, we have k = 7[q — 1]

@ for the first loop : imposed by 7[1] =0 and k =0
Proof :

If r = w[g] > 0 then P, suffix of Py.

And r > 1= P[r] = P[q]

According to the previous lemma, if r > 1, we have :

@ for the others : imposed by 7[q] = k

© vwhile loop : we run through all the values of 7*[q — 1] until we find one
for which P[k + 1] = P[q].
At this point, we know that k is the largest value of E4_1; and from the
corollary, we can give to 7[g] the value k + 1
If no such k is found, k =0
O

r=1+max{k € 7*[q—1] | P[k+ 1] = P¢]}

Eg—1
If r =0, there is no k € 7*[q — 1] for which we can extend Py to Py to obtain

a suffix of Pg, since we would then have 7[q] > 0.
Thus Eq—1 = {} O

- SUE. Global procedure

Algorithmics

for Biology
>4 1 KMP2(T,P
"“r“‘ 1 | KMP1(T,P) 5 n i 1or),g[T].
et 2 n = longl[T]; 3 m = long [P];
3 m = long[P]; X 4 PI = Compute_prefix_Function (P)
4 PI = Calcul_fonct_prefixe(P); .
5 q=20; 5 i=q=20;
6 6
7 Pour i=1 & n faire 7 while (i<n):
8 tant que q>0 & P[q+1]1=T[i] ¢ if T[i] == Plql:
9 ~q = PIlal; 9 i++; q++;}
10 si P[q+1]1=T[il: 10 else
11 q = g+l 11 if q==0 :
12 si g = m alors 12 4+
13 print (' 'hit at '', i-m); 3 else:
14 q = PIlql; 14 q = PI[g-11;
15 if gq==m
16 print (' 'hit at , i-m);
17 q = PI[q-1];

The first version is based on the same idea as the prefix function.
The second version manages two indices in a single loop : one to indicate progress
in the text and another to indicate progress in the pattern.

Complexity analysis : requires amortized analysis...

