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Abstract

This paper déescribes,how to optimize two popular wavelet transforms for semi-regular meshes, using lifting scheme.
The objective is to adapt multiresolution analysis to the input mesh to improve its subsequent coding. Consider-
ing either the Butterfly--or the Loop-based lifting schemes, our algorithm finds at each resolution level an optimal
prediction operatoP such that it minimizes the;-norm of the wavelet cdécients. The update operatdris then re-
computed in order to take into accountthe modificatior2.tBxperimental results show that our algorithm improves

on state-of-the-art wavelet coders.
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1. Introduction wavelets. The principle is to resample the surface ge-
ometry while providing a subdivision connectivity. The
output is called a semi-regular mesh, and wavelet filter-
ing is finally more dicient.

Wavelets have their roots in approximation theory 1]
and signal processing [2] in the late eighties. 4Since
then, wavelets are the most popular technique for rep-
resenting data in a multiresolution way. They have been
used for a vast number of applications: physic, biomed- LAy Relaigd work
ical signal analysis, image processing, and so on;'But ~ Lounsberyetal. aré considered as pioneers in the
wavelets have been particularly designed for data cod- deyeélopment of wavelets for surface meshes of arbi-
ing, because they guarantees compact representation ofrary topological type [8]. They proposed a technique
transformed data, and consequently high compressionto construct wavelets from any local, stationary, contin-
performances. uous, uniformly convergent subdivision schemes such

In computer graphics, the compact representation is as Catmull-Clark{9], Loop'[10], or Butterfly [11]. The
not the sole attractive feature of wavelets. Indeed, subdivision scheme represents the synthesis filter, and
current high-resolution acquisition techniques produce the analysis filter is derived from, it.< Two filters are
highly detailed and densely sampled surface meshes.finally applied on the input'mesh during analysis pro-
Not only these massive monoresolution data afé-di  viding respectively a.mesh of low resolution (low-pass
cult to handle and store, but they are also awkward for filtering), and a set of waveletcfigients (high-pass fil-
fast and progressive transmission in bandwidth-limited tering).
applications. Wavelets tackle such issues, the multires- Inspired by the work of Lounsbergt al, and by
olution structure (Figure 1) making the progressive pro- the work of Donoho concerning interpolating wavelet
cessing easier. transforms [12], Schroder and Sweldens presented how

A problem for applying wavelets on meshes is the ir- building wavelets for scalar functions specifically de-
regular sampling (unlike stillimages or videos). Despite fined on a sphere [13]. They are not the first construct-
the development of wavelets for irregular meshes [3, 4], ing wavelets on the sphere. The pioneers are Dadtike
a popular solution is to remesh the input mesh semi- al. [14], who used a tensor product basis where one fac-
regularly (for instance with [5, 6, 7]) before applying toris an exponential spline. A continuous transform and

its semi-discretization have been also proposed by Free-
Email address:{kammoun, fpayan,an}@i3s.unice . fr den and Windheuser [15]. Nevertheless, the work of
(Aymen Kammoun, Frédéric Payan and Marc Antonini) Schrdder and Sweldens in [13] is remarkable because it
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Figure 1: Overview of a wavelet decomposition.

is the first showing how thiéting schemd16] is partic- proposed [22]. To our knowledge, wavelet-based coders
ularly relevant to.construct biorthogonal wavelets with that take semi-regular meshes as input are the most ef-
nice properties, and how the resulting wavelet filters ficient, because of their piecewise sampling regularity
are easy todimplement (local vertex-manipulating fil- allowing dficient wavelet decomposition. We briefly
ters). Moreover, this technigue is parameterization inde- present the main works in this domain.
pendent. Kovacevic and Sweldens then generalized the The first wavelet-based coder (often called PGC) for
concept of wavelets for any kind.of meshes [17]. They semi-regular meshes was proposed by Khodakoesky
showed that the lifting schemerallows to construct filter al. [18]. This coder is based on multi-scale quadtree
banks and wavelets for any/attice, any dimension, and structures and supports quality scalability. The authors
any number of primaiual vanishing mements. They propose a Loop-based wavelet transform (presented in
also showed that only two lifting steps are needed (pre- previous section), but any wavelet transform could be
dict and update), but one condition is thatthe associatedused. A zerotree coder followed by an entropy encod-
scaling functions are interpolating. ing are applied in parallel on each component (tangen-
Until this work, most of wavelet transforms for! tial and normal) of the wavelet cigeients computed in
semi-regular meshes were based [on hinterpolating @ local frame. This coder has been also proposed for
subdivision schemes, in particular on the Butterfly Normal meshef23]. The only diference is the choice
scheme. However, a Loop-based wavelet transform Of the wavelet transform. The authors usesuhéfted
was proposed in 2000 by Khodakovskyal«[18]. The Butterfly-t_)ased Wa\_/ele_t transformg, without update
approximating Loop subdivision schem@ is used during SteP), optimal.for this kind of meshes.
synthesis as low pass reconstruction filter, whereas Theén, several allocation techniques [24, 25, 26, 27]
the associated high-pass filter is derived from it by Were proposed fonimproving the coding performances
applying a quadrature mirror construction. The draw- ‘f the waveleti€oders. The principle is to use a bit al-
back of this approach arises during wavelet analysis, location pro€ess during-the quantization step in order
because filters cannot be directly applied. Contrary to analytically optimize-the rate-distortion tradgdn
to wavelet transforms based on lifting scheme, the other wards, reach the maximal quality for a minimal
wavelet coéficients and the low resolution mesh are file size (orvice versy
obtained by solving sparse linear systems depending Recently, a coder providing both résolution and qual-
on the two low- and high-pass reconstruction filters. In ity scalability was proposed by Dergsal. (2010) [28].
2004, Bertram overcame this problem by proposing a This coder exploitshe intraband or composite statisti-
biorthogonal Loop-based wavelet construction based cal dependencies betweendhe waveletiocents. By
on the lifting scheme [19]. This is also the case okLi  following an information-theoretic analysis of these sta-
al. who proposed in parallel a reversible (but unlifted) tistical dependencies, the wavelet subbands are indepen-
Loop-based wavelet transform [20]. Finally, in 2008, dently encoded using octree-based coding techniques
Charina and Stockler proposed to tackle this drawback and a context-based entropy coding. This coder pro-
by using tight wavelet frames [21], which leads to vides better results than PGC, and similar results with
the use of the same scheme during reconstruction and[24] that is not quality scalable.
decomposition.

