
Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

25/112

Finite-state automaton
A finite automaton is a quintuplet M = (Q, q0, A, Σ, δ)

Q : finite set of states
q0 : initial state
A ⊂ Q : set of final states
Σ : finite alphabet
δ is a function from Q × Σ in Q called the transition function.

The suffix function associated with a pattern P[1..m] :

σ : Σ∗ −→ {0, 1, ..., m}
t −→ σ(x) = max{k | P[1..k] suffix of t} (1)

The number σ(t) is the size of the largest prefix of the pattern being searched
for, which is the suffix of the text t.

Example : For P = ab, one have σ(ϵ) = 0, σ(ccaca) = 1, σ(ccab) = 2.
If x is suffix of y , σ(x) ≤ σ(y).
b is suffix of ab, σ(b) ≤ σ(ab)
a is suffix of aa, σ(a) ≤ σ(aa).
Automaton associated with a pattern. This is the automaton for which we are in
state q if and only if the largest prefix we have just read is P[1..q].

Q = {0, 1, ..., m}
q0 = {0}
A = {m}
δ(q, a) = σ(Pqa) maximum suffix of the concatenation of Pq with a.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

26/112

Finite-state automaton

Example : Search for pattern ababaca

0 1 2 3 4 5 6 7
a a

a

a
a

b

ab cab

c

a

bcbcc
bc

bc

b

c

Once the automaton has been constructed, the text traversal algorithm is as
follows :

1 def FiniteAutomatonSearch (T, delta , m)
2 n = len(T);
3 q = 0 ;
4 for (i=1; i <=n; i++) {
5 q = delta (q,T[i]);
6 if q = m then
7 print (''The pattern appears with the offset '', i-m);
8 }

Complexity : O(n)

Run the automaton on the string ababacaba.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

27/112

Computing the transition function.
The idea is based on the meaning of the different states of the automaton :
state i corresponds to the state where the first i letters of the searched
pattern have just been read. To build the automaton, we go through all the states
of the automaton (from 0 to n, where n is the length of the word we’re looking
for) and for each state i , we go through each letter a of the alphabet. We then
calculate the longest prefix of the pattern that is a suffix of P[1..i].a. The length
of this suffix gives the arrival state of the transition starting from i via letter a.

1 def Transition_Function_computation (P, Sigma)
2 m = len(P);
3 for q in range (m):
4 for a in Sigma :
5 k = min(m,q+1);
6 while (P[1..k] is not a suffixe of P_q.a) :
7 k--;
8 delta (q,a) = k;
9 return (delta);

For this function to be correct, the following convention must be used : ε is the
suffix for all strings.
Complexity analysis :

lines 6-7 : O(m2)
line 4 : O(|Σ|)
line 3 : O(m)
Global complexity : O(m3|Σ|)
We can do faster.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

28/112

Example : building the automaton for pattern AAB
q a k Pk Pq .a suffix δ
q=0 A min(m, q + 1) = min(3, 1) = 1 A A yes 1

B 1 A B no
0 ε B yes 0

q=1 A min(m, q + 1) = min(3, 2) = 2 AA AA yes 2
B 2 AA AB no

1 A AB no
0 ε AB yes 0

q=2 A min(m, q + 1) = min(3, 3) = 3 AAB AAA no
2 AA AAA yes 2

B 3 AAB AAB yes 3
q=3 A min(m, q + 1) = min(3, 4) = 3 AAB AABA no

2 AA AABA no
1 A AABA yes 1

B 3 AAB AABB no
2 AA AABB no
1 A AABB no
0 ε AABB yes 0

0 1 2 3

^A

AA B

A

^A

A

^[A,B]
^A

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

29/112

Knuth-Morris-Pratt algorithm

This algorithm achieves complexity in Θ(n + m) by avoiding the transition
function δ. It computes an auxiliar function π[1..m] precomputed from the
pattern in O(m). The array π allows the transition function δ to be computed on
the fly if necessary.
Pattern prefix function : Correspondence between the motif and its own shifts.

Patterna ab a b c a

Patterna ab a b c a

Texteba b a a a

s

s’

= = = = =

= = =

P3

Question : how to calculate s′ so that the offset is not invalid ?
Answer : Find a suffix Pk of Pq that is a prefix of P.
The prefix function for the P pattern :

Π : {1, 2...m} −→ {0, 1...m − 1}
q −→ Π[q] = max{k/k < q and Pk is suffix of Pq}

Π[q] is in fact the size of the longest prefix of P which is a proper suffix of Pq .

