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A local graph-based structure
for processing gigantic aggregated 3D point clouds

Arnaud Bletterer, Frédéric Payan, and Marc Antonini, IEEE member

Abstract—We present an original workflow for structuring a
point cloud generated from several scans. Our representation
is based on a set of local graphs. Each graph is constructed
from the depth map provided by each scan. The graphs are
then connected together via the overlapping areas, and careful
consideration of the redundant points in these regions leads to a
piecewise and globally consistent structure for the underlying
surface sampled by the point cloud. The proposed workflow
allows structuring aggregated point clouds, scan after scan,
whatever the number of acquisitions and the number of points
per acquisition, even on computers with very limited memory
capacities. To show that our structure can be highly relevant for
the community, where the gigantic amount of data represents a
real scientific challenge per se, we present an algorithm based
on this structure capable of resampling billions of points on
standard computers. This application is particularly attractive
for simplifying and visualizing gigantic point clouds representing
very large-scale scenes (buildings, urban scenes, historical sites...),
which often require a prohibitive number of points to describe
them accurately.

Index Terms—Computational Geometry and Object Modeling,
Three-Dimensional Graphics and Realism, 3D Point Clouds,
Data Structure, Graphs, Out-Of-Core Algorithms, Poisson-disk
sampling.

I. INTRODUCTION

3D points collected by depth cameras or LiDAR scanners
can be seen as structured (or organized) data because the
depth maps (or range images) provided by these devices bring
implicit connectivity between points. Processing a structured
point cloud is thus relatively easy, comparably to processing
a 2D image, as the spatial connectivity is known.

Regarding the capture of a complex object or a large-scale
scene, the latter must be scanned from multiple points of
view. The incoming sets of 3D points are then registered and
aggregated, to obtain the desired point cloud. The aggregation
inevitably produces an unstructured point cloud, which
complicates many operations because of the loss of sampling
regularity and spatial connectivity.

To overcome this problem, one prevalent approach is to
partition the ambient 3D space with an embedded structure,
so that the points are contained in 3D cells. Structures based
on bounding spheres are proposed in [3], [4]. In [5], [6], a
partitioning of the 3D space into voxels is proposed, where
each voxel represents one point in the final structure. Many
approaches based on octrees have also been proposed in the
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two last decades: [7], [8], [9], [10], [11]. The advantage of
these methods is to offer a structure to point clouds, as the
incidence information of the 3D cells is known. Although
efficient for compression or visualization, for instance, these
data structures may be inappropriate because they structure the
ambient 3D space, and not the underlying surface described
by the acquired points. This can be problematic with scenes
composed of small elements, where spatial structures are, in
essence, unable to distinguish neighboring points in space and
neighboring points onto the surface.

Recently, a graph-based structure has been proposed as an
alternative for processing 3D point clouds [12]. This structure
has the advantage to offer incidence information to the points
themselves, which allows processing the underlying surface
directly. However, regarding the gigantic point clouds daily
created with 3D sensors of higher and higher resolutions,
sometimes from hundreds of acquisitions, this graph-based
structure is inappropriate if the data size exceeds the memory
capacity of the user’s machine. Actually, this happens rather
quickly, as graph-based structures are a particularly expensive
representation.

In this paper, we propose an alternative to [12] for struc-
turing point clouds with graphs. Our motivation is to benefit
from the strength of a graph-based representation that naturally
offers topology information to a set of points onto a surface
while being able to manage any point cloud, whatever the
number of points it contains. Our data structure is dedicated to
point clouds resulting from the aggregation of multiple scans,
in particular when the data size exceeds the RAM capacity of
the user’s machine.

By contrast to [12] that makes a unique graph for an entire
cloud, our structure consists of a finite set of local graphs.
Each local graph is associated with one scan, and describes
one part of the point cloud, from a specific point of view. One
specificity of the proposed approach lies in the usage of the
structured depth map associated with each scan to construct
large local graphs.

As it is, our structure would be inefficient, due to multiple
distinct descriptions of the surface in the overlapping regions.
To avoid redundant operations in these areas, but also to have
a structure globally consistent all over the surface despite
our “piecewise“ representation, our structure links together
the local graphs by interconnecting them, and prioritizing
computations in the overlapping regions.

Our structure has major advantages: it can be constructed
iteratively, scan after scan. It also enables efficient local
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computations on gigantic point clouds without loading the
whole structure into memory. It is thus particularly convenient
for processing point clouds in an out-of-core manner.

To summarize, the contributions of this paper are:
• an original data representation based on local graphs

constructed from depth maps that permits to structure
aggregated point clouds with a low memory footprint,
whatever the number of acquisitions and the number of
points per acquisition;

• the specific management of the overlapping areas to
explicitly interconnect the local graphs, which allows
having a structure globally consistent all over the surface;

• a new resampling algorithm based on this structure that
allows us to improve the sampling quality of gigantic
point clouds reaching several billions of points, with
direct control on the RAM capacity needed.

The rest of the paper is organized as follows. Section II
presents the workflow and the proposed structure based on
local graphs. Section III presents details of implementation
and memory consumption. To show the potential of the
proposed structure, Section IV presents an efficient resampling
algorithm based on it. Finally, Section V summarizes the paper
and proposes several promising perspectives.