1.2. Motivation and Contributions
Compression allows compact storage /andfast
transmission in bandwidth-limited applications of mas-  One limitation of wavelets for meshes is that the
sive meshes, and many techniques have been alreadwtructure is fixed. For instance, many wavelet coders
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use the Butterfly-based scheme [13].
pression point-of-view, this wavelet is relevant for
smooth surfaces because of the interpolatifigot of

From a com-

at different levels of details, or resolutions (see Fig. 2).
MO corresponds to the lowest resolution, and is called
thebase meshM' is a subdivided version d#1', and

the Butterfly scheme used as predictor, which producescorresponds té" resolution. Subdivision consists in

small codficients. But this scheme is lesfieient for

other kinds of surfaces, with high frequency variations
or salient features, for instance. Finally, a wavelet
changing in function of the geometric features of
the input mesh could be a relevant tool. When the

transforms are lifting-based, this can be finally achieved

by adaptingthe predict and. update steps [29] to the
input mesh.

Therefore ave propose an algorithm for optimizing
two popular lifting-based wavelet transforms for semi-

regular meshes: the Butterfly-based scheme [13], and

the Loop-based one [19]. Our mativation is to improve

the performances of the state-of-the=art wavelet coders,

by adapting the multiresolution analysistool to the fea-
tures of the input mesh. /The basic idea.is to find, for

splitting each triangle into four smaller ones by adding
new vertices on each edge, and then updating their po-
sition to fit as closely as possible to the original surface.
ML corresponds to the highest resolution of the given
surface.

Figure 2: Structure of a semi-regular mesh.

a given semi-regular mesh, the prediction operator that 5 5 \wavelet filtering for semi-regular meshes

maximizes the sparsity of wavelet dbeients at each
level of resolution. Indeed, it is well knowniin informa-
tion theory that maximizing the data sparsity;improves
the coding performances [30].

The idea of adapting the prediction step of the

Butterfly-based scheme has been already introduced in

[31]. The main contributions of the current paper are:

e More technical details about the optimization.algo-
rithm for the Butterfly-based lifting scheme;

e A more robust method for computing the update

operator for this scheme. The reason is that the

technique proposed in [31] sometimes fails be-
cause of a potential null divisor;

e An extension of the optimization algorithm to the
Loop-based lifting scheme [19], by taking into ac-
count the features of this scheme.

Let us denotd/! the set of vertices of a given mesh
MI, defined by their position in the Euclidean space.
Applying a wavelet transform tv! gives one mesh of
lower resolutionM i~ defined by a set of verticas/ 2,
and a seC/ of 3D wavelet cofficients. Figure 3 illus-
trates this decomposition.
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Figure 3: Wavelet analysis of a.semi-regular r_nddﬁ.is transformed
into a meshvii~1 of lower resolution and a.s€t! of codficients (rel-
ative to the red dots).

The rest of this paper is organized as follows. Section
2 introduces notions about semi-regular meshes and lift-
ing scheme for semi-regular meshes. Section 3 and 42.3. Lifting scheme
present our contributions, respectively for the Butterfly-  An efficient tool for building wavelet transforms
based and the Loop-based lifting schemes. Section 5is the lifting scheme [16]. The main feature of the
shows some experimental results, and we finally con- lifting scheme is that all constructions are derived in the
clude in section 6. spatial domain while the traditional approach relies on
the frequency domain. The lifting scheme has several
advantages [32], in particular for surface meshes. For
example, the lifting scheme i) leads to algorithms that
can be generalized to complex geometric situations;

2. Background and notations

2.1. Semi-regular meshes

A semi-regular mesiM' is based on a mesh hierar-
chy M' (I € {0,1, ..., L}) that represents a given surface

3
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implementation (analysis/nthesis), faster than im-
plementation based on filter banks. Nevertheless, the
lifting scheme has few drawbacks. For instance, the sta-
bility of the transform is not guaranteed by construction.