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

30/112

Intuition for calculating the prefix function

We construct the array Π starting from index 0. The initialisation is
simple : Π[1] = 0
Now let’s assume that we have calculated Π[i] from i = 1 to q − 1. To
calculate Π[q] we have the following situation :

q

q−1k

k+1

=toto

Since k is the longest prefix that is a suffix of Pq−1, the longest prefix that
is also a suffix of Pq cannot be longer than Pk+1. Furthermore, we have

P[k + 1] = P[q] ⇐⇒ Π[q] = k + 1

If P[k + 1] ̸= P[q], look for the largest prefix-suffix of Pq . If we don’t look
at the last letter, the largest prefix-suffix of Pq is also a suffix of Pk . Now
we know the largest prefix-suffix of Pk , which is Π[k], already constructed.
Once we have PΠ[k], we need to check if it can be extended to the next
letter.

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

31/112

Algorithm for calculating the prefix function

1 Compute_prefix_Function (P)
2 m = long (P);
3 pi [1] = 0;
4 k = 0;
5 for (q=2; q <=m ; q++) {
6 while (k >0) and P[k+1] != P[q]:
7 {
8 k=pi[k];
9 }

10 if P[k+1] == P[q] then k++;
11 pi[q] = k;
12 }
13 return (pi);

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

32/112

Example 1
1 2 3 4 5 6 7 8 9 10
a b a b a b a b c a

Let’s build Π : Π : 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 0 1

q = 2, k = 0 no while (k=0)
if P[1] = P[2] (a=b) ? no, k = 0 =⇒ Π[2] = 0
q = 3, k = 0 no while (k=0)
if P[1] = P[3] (a=a) ? yes, k = 1 =⇒ Π[3] = 1
q = 4, k = 1 no while (P[k+1]=P[q])
if P[2] = P[4] (b=b) ? yes, k = 2 =⇒ Π[4] = 2
q = 5, k = 2 no while (P[k+1]=P[q])
if P[3] = P[5] (a=a) ? yes, k = 3 =⇒ Π[5] = 3
q = 6, k = 3 no while (P[k+1]=P[q])
if P[4] = P[6] (b=b) ? yes, k = 4 =⇒ Π[6] = 4
q = 7, k = 4 no while (P[k+1]=P[q])
if P[5] = P[7] (a=a) ? yes, k = 5 =⇒ Π[7] = 5
q = 8, k = 5 no while (P[k+1]=P[q])
if P[6] = P[8] (b=b) ? yes, k = 6 =⇒ Π[8] = 6
q = 9, k = 6 enter into the while
while P[7] ̸= P[9] (a ̸= c) k = Π[6] = 4
while P[5] ̸= P[9] (a ̸= c) k = Π[4] = 2
while P[3] ̸= P[9] (a ̸= c) k = Π[2] = 0
if P[1] = P[9] (a=c) ? no, k = 0 =⇒ Π[9] = 0
q = 10, k = 0 no while (k=0 & P[k+1]=P[q])
if P[1] = P[10] (a=a) ? yes, k = 1 =⇒ Π[10] = 1

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

33/112

Example 2

Consider the following pattern :
1 2 3 4
S N N S

Let’s build the function Π :
Π : 1 2 3 4

0 0 0 1
q = 2, k = 0 no while (k=0)
if P[1] = P[2] (S ̸= N) ? no =⇒ Π[2] = 0
q = 3, k = 0 no while (k=0)
if P[1] = P[3] (S ̸= N) ? no =⇒ Π[3] = 0
q = 4, k = 0 no while (k=0)
if P[1] = P[4] (S = S) ? yes, k = 1 =⇒ Π[4] = 1

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

34/112

Validity of the prefix function
Let’s consider π∗[q] = {q, π[q], π2[q], ...πt [q]} where t is the first natural number
such that πt [q] = 0.

Lemma
Let P be a pattern of length m and having the prefix function π. Then, for
q = 1, 2, ...m, one has π∗[q] = {k | Pk suffix of Pq}

Proof :
1 First inclusion : i ∈ π∗[q] ⇒ Pi suffixe de Pq .

If i ∈ π∗[q], ∃u | πu[q] = i
for u = 0, i = q and thus Pi = Pq and Pi is suffix of Pq
let us suppose Pπu [q] suffix of Pq for each u < u0
Pπu0 [q] = Pπ[πu0−1[q]] and one have Pπu0−1[q] suffix of Pq and Pπu0 [q]
suffix of Pπu0−1[q].
Since the suffix relationship is transitive, we have Pπu0 [q] suffix of Pq .
Conclusion : i ∈ π∗[q] ⇒ Pi suffix of Pq .

