Année 2023-2024 DE MARIA-REGIN-URSO

Travaux Dirigés de Base de données

Contrôle de concurrence (1 séance de 2h00)

Exercice 1

Pour chacune des planifications suivantes, tracez un graphe de précédence et indiquez si la planification garantit la sérialisation des conflits. Pour les planifications sérialisables, donner une planification sérielle équivalente :

- a) Lecture(T1, solde_x), lecture(T2, solde_x), écriture(T1, solde_x), écriture(T2, solde_x), validation(T1), validation(T2).
- b) Lecture(T1, solde_x), lecture(T2, solde_y), écriture(T3, solde_x), écriture(T1, solde_y), validation(T1), validation(T2), validation(T3).
- c) Lecture(T1, solde_x), écriture(T2, solde_x), écriture(T1, solde_x), avortement(T2), validation(T1).
- d) Ecriture(T1, solde_x), lecture(T2, solde_x), écriture(T1, solde_x), validation(T2), avortement(T1).
- e) Lecture(T1, solde_x), écriture(T2, solde_x), écriture(T1, solde_x), lecture(T3, solde_x), validation(T1), validation(T2), validation(T3).

Exercice 2

Déterminez si la planification suivante est sérialisable au niveau des conflits :

P=[L1(Z), L2(Y), E2(Y), L3(Y), L1(X), E1(X), E1(Z), E3(Y), L2(X), L1(Y), E1(Y), E2(X), L3(W), E3(W)]

où Li(Z) ou Ei(Z) signifie une lecture ou une écriture par la transaction i de la donnée Z.

Exercice 3

Tracez le graphe de précédence pour la planification suivante. Est-elle sérialisable au niveau des conflits ?

Temps	T ₁₁	T ₁₂	T ₁₃
$t_{\rm I}$	début_transaction		113
t ₂	lire(solde _x)		
t ₃		début_transaction	
t_4		écrire(solde _x)	
t_5		validation	
t ₆	écrire(solde _x)	vandation	
t ₇	validation		
t ₈			
t ₉			début_transaction
t ₁₀		ille menneto men printipo esti. La rigidade de	écrire(solde_x) validation

Exercice 4

Tracez le graphe de précédence pour les planifications a) et b) du transparent 12 du cours 11.

Exercice 5

Produisez un graphe d'attente pour le scénario de transactions suivant et déterminez si des verrous indéfinis y apparaissent.

Transaction	Données verrouillées par la transaction	Données que la transaction attend
T1	x2	x1, x3
T2	x3, x10	x7, x8
T3	x8	x4, x5
T4	x7	x1
T5	x1, x5	x3
T6	x4, x9	x6
T7	x6	x5

Exercice 6

Déterminez le problème de la planification suivante et résolvez-le à l'aide du protocole V2P.

 T_1 et T_2 modifient simultanément la quantité qte. À la fin, qte:~1500~? ou 4500?

Temps	État de la base	Transaction T_1	Transaction T_2
t_0	qte=1000		
t_1		Lire qte	
t_2			Lire qte
<i>t</i> ₃		qte←qte+3000	
t_4		Écrire qte	
	qte=4000	COMMIT	
t ₅			qte←qte+500
t ₆			Écrire qte
	qte=1500		COMMIT