The canonical lifting scheme (Figure 4) is based on
three steps:

e Split. We split the original data set into two sub-
sets. In our contextythe verticds are split into
two subsetsv(') andV’1 (green and red dots on the
figure 3);

Predict<We takeas input the subséé and predict
the positions of the verticeéi by using an oper-
ator P, so that\/{ = P(Vé). The prediction errors
are the wavelet cdicientsCl4

Update. We take as inpu€' and modify the posi-
tions of the verticeS/é by using anoperatdys, and
a gain &2). We finally obtain/he low resolution
meshMi-1, defined by a set of verticég .

For the synthesis, we only have toreverse the orderand

the sign of the dferent steps (Figure 5).
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Figure 4: Analysis lifting scheme for semi-regular meshes.

vict—| /2 +
2@ )
[-U] [+P] [Merge]—> Vi
Vi

Figure 5: Synthesis lifting scheme for semi-regular meshes.

3. Adaptive Butterfly-based lifting scheme

In this section we present our optimization algorithm
for adapting the Butterfly-based lifting scheme to the
input mesh. This algorithm consists in finding for each
resolution the optimal operatoRssuch as the sparsity
of the wavelet coicients is maximized [31]. This algo-
rithm produces new stencils for each level of resolution.

Our wavelet cofficients are vector valued (three co-
ordinates, y, andz) and represented in local frames de-
pending on the surface normals [18]. When using local
frames, the state of the art wavelet coders consider the
tangential componentx @ndy), and the normal com-
ponents ) separately. We thus propose to compute two
prediction operatorsR,y and P,, according to the two
sets of components. The algorithm presented below will
be used to gePy, and in parallelP,. For the conve-
nience of the readers, we define hereinaRdor both
Pyy andP.

3.1. Optimization of the operator P

The predict step is based on theodified Butterfly
schem¢33] defined by two stencils: the regular and the
irregular (Figure 6).

e For a given vertew € V!, the regular stencil is

used when its direct neighbors belonging/té)are
regular (.e., valence 6).

¢ The irregular stencil is chosen for any other case.

(a) Regular stencil.

(b) Irregular stencil.
Figure 6: Prediction stencils ofthe Butterfly-based lifting scheme.

Our algorithm optimizes only the regular stencil, be-
cause there are too many configurations for the irregular
one (depending on the valence of the neighbors). Opti-
mizing all the potential irregular stencils may produce
a critical amount of side information (necessary for re-
constructing the meshes during synthesis).

Considering the level of resolutiof) the setCl of
wavelet coéficients is computed by using

Cl =Vl -PV). (1)



In order to increase the coding performances, we 3.2. Computation of the new operator U
wantC! to become as sparse as possible. One solution

proposed in the literature is to minimize thg-norm of Considering the same level of resolutigrand the
this set [34]. So, maximizing the sparsity can be seen as Canfh'ca' lifting scheme (Figure 4), the set of vertices
the minimization problem VI~ is obtained by using
. ‘ - : :
min [V} = Po/ (VoI 2) VIt =2x(Vp +U(C)), (8)
a

whereU is the update operator depending on a weight

wherea! defines the weights d? for the level of reso- , and associated to the stencil given by Figure 7.

lution j.
To solve this problem, we, define the unknown vec-

o N .
tor X = (ag, of,..4ag) containing the ten weights of

P, andN(v) the set of ten neighbor vertices \Zf) and
dependingn the regular stencil. We now define the
matrix A of dimension i, x 10)

A= [NV10); MVI(D) AN (- 1)].3) | | y
Figure 7: Update stencil of the Butterfly-based lifting scleem

wheren; is the number of vertices ot'i on which the o o
regular stencil is applied‘at this resolution. We.then de- ~ When the predictioR is based on a subdivision oper-

fine the vectob ator, the updat®l, that depends oR, has to be chosen
for obtaining vanishing moments [32P being modi-
b= (Vi(O),V{(l), . .Vi(nr - 1))T, (4) fied at each level of resolution by the optimization al-

gorithm, the weighty of the update operatdy has to
Finally, (2) can be solved by minimizing one function bexrecomputed. In this work, we choose to compute

f defined by v such as to preserve the average betwéeandV i1,
Contrary to [31], we prefer using the robust method pro-
f: R° — R posed in [32]. The principle is to put all the vertices of
X f(X) = ||AX - blls. (5) V=1 and all.the cofficients ofC! to zero, except one

codficient of Gl put to'1 (see Figure 8).
Since the Butterfly scheme is symmetric, we can
write

apg = @

@2 = a3

4 = A5 =0Up = a7

ag = (@9. (6)