□

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

34/112

Validity of the prefix function
Let’s consider π∗[q] = {q, π[q], π2[q], ...πt [q]} where t is the first natural number
such that πt [q] = 0.

Lemma
Let P be a pattern of length m and having the prefix function π. Then, for
q = 1, 2, ...m, one has π∗[q] = {k | Pk suffix of Pq}

Proof :
2 let us prove that : {k | Pk suffix of Pq} ⊆ π∗[q] Proof by contradiction :

let us assume that there is an integer in the set
{k | Pk suffix of Pq} \ π∗[q].
We denote j the largest of the values.
As q ∈ π∗[q] ∪ {k | Pk suffix of Pq} ⇒ j < q.
Let j′ be the smallest integer in π∗[q] that is greater than j.

Pj is a suffix of Pq since it belongs to {k | Pk suffix of Pq}
Pj′ is a suffix of Pq since it belongs to π∗[q]

Thus Pj suffix of Pj′ (trivial because j′ > j)
Moreover j is the largest value of {k | Pk suffixe de Pq} \ π∗[q]
We should then have π[j′] = j and then j ∈ π∗[q].
Contradiction.

□

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

35/112

Validity of the prefix function

Lemma
Let P be a pattern of length m and prefix function π. For q = 1, 2, ..., m,

if π[q] > 0 then π[q] − 1 ∈ π∗[q − 1].

Proof :
If k = π[q] > 0 then Pk suffix of Pq .
Thus Pk−1 suffix of Pq−1 (by deleting the last character of Pk and Pq)
According to the previous lemma : k − 1 ∈ π∗[q − 1]. □

For q = 2, 3, ..., m, we define the subset Eq−1 ⊆ π∗[q − 1] by :

Eq−1 = {k | k ∈ π∗[q − 1] by P[k + 1] = P[q]}

Intuitively, Eq−1 is made up of values k ∈ π∗[q − 1] such that it is possible to
extend Pk to Pk+1 and obtain a suffix of Pq .

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

36/112

Validity of the prefix function

corrolary
Let P be a pattern of length m and prefix function pi. For q = 2, 3, ..., m,

π[q] = 0 if Eq−1 = {}
π[q] = 1 + max{k ∈ Eq−1} if Eq−1 ̸= {}

Proof :
If r = π[q] > 0 then Pr suffix of Pq .
And r ≥ 1 ⇒ P[r] = P[q]
According to the previous lemma, if r ≥ 1, we have :

r = 1 + max{k ∈ π∗[q − 1] | P[k + 1] = Pq]︸ ︷︷ ︸
Eq−1

}

If r = 0, there is no k ∈ π∗[q − 1] for which we can extend Pk to Pk+1 to obtain
a suffix of Pq , since we would then have π[q] > 0.
Thus Eq−1 = {} □

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

37/112

Algorithm validity :
1 π[1] = 0 correct because π[q] < q for all q
2 At the start of each loop iteration, we have k = π[q − 1]

for the first loop : imposed by π[1] = 0 and k = 0
for the others : imposed by π[q] = k

3 while loop : we run through all the values of π∗[q − 1] until we find one
for which P[k + 1] = P[q].
At this point, we know that k is the largest value of Eq−1 ; and from the
corollary, we can give to π[q] the value k + 1
If no such k is found, k = 0
□

Algorithmics
for Biology

Jean-Paul
Comet

Complexity

Pat. Matching
Rabin-Karp
Antomata
KMP
BM

Graphs

Dyn.Prog.

Sequences

38/112

Global procedure

1 KMP1(T,P)
2 n = long [T];
3 m = long [P];
4 PI = Calcul_fonct_prefixe (P);
5 q = 0 ;
6
7 Pour i=1 à n faire
8 tant que q >0 & P[q +1]!= T[i]
9 q = PI[q];

10 si P[q+1]=T[i]:
11 q = q+1
12 si q = m alors
13 print (''hit at '', i-m);
14 q = PI[q];

1 KMP2(T,P)
2 n = long [T];
3 m = long [P];
4 PI = Compute_prefix_Function (P)

;
5 i = q = 0 ;
6
7 while (i<n):
8 if T[i] == P[q]:
9 i++; q++;}

10 else
11 if q==0 :
12 i++;
13 else :
14 q = PI[q -1];
15 if q==m
16 print (''hit at '', i-m);
17 q = PI[q -1];

The first version is based on the same idea as the prefix function.
The second version manages two indices in a single loop : one to indicate progress
in the text and another to indicate progress in the pattern.

Complexity analysis : requires amortized analysis...