II. PROPOSED DATA STRUCTURE

Input data Let us consider a scene/object scanned from N
known points of view. This procedure provides a set of N
depth maps, and the entire set of parameters permitting to
generate the corresponding local point clouds independently,
and also to merge (or aggregate) them together in a global
frame. If positioning information is not provided with the files,
a vast literature about rigid registration of 3D point clouds
exists, and the interested reader can refer to [13] for a survey.
Such sets are the typical data provided by terrestrial LiDAR
systems, for instance. They can be also synthetically generated
from 3D models (Figure 1) with an approach similar to [14] .

Fig. 1. Generation of synthetic depth maps from surface meshes.

Overview Figure 2 gives a schematic overview of our solution
for structuring an aggregated point cloud.
• Construction of local graphs From each of N depth

maps Di i ∈ {0, 1, .., N} (Figure 2 (b)), and their
embedding function ei : R2 → R3 (giving the position
in 3D space of the points associated with the pixels; the

(a) (c)(b) (d) (e)

Fig. 2. Schematic overview of our workflow for structuring an aggregated
point cloud. From each depth map (a) provided from a specific point of view,
a local graph (b) is constructed to structure the associated 3D points; the local
graphs are then interconnected (c) by matching the graph vertices describing
redundant points in real world (depicted as green dots); these vertices are then
assigned to only one graph (d). The output is a set of interconnected local
graphs (e), giving a piecewise and globally consistent structure for the entire
point cloud.

inverse function is called projection), a local graph Gi

is constructed (Figure 2 (c)). This graph structures one
part of the point cloud, describing one part of the scene
acquired from a specific point of view (Figure 2 (a)).

• Interconnection of local graphs To get a global structure
of the whole aggregated point cloud, these local graphs
are interconnected. This is achieved by detecting and
matching graph vertices that describe similar regions
of the scene (in other words, the overlapping areas)
through embeddings/projections between the different
depth maps. This stage results in a set of vertices common
to several graphs, depicted by green dots in Figure 2 (d).

• Management of matching vertices The common ver-
tices require specific handling to avoid redundant oper-
ations. Indeed, a local process in overlapping areas can
be done in various ways, as those regions are modeled
by several graphs of varying sampling density. The third
stage consists in choosing for each set of redundant
points the best representatives, i.e., the vertices that
will be actively used during computations. Hence, each
redundant point is finally assigned to only one graph
(Figure 2 (e)).

This workflow produces a set of interconnected and non-
redundant local graphs that offers a piecewise and globally
consistent structure to the underlying surface sampled by the
point cloud (Figure 2 (f)). This structure can then be used
as a support for different algorithms, such as the resampling
technique presented in Section IV.

A. Construction of local graphs

LiDAR-like systems generate for each scan a depth map
D. By dint of its embedding function e computed from the
intrinsic and extrinsic sensor parameters, this map can be seen
as a 2D parameterization of the local point cloud, that regularly
samples one part of the scanned object/scene.

Structuring a local point cloud with a graph is natural, by
taking advantage of the implicit connectivity information of
its associated depth maps. Our procedure for constructing a
graph G from a single depth map D is illustrated in Figure 3.
The first stage (Figure 3(b)) consists in creating an undirected
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(a) Point cloud. (b) Depth map
and initial graph.

(c) Segmentation. (d) Final graph.

Fig. 3. Overview of our method to construct a topology-aware graph from a
depth map, to structure a 3D point cloud. Each graph vertex points out the
3D coordinates of the associated point in the cloud.

graph G = (V,E) with, respectively, V and E the set of
vertices and the set of edges linking the vertices. One vertex
v ∈ V is created for each non-zero pixel d ∈ D (zero pixels
represent directions in which the laser did not intersect the
scanned surface, leading to pixel values equal to zero), and
the coordinates (x, y, z) of the corresponding 3D point p in
the real world is affected to it. Each vertex v is linked by
an edge with the vertices in its k-neighborhood. Depending
on the subsequent applications, different connectivities can
be considered, which directly influences the accuracy and the
complexity of the computations.

To structure the scanned surface correctly, one graph must
also conform to its topology. Concretely, adjacent vertices
associated with 3D points that are not close on the surface
(in terms of geodesic distance) must be disconnected. This
arises when two adjacent pixels are associated with 3D points
belonging to two distinct elements in a scene. To detect
such configurations, we use morphological gradients [15] to
threshold the high depth variations in the depth map. Those
gradients define borders in the depth map, depicting distinct
elements of the scanned surface. The edges of the graph
crossing those borders (in red in Figure 3(c)) are removed
from E, and the final graph (Figure 3(d)) is obtained.

The threshold must be chosen wisely. If its value is too
small, unacceptable over-segmentations occur in regions close
to scanners. On the other hand, a large value could produce
under-segmentation in regions far from scanners. But, in
practice, this is less severe as these distant regions will be most
probably processed using other graphs associated with scans
closer to these regions (see Section II-C). Considering this,
the threshold has been determined empirically, and currently
follows an increasing function that depends on the depth
values. Though perfectible, this solution gives satisfactory
results with all the data tested during this project.

