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Abstract—A 3D mesh object is usually represented as a
combination of several entities including geometrical information
(i.e., the triangles and their position in space) and a texture
atlas/map (i.e. a giant 2D image containing all the texture
information that is mapped to the 3D object at the rendering
stage). This atlas is usually compressed using a conventional 2D
image coder, thus without taking into account the geometrical
information. Moreover, the whole image is usually decoded even
though only a subpart of the mesh is observed by a user. In
this paper, we propose a novel approach to compress a texture
atlas of a 3D model that enables random access during decoding,
and nevertheless takes into account the correlation driven by the
geometrical information. The experimental results demonstrate
the benefits of the proposed coder.

Index Terms—Random access, 3D mesh, texture map/atlas

I. INTRODUCTION

As shown in Fig. 1, a 3D model or object is usually rendered
thanks to the combination of geometrical and textural informa-
tion. This can be complemented by other types of information
depicting for example the light reflection or granularity of the
surface. Geometrical information is usually represented as a
triangle mesh, defined by a list of triangles positioned in 3D
space, and connected by their common edges. Efficient ways of
compressing these meshes have been investigated in [1]. The
textural information generally consists of a giant image, called
texture map or atlas, describing the whole texture information
that is mapped onto the 3D shape at the rendering stage. The
correspondence between the texture and the triangles is also
described in the mesh file. Texture images are usually coded
as still images, with for instance JPEG [2] or even HEVC Intra
[3]. This is however inefficient for the two following reasons.
First, a texture image is usually defined as an atlas of texture
patches, with a flat/smooth background (see Fig. 1(b)). Even if
optimizations of the patching arrangement have been proposed
to lower the background size [4], [5], [6], [7], the projection of
the texture content onto a 2D image introduces unavoidable
artificial edges, and this leads to a rate overhead, when the
encoding is performed with a regular image coder. Second, the
atlas encoder inherits its property from conventional coder, i.e.,
the whole image has to be decoded. Nevertheless, this is not
desirable since only a subpart of the 3D model, and therefore
part of the atlas, is usually observed at a given time during
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the rendering. It would be much more efficient in terms of
rate or memory load if only the needed part of the model
could be decoded, as pointed in [8]. The question of random
accessibility has been tackled for triangle meshes in [9]. In
this work, we consider the problem of random accessibility
for the texture information associated to such meshes.

A geometry-aware atlas coder has been proposed in [10] to
circumvent the first limitation. This coder takes into account
the geometry information at several key stages of the com-
pression algorithm, i.e. intra prediction, block scanning and
transform. This allows to drastically improve the compression
performances. However, random access is not considered and
the transmission of the whole image is still necessary. In this
work, we propose a novel interactive coding scheme that is
adapted to the random access of a user, and nevertheless takes
into account the correlation between blocks by using some
geometrical information. Instead of relying on a predictive
coding approach [11], where the correlation exploitation re-
quires the blocks processing/compression order to be fixed,
we develop a coder based on the incremental entropy code
[12] that can exploit these correlations, whatever the block
order processing is. As a consequence, the block decoding
order can be decided at the decoder side, once the request
is known, such that only the visible blocks are transmitted.
In other words, the proposed coder brings random access
ability with a reasonable storage overhead compared to [10],
but it significantly reduces the transmission rate. Even better,
the transmission efficiency is as if the encoder already knew
which part would be requested by the user, and can thus be
considered as optimal.

(a) (b) (c) 
Fig. 1. Decomposition of a 3D model (a) into its texture atlas (b) and its
triangular mesh (c).

II. ATLAS CODING WITH RANDOM ACCESS

In this section, we formalize the problem of atlas com-
pression with random access at the decoder. As in most
conventional image coders, the atlas is divided into blocks
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Fig. 2. Example of user’s navigation around the 3D model (left), what he observes at a given instant (center), and the corresponding visible blocks V (in
red) in the atlas (right). For better visibility of the blocks, the black background area is turned into white in the atlas.

of dimension B×B that are represented as vectors ai of size
B2×1 (vectorized in the natural reading order). Let us denote
by N the number of blocks, and let us represent the atlas as
a matrix of size B2 ×N , A = [a1 . . .aN ], where the blocks
are organized in the reading order.

The atlas compression with random access is split into two
steps. First, the atlas is compressed offline, i.e., it is coded once
for all, independently from any user’s observation behavior.
This offline encoding operation is denoted by a function f . The
entity f(A) is called the stored information, and the storage
cost S is measured by S = |f(A)| in which |.| denotes the
size of stored data.

When observing a 3D model, only a part of the mesh, and
thus of the texture, is visible. This is illustrated in Fig. 2. Let
us denote by V the set of block indices that are visible by a
user. Given the set V , the second step of the compression is
called the online extraction, and is denoted by gV . The entity
gV(f(A)) is called the extracted information and corresponds
to an extractable subset of the stored information that is
sufficient to recover the blocks whose index are in V . The
extraction cost is measured by EV = |gV(f(A))|. Here, we
emphasize that due to rendering delay constraint, decoding the
atlas and reencoding the request can not be performed. The
set of extractable information has to be carefully prepared in
advance, and this is what makes the interactive compression
challenging. For example, when the atlas is encoded with
conventional image coders, there is no extractable information
but the whole image itself. In other words, with conventional
coders one has ∀ V, EV = S. This looks suboptimal, and one
can expect from an efficient interactive coder that EV ≤ S.
This is what we propose in the next section.