Finally, the functionf has only four unknown values
(a0, a2, @4 andag) and can be written as following

f: R —R
X — f(X) = |AX - b1 (7)

Figure 8: Method for computing. The orange dot (a) represents the
only non null codficient; the green dots (b) represent the two sole
vertices ofvi~1 with non null values after synthesis; the red dots rep-
This function f is convex (see Appendix A for de-  resent the 43 vertices & with non null values after synthesis.

tails) and bounded by 0, sbhas a unique and global

minimum. To find this minimum, we use the Nelder- We apply the synthesis filters, and obt&h A ma-
Mead simplex algorithm [35], but other algorithms may jority of the resulting vertices has null coordinates, ex-
be used. The proposed optimization algorithm is ap- cept 43 over which the non null cigient Cl spread.
plied to each level of resolution, successively from the These vertices are also shown on Figure 8. The value
highest to the lowest. associated to each vertex are given by Table 1.
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Table 1: Values of the 43 non null vertices_‘éf obtaining after syn-
thesis from only one non-null c@eeient of C!,

In this case, the average ¥t is equalto
1
13 (1-2y — 12yap — 12y, — 24yaq — 12yag).(9)

Since the average &fi~1 is null, equation (9)has to be
also null. We finally obtain

1
Y 2 1200 + 120y + 240y + 1205

(10)

3.3. Validation of the algorithm

To verify the dliciency of our optimization algorithm,
we compare thd ;-norm of the wavelet cdicients
obtained with the state of the art Butterfly-based lift-
ing schemeClassica), and with the proposed adaptive
schemeQptimized). The results for ¥se Lion are pre-
sented in Table 2.

Classical Optimized (1) Optimized (I1)

res TC NC TC NC TC NC

1 83.76 | 132.21 | 84.41 | 126.40 | 83.80 | 125.18
2 62.32 | 134.32| 62.21 | 125.53 | 62.10 | 125.50
3 4580 | 126.92 | 45.10 | 116.87 | 45.08 | 116.88
4 31.53 | 77.88 | 29.94 | 69.53 | 29.93 | 69.51
5 21.08 | 42.15 | 20.22 | 39.22 | 20.22 | 39.21
6 13.81| 26.10 | 13.50| 25.78 | 13,50 | 25.78

Table 2: Li-norm of the tangential and normal component< (
and NC) of the wavelet coicients obtained with the state of the
art Butterfly-based lifting schemélassica) and with our adaptive
scheme Qptimized (1) for Vase Lion. Optimized (ll)is our adaptive
scheme without constraint of symmetrgsis the level of resolution.

We observe that thke;-norm of each subset is glob-

our algorithm works well. Nevertheless, for few mod-
els e.9. Vase Lion, Table 2), our algorithm does not
decrease th&;-norm of the tangential components of
lowest resolution. This issue sometimes arises, only at
this resolution, when a majority of vertices are irregular
and requires the irregular stencil. In this specific case,
our optimization algorithm may not betective at this
resolution but remaingicient for the other resolutions.

We also studied the influence of the constraint of
symmetry (6) required by the prediction stencil. The
columnOptimized (Il)presents the results of our algo-
rithm without this constraint. We observe that the re-
sults are similar. The constrained optimization process
being three times faster (see Table 3), we finally retain
this variant for the experimentations (Section 5).

4. Adaptive Loop-based lifting scheme

As introduced in Section 1, we now expand
our optimization technique to the Loop-based lifting
scheme [19]. This transform, illustrated by figure 9, dif-
fers from the canonical lifting scheme.

Figure 9: Analysis Loop-based lifting scheme[19].

The maindeatures of this scheme are:

¢ a prediction operatoP depending on two weights
po andp; (see Figure 10(a));

e an update operatdd; applied before the predict
step depending on a weigh{see Figure 10(b)). A
gain[% (that depends on the valence of the vertices)
is also applied;

e asecond operatdf, depending on weighis (see
Figure 10(c)). This step is applied to obtain a
biorthogonal wavelet transform.

ally lower with our adaptive scheme. Similar results are Note that the two update filters depend on the weights
obtained for all the experimented models, proving that of P.
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Model # resolution | # vertices| Optimized (I) | Optimized (11)
Bimba 7 999426 79 207
Rabbit 6 163842 13 34

Vase Lion 6 675842 55 141

Table 3: Computation time (in seconds) for optimizing thet8tity-based scheme (M.as implementation).

wheren is the valence 0¥ at this resolution.

To find the optimal weightg* at each resolution,
we use the same algorithm than for the Butterfly-
based scheméeg., the Nelder-Mead simplex algorithm
[35]. To respect the constraint of the Loop subdivision
scheme, we assume that the sum of the four weights of
the prediction stencil is equal to one.

P1

P1

0 ws

(a) Prediction.  (b) Firstupdate. (c) Second update.