Regarding now a set of N depth maps, the same procedure
can be followed for each, resulting in a set of N local
independent graphs {G1, G2, ...GN} describing an entire point
cloud from different points of view.

B. Interconnection of local graphs

To get a unique and global representation of the entire
point cloud, we could merge all the graphs {G1, G2, ...GN}
in a representation similar to the one proposed in [12], by
using for instance a global parameterization based on transition

functions [14]. Nevertheless, such approaches are unsuitable
in the context of gigantic point clouds: a global representation
could lead to a memory usage outreaching by far the RAM
capacity of most computers. Instead, we propose to keep as
a base representation the set of local graphs constructed at
the previous step and to enhance it with additional data that
explicitly describe interconnections between them.

The local graphs can be interconnected via the overlapping
areas. Figure 4 illustrates the concept of our approach, in the
case of two depth maps. Let us consider the point p11 assigned
to the vertex v11 ∈ G1, and the two points p12 and p22 assigned to
the vertices v12 ∈ G2 and v22 ∈ G2 (Figure 4(a)). If one looks
at these two points from the point of view of the acquisition
1, because of the discrete nature of the 3D sensors, these two
points would be projected onto the same pixel of D1. From this
point of view, p12 and p22 are thus duplications of p11. Regarding
the graphs, the vertices v12 and v22 thus match the vertex v11 ,
creating two interconnections from G2 to G1: (v12 , v

2
2)→ v11 .

Reversely, from G1 to G2, v11 matches the vertex v22 , creating
one interconnection: v11 → v22 (Figure 4(b)).

(a) From D2 to D1, p12 and p22 are
duplications of p11, creating two in-
terconnections (v12 , v

2
2)→ v11 .

(b) From D1 to D2, p11 is a duplica-
tion of p22, creating one interconnec-
tion v11 → v22 .

Fig. 4. Approach proposed for interconnecting the local graphs in the
overlapping regions.

As it is, this matching strategy does not manage occlusions.
The schematic example of Figure 5(a) illustrates a direct
consequence of this: from the first point of view, the point
p13, although positioned on the opposite side of the scanned
object, is considered as a duplication of p11, which would lead
to an incorrect interconnection from G3 to G1: v13 → v11 . To
overcome this unwanted effect, we follow a heuristic approach
that consists in calculating the mean distance d̄ between p11
and the points associated with its neighboring vertices in G1:
if d̄ is lower than the distance d(p11, p

1
3), we consider that p13 is

not a duplication of p11, and the interconnection is not created
(Figure 5(b)). The idea behind that heuristic is that, when
working with depth maps, it is only possible to capture holes
having a size at least larger than the distance between points
corresponding to neighboring pixels. As a consequence, we
consider that filtering out wrong interconnections based on
this particularity would lead to a coherent behavior with the
acquisition process. Although quite basic, this technique is
efficient on the datasets experimented during this project.
One could improve such a strategy by locally modeling the
underlying surface of the point cloud (with planar or quadratic
approximations for example), or by using the method of [16].
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(a) Without occlusion awareness,
wrong interconnections would be cre-
ated (v13 → v11).

(b) With occlusion awareness, wrong
links are prevented.

Fig. 5. Heuristic approach for preventing wrong graph interconnections, in
case of occlusions.

By generalizing this approach to all the depth maps, these
interconnections allow us to structure the entire point cloud,
and to navigate from a graph to another as in a global
graph-based structure. We note that the interconnections
could be used to create a unique global graph, by merging
interconnected vertices for example. However, such an
approach would defeat the purpose of controlling memory
usage.

Determining the interconnections is time-consuming, as all
the vertices of all the graphs must be projected onto all
the other local graphs, to establish which vertices should be
interconnected together (with a time complexity of O(s ∗N)
where s is the total number of vertices and N is the number
of local graphs). Therefore this operation is done once and
for all in our structuration workflow, and the interconnections
are definitively described as additional edges, and stored in
our data structure. In the next section, we explain how these
edges are included in our data structure with a minimal
additional storage cost. Another advantage of including the
interconnections in the structure is that for any vertex in any
graph we directly know its spatial neighborhood thanks to the
knowledge of the intra-graph and inter-graph edges.

C. Management of interconnected vertices

As explained before, an interconnection links two vertices
associated with points considered as duplications in the scene.
So, if an operation/calculation must be done in this region of
the scanned surface, several graphs can be used. The question
that flows naturally is which graph is the best to make this
operation/calculation?

The efficiency or accuracy of many computations made on
3D point clouds strongly depends on the sampling density. Yet,
the sampling density of a scanned surface can be extremely
different, according to the position and orientation of the
scanner. As a basic example, if a surface is scanned from two
points of view, one close and one far, the point cloud resulting
from the first acquisition will be denser than the cloud resulting
from the second acquisition. If we have to select one of the two
sets of points to make an operation we will naturally select the
first one, because it is more detailed, and thus the result will
be more precise. The same argument can be done in function
of the orientation of the surface: a surface scanned with a low
incidence angle is better sampled than with a high incidence
angle.