Once extracted, the decoder recovers a lossy version of the
blocks {ãi}i∈V . The coding distortion DV is evaluated with
a mean-squared error calculated in the rendered view domain
between original view and the view generated with the lossy
version of the atlas.

The goal of interactive coding is to minimize each of the
elements of the triple (S,EV , DV). Developing such a coder
is particularly challenging for atlases. Indeed, minimizing
S implies to jointly compress the ai, and this inevitably

introduces dependencies between them, which makes their
partial extraction nearly impossible. In the next section, we
explain how we perform the joint compression of the ai such
that only a subset of them can be decoded.

III. PROPOSED INTERACTIVE CODER

In our proposed coder, as in the conventional ones, the
blocks ai are coded individually taking into account the
correlation with the neighborhood. Let ai ∼ aj denote the
fact that block ai and aj are adjacent. Two texture blocks are
said to be adjacent if they correspond to two texture pieces
that are side by side onto the surface of the 3D model. Let us
define the neighborhood of the block with index i as the set of
adjacent block indices, N (i) = {j | ai ∼ aj}. In [10] as in all
conventional coders, the set of blocks whose index are in N (i)
and that are already coded are used to generate a prediction
[11], denoted by âi. A residue ai − âi is then computed and
coded with an arithmetic coder. This efficient compression
strategy has however one main drawback: it imposes that the
coding order at the encoder is the same as the coding order at
the decoder, which contradicts random accessibility.

Instead, we propose to generate a set of several predictions
âki corresponding to different neighbors. More precisely, these
neighbors correspond to different decoding orders that might
appear at the decoder side, depending on user’s access. In fact,
each âki corresponds to a prediction generated with blocks
whose indices are in a given subset N k(i) ⊂ N (i). Each
subset N k(i) corresponds to a possible decoding order, which
depends on the user’s observation of the 3D model. Thanks to
an incremental coder [12], we encode the block ai based on
the different predictions âki such that only the information,
needed to complement the âki generated at the decoder, is
extracted and sent to the decoder. Here we give more details
on the different aforementioned steps. The proposed coder
builds upon [10], and adds to it the random accessibility at the
decoder side. For the sake of clarity, some useful information
from [10] are recalled in the following.
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Fig. 3. The mesh topology enables to retrieve the neighborhood information
between triangles 1, 2, 3 and 4, and thus between blue and red blocks, even
though they are spread over several patches in the atlas. For blue block i, the
two red blocks are in its neighbor set N (i).

A. Neighborhood construction and prediction generation

Let us consider a block ai. The neighborhood construction
consists in finding the set N (i) of the adjacent block’s indices.
In a classical 2D image, N (i) is simply composed of the
4-connected neighbor indices placed on the previous/next
column/row. As discussed in our previous work [10], for some
blocks, some textural information that are neighbors in the 3D
model can be split into distant blocks in the atlas. Thanks to
the mesh topology, we retrieve this proximity and describe
it in N (i) in addition to its 4-connected neighbors. This is
illustrated in Fig. 3. At the decoder, the user decodes the set
of blocks whose index are in V . They are decoded in a given
order σ : V → [1, |V|] (see Sec. III-C). For a given request
V , the set of blocks available for generating the predictions is
NV(i) = {j ∈ N (i) | σ(i) < σ(j)}, i.e., the set of blocks
already decoded. Some reference pixels from the {aj}j∈NV(i)

are put at the border of the block and forward propagated in
an optimized directional order.

Considering all the requests V , a set of K scenarios are
conceivable at the decoder (with K << |V| since many
requests have a common NV(i)). These scenarios lead to K
sets N k(i) and thus K predictions âki .

B. Graph transform and incremental coding

In order to compact the signal energy on a sparse basis,
a transformation is then performed on each block ai and on
each predicted block âki . Blocks of the texture image differ
from classical 2D image block because a block may lie on a
patch edge, and hence only a subset of pixels is informative.
Therefore, it was proposed in [10] to perform a graph-based
transform [13] in place of the regular 2D DCT.

One novelty of the proposed coder is to replace the con-
ventional arithmetic coder by an incremental coding that can

handle any prediction âki at the decoder. More precisely, a
codeword is built that can be seen as information (or parity
bits) needed to correct the prediction and reconstruct the
current block. Interestingly, this codeword is incremental. This
means that the codeword can correct the worst prediction, but
if the decoder has generated a better prediction, the sufficient
bits to decode are extracted from the codeword. In [12] it was
shown that theoretically the amount of bits sent to the decoder
is the same as predictive coding, i.e. as if the navigation was
known by the offline encoder. In practice, we use LDPC codes
[14] applied on the quantized and binarized coefficients of the
graph-based transform.