4.2. Computation of the new operatog U
Figure 10: Stencils of the Loop-based lifting scheme. Now we have to modify the second update operator
U, that depends omw. In [19] the author details how
computingw in function of the weightg, to finally
get a biorthogonal wavelet scheme. Since our algorithm
modifies the predictor at each resolution level, we also
_have to compute new weighisat each resolution level.
As explained in [19], we have to solvev = b, where
Alis a symmetric & 4 matrix

4.1. Optimization of the operators P@and U

We still minimize theL;-norm of the wavelet coef-
ficients at each level of resolution, but the tangential
and the normal components are not considered sepa
rately, unlike the Butterfly case. Indeedyif.two predic-
tion operators,, andP, are computed (for the tangen-
tial and the normal components), we obtain two sets of
wavelet functions for each vertex, and the'orthogonal-
ization done by the update filtet, becomes impossible
[19]. Thus, at each level of resolution, the algorithm
takes the set of vector valued dbeients as input, and
gives only one optimize®.

The predictor depends on two parametpgsand  andb is a 4x‘1 matrixddefined byb = [by by b, bs] .
p1. So, the minimization problem for this scheme is Finally, the key problemyis to computg; andb; that
MiN;, ) ICIIl.. But, contrary to the Butterfly-based dependom. Once these weights computed, the weights
scheme, the cdicients are obtained after two step, w relative to each vertex of each resolution are obtained
andP. The prediction operatd? and the first update by computingsw = A'b. For the gonvenience of the
operatorU; have to be optimized simultaneously, and readers, details of how/€omputing the teraysandb;
the minimization problem becomes can be found in Appendix B.

Vi - Ui (V) |
B v

When minimizing this function, the weightof U; and To validate our optimization algorithm for the Loop-

B must be recomputed at each iteration, since they de- based lifting spheme, we Compared ttlenorm of the
pend orpg andps. For a vertew of V! they are formu- ~ Wavelet coéiicients obtained with the classical scheme

Qoo Ao1 o2 Ao3
ajo A1 d12 13
agg A21 A22@23
azp A31.832 a33

A=

min V] - P

{po.p1}

(11) 4.3. Validation of the method

lated by (Classica), and with our adaptive schem@jtimized,
for several models. The results fand or Arc are pre-
1 2r\? sented in Table 4. We observe that our optimization
An) = 1- po (po + 201 COSF) ’ (12) algorithm is also fiicient with the Loop-based lifting
1-B(n) scheme, since thk;-norm values are always signifi-
o(n) = — (13) cantly lower with our adaptive scheme.
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13.63
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13.82

12.56

13.80

Table 4:L;-norm of the tangential and normal componeri€ and

NC) of the wavelet coficients obtained with the state of the art Loop-

based lifting schemeJlassica) and with our adaptive schem@jfti-
mized for Joan or Arc. resis the level of resolution.

---------

Semi-regular Wavelet
Mesh Transform

_.|l Connectivity
Coding

i,._.

— :
ntropy ‘ Compressed
o fite
A

Specific Bitrate —T

Figure 11: Overview of wavelet'coder for semi-regular meshes

5. Application to the geometry compression

To evaluate if our technique improves the,coding of, With BBthe length of the bounding box diagonal. The
the semi-regular meshes, we now include our adaptive Pitrates are given in bits per irregular vertéig). For
transform into a wavelet coder.

The main steps of a wavelet coder (Figure 14) are:

1. Wavelet transform. This stage provides the sub-

bands of 3D wavelet cdigcients and the lowest

resolution mesh.

2. Connectivity coder. The connectivity of the low-

est resolution mesh is lossless encoded (for in-

stance, with [36]).
3. Quantizer. The subbands of céiécients are quan-

tized so that the minimum reconstruction error is

introduced, according to a specific bitrate.
4. Entropy coding. The quantized data are entropy Table 5: Coding results forA¢r Lion when uSing the Butterfly-based

coded.

Assuming that the distribution of the tangential and the
normal components can be modeled by a Generalized
Gaussian Distribution, theoretical models are used for
estimating the bitrate and the distortion of each sub-
band. We choose to experiment this coder because it is
model-based. We would like to verify if our optimiza-
tion algorithm is also relevant for such a coder, in other
words if our algorithm does not drastically change the
statistical properties of the wavelet ¢beients.

5.1. Results for the Butterfly-based scheme

Tables 5 to 10 show the values of PSNR and RMS for
three models (ME Lion, Bivea and Riseir), analyzed
with the classical or with our adaptive Butterfly-based
scheme, and then compressed with PGC or with EDQ.

The RMS corresponds to the surface-based Root
Mean Square error, computed between the original ir-
regular mesh and the reconstructed semi-regular with
MESH tools [37]. The PSNR is given by

BB
PS NRAB) = 2000g10 7. (15)

the adaptive scheme, the bitrate includes the set of opti-
mized weights, needed for decoding.