Inspired by these observations, to select on which graph
a given operation has to be done in overlapping regions,
we chose the local sampling density as a criterion. To well
understand, let us consider a small region of a scene that is
assigned to several interconnected vertices, hereinafter called
the set of interconnected vertices. To apply the operation in
this region, we will retain among this set the vertex v with
the highest local sampling density w(v) in its graph, estimated
with the following function

1

w(v)
=

1

|N1(v)|
∑

v′∈N1(v)

||P (v′)− P (v)||2,

where N1(v) is the 1−neighborhood of v in the concerned
graph, and P (v) and P (v′) the 3D coordinates of the point
assigned to v and v′, respectively. This vertex v will be
considered as the best representative of this region, among this
set of interconnected vertices. By generalization, the vertices
of each graph can be classified into two groups:
• active : containing the vertices considered as the best

representatives among each set of interconnected vertices,
and the vertices that are not interconnected to any other
graph vertex;

• inactive : containing all the other vertices.
Those two groups finally define the vertices on which

operations should be computed (active vertices) and the ver-
tices that should query the result of operations from their
best representative (inactive vertices). Doing so permits to
process the whole set of points by iteratively processing each
local graph and to transmit information between local graphs
through interconnections.

The choice of the best representative for each set of inter-
connected vertices is done once and for all during the struc-
turation workflow, and this information is stored as additional
information in the data structure as explained in the next
section.

III. TECHNICAL SPECIFICATIONS

This section details how the structure presented in the
previous section can be implemented to get a low memory
footprint.

Details of implementation Regarding the local graphs, our
implementation can benefit from the fact that each graph is
constructed from a depth map. The set of vertices of each
graph can be seen as a simple matrix, where each element
corresponds to one pixel and contains the 3D coordinates of
the associated point in the cloud, and any additional attribute
(color, intensity, normal, etc...).

Considering the edges, their storage is not needed, as the
connectivity information is implicit and can be computed on
the fly from the structure of the depth map. However, to
consider the edges removed by the morphological gradients
that in a certain way break this implicit connectivity, we store
the thresholded gradients as additional attributes in each graph.
When reconstructing the connectivity on the fly, one only has
to check this information, to know if vertices are connected in
our graph or separated by a border. As there are generally
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Management of the interconnected vertices. (a)/(d): two overlapping
depth maps associated with two graphs, G1 and G2. (b)/(e): in red, the
set of pixels both associated with vertices of G1 and G2, i.e., the vertices
interconnecting the two graphs. (c): in yellow the set of pixels associated
with vertices considered as active in G1. These vertices are either best
representatives among the vertices interconnecting the two graphs, or assigned
to 3D points that are not covered by G2. (f) In yellow the set of pixels
associated with the vertices considered as active in G2.

much fewer edges removed than total edges in each local
graph, this is a very sparse additional information. Note that
this implementation also involves the storage of zero-pixels
(inherent to the matrix structure), but this is quite negligible
in comparison to the drastic reduction of memory usage due
to the implicit connectivity representation.

Regarding the interconnections between graphs, it is not
possible to store them with a similar strategy. The set of
interconnected vertices is stored for each vertex, via a usual
adjacency list representation. Concretely, each vertex stores
the vertices of other graphs that are connected with it. To
include the notion of active vertices, an additional integer
value is assigned to each vertex. This value indicates if a
vertex is its own best representative (in that case, the value
is set to 0), or if another vertex is the best representative
(in that case, the value indicates the position of the best
representative in its list of interconnected vertices).

Memory consumption Table I indicates in the 4th column the
storage cost of the proposed structure as specified immediately
above for several large real-life datasets. Each dataset consists
of tens of terrestrial LiDAR acquisitions (3rd column), pro-
viding up to billions of points (2nd column). These results
have been generated with a [Intel Core i7-5960X CPU @
3.00GHz, NVIDIA Quadro M5000, 32GB RAM and 1TB
SSD]. We observe that, even with almost implicit connectivity
information for each local graph, the total storage cost of our
structure remains important. However, even though these costs

overflow the RAM capacity of our computer, our algorithm can
process these datasets thanks to very low memory usage (8th
column, the first line of each row). Due to the local graph-
based approach, even with billions of points and structured
data of hundreds of GiB, the memory peak is always lower
than 6GiB. In other words, always less than 10% of the whole
structure, whatever the data. This is achieved by opting for a
strategy that keeps in memory only the information required
at each step of the structuration workflow. Representing the
vertex attributes in matrices makes swapping data between
RAM and disk trivial.

Also, the memory peak is correlated to the dimension
of the depth maps on which the graphs are based. So the
memory reduction is all the more significant as the number
of acquisitions is high. Our structure is thus particularly
relevant for processing data coming from massive acquisition
campaigns when several hundreds of scans are needed to
capture the entire scene.

Management of out-of-core scans A single scan may contain
hundreds of millions of points, providing a graph that may
exceed the RAM capacity itself, despite the implementation
introduced above. To address this issue, our algorithm inte-
grates the ability to split depth maps into overlapping tiles
(Figure 7) before structuring the point cloud.