C. Geometry-aware decoding order

At the decoder side, only a subset V of the blocks are
needed to be transmitted to the decoder. These blocks must
be decoded in a smart order σ such that when decoding a
block ai, the set of previously decoded neighboring blocks
is as large as possible in order to generate the best possible
prediction. Finding the optimal scanning order is however an
NP-hard problem. We rather propose the approach illustrated
in Fig. 4. The first block to be decoded is the access block (in
red in Fig 4), which is one block coded in a standalone fashion,
meaning that it is encoded independently and thereby can be
decoded independently from its neighbors. The assumption,
here, is that the navigation always starts at a position where
this block is visible. This is without loss of generality because
several access blocks can be introduced if several starting
points are conceivable. Once this block is decoded, the whole
patch where it belongs is decoded (in yellow in Fig 4), by
exploring the blocks in a snake fashion so that there is always
at least one neighboring block already decoded. Once this
patch is entirely decoded, the algorithm explores the other
patches where neighboring blocks are present (red arrows in
Fig. 4). Then neighboring patches are decoded and so forth,
until all requested blocks in V are decoded.

For the later requests of the same user some blocks are
already in memory. In that case, instead of starting by the
access block, the decoding order begins with any of these
blocks in memory and then proceeds as explained above.

IV. EXPERIMENTAL VALIDATION

In this experimental section, we compare our interactive
coder with two baselines. The first one, called Whole At-
las (WA), encodes the whole atlas taking into account the
geometry as in [10]. This method is very competitive for
compression, and thus minimizes the storage S, but requires,
for every user’s request, to transmit the entire atlas. Another
baseline is called All Intra (AI), and corresponds to a method
that is interactive, but is not able to take into account the
correlation between the blocks. In other words, the method
AI encodes each block independently as JPEG [2] does. For
a fair comparison, the graph-based transform is performed in
the method AI (as in ours and WA) by taking into account the
geometry.



Fig. 4. Proposed scanning order. The non-black blocks are the ones requested
by the client. First, a patch to be decoded is selected (here in yellow). This
patch is the first to be decoded because some blocks of this patch either are
already available at the decoder (previous request), or can be easily predicted
(from a previous request). If this is not the case, an arbitrary patch is selected
and the decoding starts at a so called access block (in red) that can be decoded
independently of the other blocks. The the whole yellow patch is decoded.
Then, the scanning will explore all the patches that are neighbors to the yellow
one on the mesh surface, starting for example by the blue one.

(a) (b)

Fig. 5. 3D models used for experiments. (a) Model Ewer. (b) Model Tombs

We used two 3D objects in our experiments, named Tombs
[15] and Ewer [16], with atlas image size of 8192x8192 and
4096x4096 respectively. The objects are depicted in Fig. 5.
We compress these two models with the three coding schemes
leading to three storage costs: Sours, SWA and SAI. We also
simulate three user navigations around each model, each last
for 30 requests corresponding to successive changes of camera
orientations and positions. At each instant we record the
rate that is needed to satisfy user’s request, leading to three
transmission costs rours(t), rWA(t) and rAI(t). In Figs. 6
and 7, we plot the accumulated transmission rates at a PSNR
of 38dB for the two models during successive requests, i.e.

R(T ) =

T∑
t=1

r(t).

Similar behaviors were observed for other PSNR values.
We can see that our scheme outperforms the schemes AI and

WA for two reasons. First, our scheme always has the smallest
transmission cost (for the same quality), which demonstrates

the great compactness of the compression. Second, we can
see that Rours(t) evolution is smooth with the request which
shows that our scheme transmit what is needed at every instant,
and not everything at the beginning of the navigation as the
scheme WA does. This is also the case for the scheme AI, but
with a higher rate.

The rate results demonstrate the benefits of our approach.
This comes however with a small storage size overhead.
In order to evaluate its impact, we rely on a comparison
methodology proposed in [17], where the Bjontegaard metric
is computed on the curve (PSNR,R + λS), for different
values of λ. Results are shown in Table I. We can see that when
λ = 2, meaning that storage matters more than transmission,
the best method is the WA. In other words, both All Intra
and the proposed method have a small storage overhead
compared to WA, but for smaller λs, i.e., when a trade-
off between storage and transmission is desired (transmission
cost is becoming important), our method performs better than
baselines.

V. CONCLUSION

In this paper, we proposed a new coder for mesh texture
that enables interactivity. By replacing classical predictive
coding scheme, by an incremental coding, and by adapting
the intra-prediction and the block scanning order, we have
enabled our coder to transmit only what is requested by a
user when looking at the 3D model from some points of view.
The experiments demonstrate that, with a reasonable storage
overhead, the transmission rate is optimal because only the
useful information is sent to the users.
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Fig. 6. transmission rate evolution over the user’s navigation for model Ewer at PSNR 38dB. (a) User 1. (b) User 2. (c) User 3.
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