Classical Optimized (I) | Gain
Bitrate'| RMS | PSNR | RMS | PSNR| RMS
250 | 549 68.03| 5.19 | 68.51 | 5.37%
3.50 | 4.08/70.60| 3.82 | 71.16 | 6.29%
550 | 270 | 74.20 | 2.57 | 74.62 | 4.75%
9.00 | 4.84 | 7752 | 1.78 | 77.79 | 3.00%
11.004| 1.58 | 78.86| 1.53 | 79.14 | 3.13%
13.00° 1.46¢| 79.54 | 1.40 | 79.91| 4.22%

schemes and PGC. The RMS'is in multiples of4.0

We experiment two coders. The first one is called PGC
[18]. This is the first wavelet coder for semi-regular
meshes (see section 1.1), and the most popular. The se
ond one is the coder of [24, 25], called hereinafter EDQ.
This coder includes a bit allocation that minimizes the
reconstruction error by computing the optimal quanti-
zation stepqq;} of each subband for a specific bitrate
Riarget:  This allocation is done by minimizing the La-
grangian criterion

Ji(ta)) = Dr({ai}) + A(Rr({ai}) — Rarged,  (14)

Classical Optimized () | Gain

" Bitrate | RMS | PSNR [[RMS | PSNR| RMS

1.75 | 10.21| 81.91 | 10.14| 82.38 | 5.28%

250 | 843 | 85.04 | 8.24 | 85.24 | 2.20%

3.50 | 6.36 | 87.79| 6.31 | 87.56 | 0.77%

550 | 476 | 90.01| 4.65 | 90.21 | 2.31%

9.00 | 3.76 | 92.06 | 3.70 | 92.18 | 1.42%

11.00 | 3.46 | 92.78 | 3.43 | 92.85| 0.87%

Table 6: Coding results for Bea when using Butterfly-based

whereDr is the mean square error between the quan- schemes and PGC. The RMS is in multiples ofL0

tized and the original vertices, ariRy is the bitrate.



Classical Optimized (I) | Gain
Bitrate | RMS | PSNR | RMS | PSNR| RMS
1.75 | 7.81| 81.53| 7.66 | 81.70 | 2.01%
2,50 | 6.41 | 83.25| 6.38 | 83.29 | 0.43%
3.50 | 5.69 | 84.29| 559 | 84.43| 1.65%
5.50 | 5.04 | 85.33| 4.99 | 85.43 | 1.06%
9.00 | 461 | 86.11| 4.59 | 86.15| 0.46%
13.00 | 4.48 | 86.35| 4.48 | 86.36 | 0.14%

Table 7: Coding results for & when using Butterfly-based
schemes and PGC.TheRMS is in multiples of®L0

Classical Optimized (1) | Gain
Bitrate | RMS | PSNRT'RMS | PSNR| RMS
258 | 5.06 | 68.73 | 4.83 /£69.14 | 4.68%
3,51 | 3.87 | 71.07| 3.78 | 71.27 | 2.33%
5.33 | 2.78 | 73.92| 271 | 74.17 | 2.77%
8.90 | 1.78 | 77.794 1.71 | 78.15| 4:01%
10.78 | 1.62 | 78.63| 1.53 | 79.11 | 5.34%
12.70 | 1.45| 79.56 | 1.40 |/79.88 |, 3.60%

Table 8: Coding results for A¢e Lion when using Butterfly-based
schemes and EDQ. The RMS is in multiples 0f4.0

Classical Optimized (1) { Gain
Bitrate | RMS | PSNR| RMS | PSNR | RMS
1.55 | 10.39| 80.70 | 10.29| 81.36 | 7.33%
2.17 | 9.86 | 83.68 | 9.21 | 84.27 | 6.58%
3.03 | 7.03 | 86.62| 6.87 | 86.82| 2.23%
475 | 5.15 | 89.32 | 5.02 | 89.54 | 2.42%
7.85 | 3.94 | 91.64| 3.90 | 91.74 | 1.09%
9.60 | 3.62 | 92.38 | 3.55 | 92.54| 1.90%

Table 9: Coding results for iBBa when using Butterfly-based
schemes and EDQ. The RMS is in multiples of4.0

Classical Optimized (I) | Gain
Bitrate | RMS | PSNR| RMS | PSNR | RMS
1.07 | 9.96 | 79.42 | 9.79 | 79.573| 1.72%
189 | 7.12 | 82.34| 7.03 | 82.450| 1.23%
2.63 | 6.45| 83.19| 6.39 | 83.277| 1.00%
3.65 | 5.46 | 84.64 | 5.44 | 84.670| 0.40%
10.20 | 451 | 86.30| 4.50 | 86.25 | 0.29%

Table 10: Coding results for &sir when using Butterfly-based
schemes and EDQ. The RMS is in multiples of4.0

Globally the proposed adaptive scheme improves the
coding whatever the coder. The maximum gain 2966
for Vase Lion, 7.33% for Bmea, and 201% for Ras-

BIT. The most significant gains are obtained fordy/
Lion and Bwmga, in particular at low and medium bi-
trates, where there is a room for improvement. The
gain is lower for Resir, even negligible at some bi-
trates. These results confirm our assumptions: the more
the surface has important high frequency variations, the
more our adaptive transform iffieient.