Fig. 7. Division of a depth map into overlapping tiles, to cap the memory
usage.

These tiles are then considered as any depth map by the
structuration workflow, and one graph per tile is constructed.
Note that, by construction, the interconnection between graphs
covering tiles is known, the relative pixels in the overlapping
areas being the same. Also, as the local sampling density
between tiles is also the same, we decide to select the active
vertices in these areas with respect to the distance from their
associated pixels to the border of the tiles.

Table I indicates the memory peak reached when a tiling is
done for several datasets. This functionality allows reducing
the memory footprint significantly and finally, by tuning the
tile size, to strictly curb it. This functionality is particularly
attractive if one has to structure point clouds on machines
with very low RAM capacities. The counterpart is an increase
in the runtime, as the number of local graphs quickly rises.
This involves a higher complexity in the construction of
interconnections, and the disk I/O are more frequent.
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Data # Points [M] # Acq. Cost [GiB] Tiling Tiles (p× p) # Tiles Mem. [GiB] (Gain) Time [h:m:s]

TEMPLO MAYOR 349 17 46.2

no n/a n/a 3.5 (-92.4%) 00:07:23
yes 8192 33 1.8 (-96.1%) 00:09:25
yes 4096 55 1.0 (-97.8%) 00:11:48
yes 2048 213 0.6 (-98.7%) 00:25:57

PALAIS (EXT.) 977 23 71.8

no n/a n/a 5.7 (-92.1%) 00:15:22
yes 8192 54 2.8 (-96.1%) 00:25:14
yes 4096 162 1.0 (-98.3%) 01:00:36
yes 2048 490 0.6 (-99.0%) 03:04:53

MEETING HOUSE 1,493 50 139.0

no n/a n/a 5.7 (-95.9%) 00:56:28
yes 8192 101 2.9 (-97.9%) 01:30:18
yes 4096 278 1.1 (-99.2%) 03:56:03
yes 2048 933 0.6 (-99.6%) 12:32:46

PALAIS (INT.) 1,748 37 135.7

no n/a n/a 5.7 (-95.2%) 00:43:00
yes 8192 78 2.8 (-97.9%) 01:04:51
yes 4096 234 1.1 (-99.1%) 02:26:14
yes 2048 704 0.6 (-99.5%) 04:30:21

ANANDA OAK KYAUNG 1,703 126 158.7 no n/a n/a 1.9 (-98.8%) 02:17:57
WAT PHRA SI SANPHET 5,313 177 641.8 no n/a n/a 5.7 (-99.1%) 10:35:28

TABLE I
GLOBAL STORAGE COST (4th COLUMN), MEMORY PEAK (8th COLUMN) AND RUNTIME (9th COLUMN) OF OUR ALGORITHM FOR STRUCTURING

REAL-LIFE DATASETS, WITH OR WITHOUT SPLITTING DEPTH MAPS. THE PERCENTAGES IN THE 8th COLUMN INDICATE THE GAINS OF MEMORY USAGE
WITH RESPECT TO THE GLOBAL STORAGE COST OF THE STRUCTURE.

Fig. 8. Maximal Poisson-disk distribution on a planar domain.

IV. RESAMPLING BASED ON LOCAL GRAPHS

We now showcase one popular processing that greatly
benefits from the proposed structure: the resampling of point
clouds, notably the point clouds provided by digital recordings
of large-scale 3D objects/scenes (such as buildings, urban en-
vironments, monuments, historical sites...). These point clouds
have several characteristics that fully justify a resampling
technique based on a piecewise structure based on local graphs
like ours: i) they are obtained by merging tens or hundreds of
scans, ii) they can contain billions of points, which severely
limits their usage, iii) the point density presents strong local
variations, in function of position and orientation of scanners
on the site, but also because of overlapping areas, among other
things.

Our resampling technique is based on Poisson-disk distribu-
tions [17], which have the advantage to reduce the number of
points while improving the sampling quality by dispatching
the points uniformly but irregularly on a surface. Figure 8
illustrates this feature: a minimum distance is ensured between
the samples, but with the constraint that the samples do not
lie on a spatial regular lattice.

Multiple methods exist to produce Poisson-disk distributions
on surface meshes [18], [19], [20], [21], sometimes even to
handle point clouds [22]. However, those methods are either
requiring a triangulation to work on or considering a euclidean
metric instead of a geodesic one (for computational purposes),
which can lead to a loss of details for very thin structures that

generally have a high genus and a complex geometry.
Recently, a dart throwing technique has been developed for

resampling surface meshes with Poisson disks [23] according
to a geodesic metric. Figure 9 illustrates this technique. Given
the minimal distance 2r wanted for the final distribution, it
consists in i) selecting one vertex among the candidate vertices
randomly, ii) drawing a disk of radius r around the selected
vertex, and iii) checking if this disk overlaps another disk
already constructed. If it does not intersect any existing disk,
this vertex is kept for the final set of vertices, and all the
vertices covered by the disk are removed from the list of
candidates. This process is repeated until there is no possibility
to insert a new disk on the surface (in that case, the maximal
Poisson-disk distribution is reached).