In addition, Figure 12 show the visual benefits of the
proposed Butterfly-based technique. This figure shows
the distribution of the reconstruction error ofs¥ Lion,
analyzed with the classical transform and with the adap-
tive transform (compressed with EDQ). One can argue
that our adaptive wavelet transform tends to better pre-
serve the high frequency details of the non-smooth re-
gions, such as the mane. On the other hand, the classical
transform seems to introduce less errors on smooth re-
gions, such as the muzzle. These results confirm the
fact that our adaptive transform is better suited for non-
smooth regions. Thus, it could be interesting in the fu-
ture to combine the two transforms in a region-based
wavelet coding scheme. For instance, after using a seg-
mentation technique sharing the mesh in two regions
(smoothvsdetailed), we could analyze them separately
(smooth regior= classical transform, detailed regien
adaptive transform). The coding gain should be superior
and the visual quality better.

We also compare thefeciency of the two transforms
applied on meshes with salient features, for which the
classical Butterfly-based scheme is generally Ie¢8s e
cient. Figure13 shows,that our adaptive scheme tends
to further preserve the salient features ool

5.2. Results for the Loop-based scheme

Tables 11(to 13 gives the PSNR and RMS fass/
Lion, Biva and Rieeir analyzed with the classical or
with the adaptive Loop-based scheme, and then com-
pressed with PGC.Qur optimization algorithm also im-
proves the coding performances when the Loop-based
is used. Globally the gainiis even higher than with But-
terfly. The maximum gain‘is 195% for VAse Lion,
19.73% for BmBa, and 631% for Rassrr, still at low
bitrates.

One drawback of the classical Loop-based wavelet is
to create distorted low resolution meshes, in particular
when the input is complex. By comparing the resolu-
tions of several models, we observe that the proposed
adaptive scheme creates low resolution meshes less dis-
torted than with the original scheme. Figure 14 illus-
trates this fact. This is a very interesting feature, which



(a) Classical wavelet. (b) Adaptive wavelet.

Figure 12: Distribution of the reconstruction error.ofs¥.Lion, analyzed with the classical and with the adaptive Butterfly-based scheme (com-
pressed with EDQ). The color'corresponds to.the magnitude of the distance point-surface computed between the original mesh and the compressed
(MESH tools).

Classical Adaptive Gain
Bitrate | RMS | PSNR| RMS | PSNR| RMS

2.5 10.53| 59.13 | 10.39| 59.95| 9.01%
5.5 6.99 | 6502 | 5.63 | 67.81| 19.55%
9 4.471.69.80 | 443 | 69.89 | 1.08%
11 3.35¢| 72.30| 3.26 | 72.54 | 2.70%
‘ Table 11: Coding results for A¢e Lion when using Loop-based
schemes and PGC. Thé RMS'is innmultiples of4.0

(a) Original Kvor. (b) A salient feature (zoom).

Classical Adaptive Gain
Bitrate | RMS | PSNR | RMS | PSNR| RMS
1 496 | 69.64 | 3.98 | 71.55| 19.73%

175 | 271 | 7490 | 2.39 | 76.00 | 11.86%
3.5 1.44 | 80.36| 1.41 | 80.55| 2.17%

Figure 13: Salient features of compressed models tend to be better 9 0.78 | 85.76 | 0.77 | 85.86| 1.16%
preserved with our adaptive Butterfly-based scheme.

(c) Classical wavelet transfornfd) Adaptive wavelet transform.

Table 12: Coding results forfdsa when using Loop-based schemes
and PGC. The RMS is in multiples of 16
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(b) Left: original model; top: our adaptive scheme; bottohe tlassical scheme.

Figure 14: At low resolutions, the shape of the original model is better preserved with our adaptive Loop-based scheme.
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Classical Adaptive Gain oF ARc model is courtesy of3S Laboratory. The origi-
Bitrate | RMS | PSNR| RMS | PSNR| RMS nal Bimea model is courtesy ofMATI andINRIA The
1.75 | 10.01| 79.34| 9.54 | 79.80 | 5.18% original Raseir model is courtesy oCyberware All
55 5.50 | 84.58 | 5.47 | 84.63 | 0.63% models are remeshed with Trireme [6]. We are particu-
9 4.79 | 85.79| 4.79 | 85.79 | 0.38% larly grateful to Igor Guskov for providing us with his
11 4.60 | 86.13| 4.59 | 86.16 | 0.33% executable (Zireme). We also want to acknowledge the

anonymous reviewers for their comments which permit-

Table 13: Coding results for4Reir when using Loop-based schemes  tad ys to improve the quality of this paper.
and PGC. The RMS is in multiples of 19

can be exploited in afprogressive application (transmis- Appendix A. Convexity of the function f
sion, coding, and.so on).

This section shows that the functidrdeveloped for
improving the Butterfly-based lifting scheme is convex

6. Conclygi@and Tilige works (see Section 3). We recall that the functibis given by

We described an algorithm for optimizing two ) 10
. f: R — R
wavelet transforms for semi-regular meshes based on
lifting scheme: the Butterfly- and the Loop-based trans- x = () = IAX = Dblla,

form. Our optimization consists in computing a predic- ith
tion operatorP that maximizes the sparsity of.wavelet Wi

poeﬂiments (by minimizing theLll norn_1) for improv X = (a(’), a('),a/é, aé, afv“ﬁv “:v“fv aé,a’)
ing the subsequent coding. This optimization|is done

at each level of resolution during the analysis. Exper- By definition, the functiorf can be written as:

imental results show that our optimization algorithm
improves significantly the coding of‘non-smooth mod- n-1
els whatever the wavelet transform used. Visually, the f(x) Z |AX — by,
i=0
n-1
salient features. Finally, The Loop-based scheme.cre= Z gi(x),
ates low resolution meshes less distorted than the origi- 50
nal transform, which is very interesting for progressive whereA, are theffolvs o, by are the values db, and
codficients could be relevant to know how these lifting (xy) € R19, and1€[0, 1], we'get
schemes can be further improved, and to develop new " ’ Y
minimization criteria. In parallel, an in-depth evalua- gi(Ax + @ = 2)y)
promising work could be the development of a region-
based analysis for complex models. As proposed in the
experimental section, it could be interesting to adapt the
smoothinon smooth region for instance). Such an ap-
proach should improve the global quality of the encoded gi(AX + (1 - 2)y) < AAX = bi| + (1 - DIAY - b,
meshes.

|A(AX + (1 2)y) - bil,

= JAAX + (1= DAY - bil,
[A(AX=Di) + (1 - )(AyY - bi),
[A(AX — 1) + [(1 - D)(AY - by).

IA

adaptive Butterfly-based scheme also tends to further
preserve the regions of high frequency details and the
applications. . ny is the number of vertices 0[‘1 on which the regular
For the future, a thorough study of the statistics of the stencil is applied at this level of resolution. Considering
tion of the performances of the algorithm in function
of the input mesh could be also interesting. Another
filters to several regions of the input, in function of the 1 € [0, 1], so1 and (1-1) are positive. We can deduce
high frequency details (classi¢gatlaptive transform for  that
and finally:

Acknowledgments g(Ax+ (1-2y) <agi(x)+ (1-)a(y)

The original (irregular mesh) A¥e Lion model is Thus, the functiorg; is convex. Since the objective
courtesy ofSenSable Technologie3he original dan functionf is a sum ofg;, f is also convex.
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Appendix B. Computation of &; and by

This section gives details about the computation of
the termsa;; andb; needed to find the weighgsof the
operatoiJ, of the Loop-based lifting scheme (see Sec-
tion 4.2).

The final goal is to solvéw = b, whereA is a symmet-
ric 4 x 4 matrix

Qoo Ao1 Ap2 Ao3
ajo d11 12 3
agp Az1 A22@23
azp Az1 832 33

andb is a 4x4 matrixb = [by by by bs]T. a;j andby
are defined by the inner produ@s =< ¢i,¢; > and
b =< y1, ® >, with ¢; thei»sealing functioni(= 0..4)
of the Loop transform, and, the lazy wavelet. To ex-
plain how computing;; andb;, we@ive.the examples of
by =<y, ¢1 > anday; =< ¢1, p1 >. Figure B.15 shows
the discrete scaling functiog; and the lazy wavelet,
with the associated parameters. Note'thatithecal-
ing functiong; is associated with the' weigh (Figures

10(0) ar_]d B'16)'_ By superposmg those two Stenqls and Figure B.16: Position of the four scaling functions and theyla
computing the discrete inner product, we caneasily con- wavelet for the Loop-based prediction stencil.

Figure B.15: Discrete scaling functiafy (left) and Lazy wavelet),
> (right) of the Loop-based scheme.

clude thatb; is equal toypdo + @161 * po, Where

2\ — — .2 2. 2
o = p0+(pO+2P1(:OSF) , j2 - = 7g+alyl+7§a2+76+pg+4p°pl
L ' &3 = ag1=Yy+a1y1+ Vg + y3es +pg+ 4poor
B = 7 5 (@i — po) s oo A= 75+ 71+ a5+ (N2 = 2)y5 + Moo} + p?)
— PO
1w als = @ =y5+Vi+pl
Yi = n azz = 7(2) + yi + a% + (N3 — Z)yé + ng(pg + pi)
5 = 1-5 Similarly, we‘also obtain
N
bogd =" (xodo'+ Y101 +P0)
n; being the valence of the associated vertex. Similarly, b1 = (Hodo+ @101 + po)
the computation oé;; can be done by superposing the b, = B3 = (y0d0+2201 + p1)-

stencil ofg; on itself, and we obtaim3 + af +y5 + 3 +

(n1— 3)y2 +nu(oj + p3). Notice that, as Bertram in [19],

we consider that the vertices of the scaling functions tha
are not on the Loop stencil (blue dots on figure B.16) are [ .

regular (valence 6). Therefore their value is equaldo
on Figure B.15.

By following the same method on all ttag andb;,
we finally obtain forA
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