Fig. 9. Dart throwing on a triangle mesh, as proposed in [23] (from left to
right, top to bottom). The black dots represent candidate samples that are kept
in the final distribution. The purple one is not kept, because its disk overlaps
removed candidates.

The resampling algorithm presented in this section can be
seen as a generalization of the algorithm introduced in [23]
that only takes triangle meshes as input. Our new resampling
algorithm can resample any point cloud structured with the
representation based on interconnected local graphs described
in Section II. The resampling is done graph after graph, which
permits to cap the memory usage.

A schematic overview of this algorithm is illustrated in Fig-
ure 10. Let us consider a plain surface as a sampling domain,
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Fig. 10. Schematic overview of our iterative resampling scheme (from left
to right, top to bottom). Top left: resampling of the red subdomain from its
associated graph. Top middle: initialization of the green subdomain with the
disks already positioned in the common zone. Top right: resampling of the
green subdomain. Bottom left and middle: same procedure with the green and
blue subdomains. Bottom right : final distribution. The transmission of disks
is made via the lists of interconnected vertices.

described by several overlapping subdomains represented here
by rectangles. The process is iterative and piecewise. A first
subdomain (red rectangle) is maximally resampled with Pois-
son disks. A second zone (green rectangle) is then resampled,
and so on until the entire sampling domain is resampled. To
respect the essential rule (no overlapping disk) all over the
surface, the disks already positioned in overlapping areas are
“transmitted“ to the other subdomains, to be considered during
the next iterations.

In our context of aggregated point clouds structured with
interconnected local graphs,

• each subdomain in Figure 10 represents a part of the
inherent surface covered by one local graph;

• graphs are iteratively processed, starting from a randomly
chosen graph;

• the resampling of a given graph is done by dart throwing
similarly to [23] but suited for arbitrary connectivity,
and by considering only the active vertices as candidate
samples;

• the disks are determined by propagation, by using Dijk-
stra’s shortest path algorithm [24];

• transmission of disks between subdomains is done via
the graph interconnections. After having maximally re-
sampled the active vertices of a graph, each active vertex
covered by a disk “informs“ all its interconnected vertices
that they are already covered, ensuring valid Poisson
disk distribution in overlapping areas. Hence, the memory
usage is controlled, without sacrificing the quality of the
final distribution.

• In the context of visualization, our graph-based struc-
ture offers the possibility of applying a curvature-aware
resampling, to enhance salient features of the scanned
surface. With Poisson-disk distributions, it consists in
weighting the distances between neighboring vertices
with a specific function to put smaller disks in curved
areas, involving a higher density in these areas. With
our structure, we simply weight the graph edges by the
Gaussian curvature computed from the local graphs.

Figure 11 shows uniform distributions on three well-known

models provided by our workflow from twelve depth maps
(synthetically generated from the surface meshes, as explained
in Section II). Visually, the distributions are satisfactory, for
the three densities.

Fig. 11. Uniform Poisson-disk resampling of ARMADILLO, DRAGON and
VENUS provided by our workflow for three different densities.

Figure 12 now compares uniform Poisson-disk distributions
and the resulting uniform point clouds provided by our algo-
rithm on FERTILITY, with or without transmission of disks
between graphs. Without transmission (left side), many disks
overlap, providing a distribution that does not respect the min-
imal distance between all the points. With transmission (right
side), the minimal distance is ensured all over the surface, and
there is no sampling artifact in overlapping areas, despite an
iterative approach processing the graphs successively.

Fig. 12. Comparison of Poisson-disk distributions and resulting point clouds
provided by our algorithm with (right) or without (left) taking into account
the interconnected vertices already covered by disks. This comparison shows
that the disks do not overlap with our approach, and the constraint minimum
distance is ensured all over the surface, thanks to the specific management of
overlapping areas.

To assess quantitatively the quality of our results, and thus
to validate our resampling technique, we selected the tool
developed by Wei et al. [25] that performs a differential
analysis of the spread of the points on the surfaces. From
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any set of samples on surfaces, this tool computes a 2D
power spectrum, and two statistics can be determined from
it: the Radially Averaged Power Spectrum (RAPS) and the
anisotropy. The RAPS shows the distribution of the distances
between samples (computed in all the directions around each
sample, and averaged radially), while the anisotropy shows
the radial uniformity of the sampling pattern over the domain.
The typical RAPS for a Poisson-disk distribution consists of a
wide zero-region at low frequencies and a flat high-frequency
region, both connected with a sharp transition depicting a
peak at the cut-off frequency that corresponds to the minimum
distance between samples. The typical anisotropy is constant
and quite low.

Table II shows the statistics obtained with our resampling
method on BUNNY and EGEA: they are typical of Poisson-
disk sampling patterns. To confirm these good results, we
also show in this table the statistics obtained with the method
of [20] that resamples 3D models from triangle meshes, and
thus benefits from the knowledge of the surface contrary to
our method which inferred it from the connectivity of the
generated graphs. These statistics are similar. This analysis
highlights the fact that our scheme does not suffer from
its iterative and piecewise approach, and that the inferred
connectivity of our interconnected graphs is consistent with
the explicit connectivity of the input surface mesh.

We now show several results obtained on large real-life
datasets. For these datasets, bilateral filtering [26] has been
applied to the depth maps right after the acquisition, to remove
the acquisition noise.

Figure 13 and Figure 14 show two nice results of resam-
pling on out-of-core data: PALAIS (INT.) composed of 1.5
billion of points (37 scans), and MEETING HOUSE composed
of 1.75 billion of points (50 scans). These results notably
emphasize the detail enhancement of our curvature-aware
sampling strategy based on local graphs (Figure 13, right).
Figure 13 shows the same scene resampled uniformly with
a prior method presented in [22] (available in Meshlab [27]).
This result is similar to ours, which attests that our resampling
scheme competes with state-of-the-art methods. Nevertheless,
to obtain this result with [22], we had to extract manually
the part of the point cloud corresponding to the glazed roof,
before resampling it only. Indeed, [22] is based on in-core
implementation, and cannot be applied to gigantic datasets
such as PALAIS (INT.). On the other hand, our method can
resample the entire point cloud on the fly, by using 16GiB
of RAM at most, and without tiling. In comparison, [22]
requires approximately 7GiB of RAM, just to resample the
part corresponding to the glazed roof, composed of 3.3% of
the total amount of points.

Figure 15 shows another impressive result with the site of
WAT PHRA SI SANPHET (40,000m2, originally 5.3 billion
of points, 156 scans) resampled with “only“ 155 million of
points. This result is highly satisfactory since the processing
of such a quantity of points is a real challenge per se, and our
algorithm is finally able to resample this gigantic point cloud
by using never more than 16GiB of RAM. Moreover, our
method can efficiently dispatch the points all over the surface,

while enhancing extremely subtle details (see for instance
the details of the bricks) thanks to our curvature-aware
sampling strategy. Our approach is thus particularly relevant
in the context of visualization, especially when it comes to
recovering complex details on gigantic sites.

Table III sums up the memory consumption of our
resampling scheme on six point clouds composed of hundreds
of millions of points. To highlight the trade-off between
memory footprint and runtime, this table also includes
performances when tiling depth maps as explained before.
Similarly to our structuration workflow, our resampling
scheme is able to deal with gigantic point clouds with a very
low memory footprint. Without tiling, the memory peak is
always less than 16GiB and can be reduced to fewer than
1GiB with tiles of 2048 × 2048 pixels. The counterpart
is an increase of runtime, due to more frequent disk I/O.
However, in function of the tile sizes, the runtime increases
very slightly, whereas the memory footprint drops drastically.
This is due to the complexity of the sampling algorithm
that mostly depends on the number of total vertices and the
size of the disks, and not on the number of graphs. As the
tiling process adds only a few duplicate vertices between the
different tiles of the same initial depth map (depending on the
size of the overlapping area), the overall time does not change
drastically. This is a very interesting feature of our algorithm,
as resampling is often done once and offline, and RAM is
often more limited than time for users with standard machines.

Lastly, Figures 17, 16, and 18 show surfaces reconstructed
with the method of [28] from point clouds obtained with our
resampling algorithm. We chose this reconstruction method
because it does not alter the initial positions of the points.
Hence, the triangle quality of the reconstructions is highly
dependent on the distribution of the points on the surface.
We can see that the resulting meshes are of high quality,
suggesting that our structure can be highly relevant for the
geometry processing community, where the gigantic amount
of data alone represents a real scientific challenge per se.

V. CONCLUSION AND FUTURE WORKS

We propose an original workflow for structuring point
clouds generated from sets of depth maps. The data representa-
tion is based on a set of local graphs, each of them describing
a part of the scanned scene. To have a globally consistent
representation of the entire scanned surface, the duplicate
vertices in the overlapping regions are interconnected and
associated with only one graph, to avoid redundant operations.

This piecewise representation allows the construction of
the data structure scan after scan, while capping the memory
usage. An optional cut of depth maps is also possible in
preprocessing to further reduce the memory usage. Hence,
billions of points can be structured even on computers with
very limited memory capacity.

We believe that many applications can greatly benefit from
this structure. We show for instance that Poisson-disk resam-
pling can be efficiently done with only a few gigabytes of
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Fig. 13. Glazed roof of PALAIS (INT.) resampled with only 1% of points. From left to right: uniform sampling obtained with [22], with our uniform resampling
and with our curvature-aware resampling.

Fig. 14. MEETING HOUSE (1.5 billion of points, 50 acquisitions) resampled with only 1% of points. Left/right: uniform/curvature-aware sampling.

Fig. 15. The entire site of WAT PHRA SI SANPHET (Thailand, 40,000m2) resampled with our method. From left to right: overview, and two levels of zoom
(red boxes indicate where each zoom is done). Initial data: 5.3 billion of points, 156 acquisitions. This simplified cloud contains around 155 million of points
(2.8%). Despite the extent of the site, fine details are preserved thanks to our curvature-aware sampling strategy.

Fig. 16. WAT PHRA SI SANPHET: Close-up view of a point cloud provided by our curvature-aware resampling (left) and the resulting surface reconstructed
by [28]. Without resampling stage, reconstruction was not possible, because of the amount of initial data as well as its bad sampling quality.
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Proposed method  Bowers et al method  

Power Spectrum RAPS Anisotropy Power Spectrum RAPS Anisotropy
Proposed method  Bowers et al method  

TABLE II
THE DISTRIBUTIONS GENERATED WITH OUR LOCAL GRAPH-BASED RESAMPLING ALGORITHM HAVE TYPICAL STATISTICS OF POISSON-DISK SAMPLING
PATTERNS. THESE PROFILES ARE SIMILAR TO THOSE OBTAINED WITH [20], A PRIOR METHOD THAT DIRECTLY RESAMPLES MODELS FROM TRIANGLE

MESHES. THE DIFFERENTIAL ANALYSIS IS DONE WITH [25].

Data # Points (M) # Acq. Tiling Tiles (p× p) S. density M.Peak [GiB] (Gain) Time [h:m:s] (Gain)

TEMPLO MAYOR 349 17

no n/a

1.2%

7.5 00:08:48
yes 8192 3.9 (-47.8%) 00:09:01 (+2.5%)
yes 4096 1.9 (-75.0%) 00:09:26 (+7.2%)
yes 2048 0.8 (-90.0%) 00:10:08 (+15.2%)

PALAIS (EXT.) 977 23

no n/a

0.4%

11.6 00:29:10
yes 8192 6.2 (-46.7%) 00:29:58 (+2.7%)
yes 4096 2.2 (-81.0%) 00:30:20 (+4.0%)
yes 2048 0.8 (-93.2%) 00:30:24 (+4.2%)

MEETING HOUSE 1,493 50

no n/a

1.1%

11.4 00:43:28
yes 8192 5.8 (-49.3%) 00:44:29 (+2.3%)
yes 4096 2.2 (-81.0%) 00:46:10 (+6.2%)
yes 2048 0.8 (-92.8%) 00:47:55 (+10.2%)

PALAIS (INT.) 1,748 37

no n/a

0.2%

15.9 00:56:15
yes 8192 7.8 (-50.8%) 01:00:10 (+7.0%)
yes 4096 2.2 (-86.1%) 01:00:39 (+7.8%)
yes 2048 0.8 (-94.8%) 01:02:25 (+11.0%)

ANANDA OAK KYAUNG 1,703 126 no n/a 0.7% 5.3 01:01:23
WAT PHRA SI SANPHET 5,313 177 no n/a 0.7% 15.8 03:50:10

TABLE III
MEMORY CONSUMPTION AND EXECUTION TIMES OF OUR RESAMPLING ALGORITHM. THOSE RESULTS HAVE BEEN GENERATED FOR A PARTICULAR

TARGET SAMPLING DENSITY (PRESENTED AS A PERCENTAGE OF REMAINING POINTS IN THE COLUMN S. density). PERCENTAGES OF TIME AND MEMORY
INDICATE THE COST IN COMPARISON TO THE PROCESSING WITHOUT TILING STRATEGY.

RAM, on gigantic point clouds merging hundreds of scans
and composed of several billions of points. This application
is particularly attractive for dealing with point clouds repre-
senting buildings, urban scenes, historical sites, or any very
large-scale scene.

Another potential application is surface reconstruction,
which is still a serious challenge in the domain of geometry
processing. We are currently investigating the construction
of Voronoi diagrams on surfaces described by point clouds
structured with our representation. We already obtained
promising preliminary results, which allows us to get surface
meshes from these diagrams. Globally, our structure can
serve as a support for the definition of many functions over
the point clouds.

In the future, the current data structure could be improved to
reduce its storage cost. During this work, given the size of data
we manipulated, our main objective was to control the memory
consumption, but no effort has been done to get a compact
structure of the local graphs, and their interconnections.

Technically, our structuration workflow could be also im-
proved. For instance, the management of occlusions (Section
II-B) follows quite a simple approach that could be improved
by modeling the surface locally, to abstract the interconnection
step from the sampling density of the point cloud. Also, our
experiments showed that the structuration of the point clouds
may be long, especially when large depth maps are cut into
too small tiles. Interconnecting the graphs is currently the most
time-consuming step of our structuration algorithm. However,
nothing restrains the possibility of parallelizing the search of
matching points on several graphs at the same time, which
could reduce the computing time of this step by a factor close
to the number of threads used. Overall, the I/O strategy used
could be improved to minimize the I/O exchanges, which can
be impactful when the number of local graphs is important.

Lastly, our datasets during this study were LiDAR scans
providing depth maps, but we believe that the proposed
approach could be extended to unstructured acquisitions.
Though, one could imagine constructing several local graphs,
by defining overlapping spatially segmented areas of a point
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Fig. 17. Two other surfaces (parts of the sites EIM YA KYAUNG and KHAYMINGHA, from left to right, respectively) reconstructed with [28] from simplified
point clouds generated with our curvature-aware resampling.

Fig. 18. Top-left: picture of a part of the facade of PALAIS (EXT.). Top-right: surface reconstructed with [28] from a point cloud generated with our
curvature-aware resampling. Bottom: close-up views of the reconstructed surface.

cloud, in which all the points could be connected using an
approach similar to [12].
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