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Abstract

This paper describes how to optimize two popular wavelet transforms for semi-regular meshes, using lifting scheme.
The objective is to adapt multiresolution analysis to the input mesh to improve its subsequent coding. Consider-
ing either the Butterfly- or the Loop-based lifting schemes, our algorithm finds at each resolution level an optimal
prediction operatorP such that it minimizes theL1-norm of the wavelet coefficients. The update operatorU is then re-
computed in order to take into account the modifications toP. Experimental results show that our algorithm improves
on state-of-the-art wavelet coders.
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1. Introduction

Wavelets have their roots in approximation theory [1]
and signal processing [2] in the late eighties. Since
then, wavelets are the most popular technique for rep-
resenting data in a multiresolution way. They have been
used for a vast number of applications: physic, biomed-
ical signal analysis, image processing, and so on. But
wavelets have been particularly designed for data cod-
ing, because they guarantees compact representation of
transformed data, and consequently high compression
performances.

In computer graphics, the compact representation is
not the sole attractive feature of wavelets. Indeed,
current high-resolution acquisition techniques produce
highly detailed and densely sampled surface meshes.
Not only these massive monoresolution data are diffi-
cult to handle and store, but they are also awkward for
fast and progressive transmission in bandwidth-limited
applications. Wavelets tackle such issues, the multires-
olution structure (Figure 1) making the progressive pro-
cessing easier.

A problem for applying wavelets on meshes is the ir-
regular sampling (unlike still images or videos). Despite
the development of wavelets for irregular meshes [3, 4],
a popular solution is to remesh the input mesh semi-
regularly (for instance with [5, 6, 7]) before applying
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wavelets. The principle is to resample the surface ge-
ometry while providing a subdivision connectivity. The
output is called a semi-regular mesh, and wavelet filter-
ing is finally more efficient.

1.1. Related work

Lounsberyet al. are considered as pioneers in the
development of wavelets for surface meshes of arbi-
trary topological type [8]. They proposed a technique
to construct wavelets from any local, stationary, contin-
uous, uniformly convergent subdivision schemes such
as Catmull-Clark [9], Loop [10], or Butterfly [11]. The
subdivision scheme represents the synthesis filter, and
the analysis filter is derived from it. Two filters are
finally applied on the input mesh during analysis pro-
viding respectively a mesh of low resolution (low-pass
filtering), and a set of wavelet coefficients (high-pass fil-
tering).

Inspired by the work of Lounsberyet al., and by
the work of Donoho concerning interpolating wavelet
transforms [12], Schröder and Sweldens presented how
building wavelets for scalar functions specifically de-
fined on a sphere [13]. They are not the first construct-
ing wavelets on the sphere. The pioneers are Dahlkeet
al. [14], who used a tensor product basis where one fac-
tor is an exponential spline. A continuous transform and
its semi-discretization have been also proposed by Free-
den and Windheuser [15]. Nevertheless, the work of
Schröder and Sweldens in [13] is remarkable because it
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Figure 1: Overview of a wavelet decomposition.

is the first showing how thelifting scheme[16] is partic-
ularly relevant to construct biorthogonal wavelets with
nice properties, and how the resulting wavelet filters
are easy to implement (local vertex-manipulating fil-
ters). Moreover, this technique is parameterization inde-
pendent. Kovacevic and Sweldens then generalized the
concept of wavelets for any kind of meshes [17]. They
showed that the lifting scheme allows to construct filter
banks and wavelets for any lattice, any dimension, and
any number of primal/dual vanishing moments. They
also showed that only two lifting steps are needed (pre-
dict and update), but one condition is that the associated
scaling functions are interpolating.

Until this work, most of wavelet transforms for
semi-regular meshes were based on interpolating
subdivision schemes, in particular on the Butterfly
scheme. However, a Loop-based wavelet transform
was proposed in 2000 by Khodakovskyet al. [18]. The
approximating Loop subdivision scheme is used during
synthesis as low pass reconstruction filter, whereas
the associated high-pass filter is derived from it by
applying a quadrature mirror construction. The draw-
back of this approach arises during wavelet analysis,
because filters cannot be directly applied. Contrary
to wavelet transforms based on lifting scheme, the
wavelet coefficients and the low resolution mesh are
obtained by solving sparse linear systems depending
on the two low- and high-pass reconstruction filters. In
2004, Bertram overcame this problem by proposing a
biorthogonal Loop-based wavelet construction based
on the lifting scheme [19]. This is also the case of Liet
al. who proposed in parallel a reversible (but unlifted)
Loop-based wavelet transform [20]. Finally, in 2008,
Charina and Stöckler proposed to tackle this drawback
by using tight wavelet frames [21], which leads to
the use of the same scheme during reconstruction and
decomposition.

Compression allows compact storage and/or fast
transmission in bandwidth-limited applications of mas-
sive meshes, and many techniques have been already

proposed [22]. To our knowledge, wavelet-based coders
that take semi-regular meshes as input are the most ef-
ficient, because of their piecewise sampling regularity
allowing efficient wavelet decomposition. We briefly
present the main works in this domain.

The first wavelet-based coder (often called PGC) for
semi-regular meshes was proposed by Khodakovskyet
al. [18]. This coder is based on multi-scale quadtree
structures and supports quality scalability. The authors
propose a Loop-based wavelet transform (presented in
previous section), but any wavelet transform could be
used. A zerotree coder followed by an entropy encod-
ing are applied in parallel on each component (tangen-
tial and normal) of the wavelet coefficients computed in
a local frame. This coder has been also proposed for
normal meshes[23]. The only difference is the choice
of the wavelet transform. The authors uses theunlifted
Butterfly-based wavelet transform (i.e., without update
step), optimal for this kind of meshes.

Then, several allocation techniques [24, 25, 26, 27]
were proposed for improving the coding performances
of the wavelet coders. The principle is to use a bit al-
location process during the quantization step in order
to analytically optimize the rate-distortion tradeoff, in
other words, reach the maximal quality for a minimal
file size (orvice versa).

Recently, a coder providing both resolution and qual-
ity scalability was proposed by Deniset al. (2010) [28].
This coder exploits the intraband or composite statisti-
cal dependencies between the wavelet coefficients. By
following an information-theoretic analysis of these sta-
tistical dependencies, the wavelet subbands are indepen-
dently encoded using octree-based coding techniques
and a context-based entropy coding. This coder pro-
vides better results than PGC, and similar results with
[24] that is not quality scalable.

1.2. Motivation and Contributions

One limitation of wavelets for meshes is that the
structure is fixed. For instance, many wavelet coders
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use the Butterfly-based scheme [13]. From a com-
pression point-of-view, this wavelet is relevant for
smooth surfaces because of the interpolating effect of
the Butterfly scheme used as predictor, which produces
small coefficients. But this scheme is less efficient for
other kinds of surfaces, with high frequency variations
or salient features, for instance. Finally, a wavelet
changing in function of the geometric features of
the input mesh could be a relevant tool. When the
transforms are lifting-based, this can be finally achieved
by adapting the predict and update steps [29] to the
input mesh.

Therefore we propose an algorithm for optimizing
two popular lifting-based wavelet transforms for semi-
regular meshes: the Butterfly-based scheme [13], and
the Loop-based one [19]. Our motivation is to improve
the performances of the state-of-the-art wavelet coders,
by adapting the multiresolution analysis tool to the fea-
tures of the input mesh. The basic idea is to find, for
a given semi-regular mesh, the prediction operator that
maximizes the sparsity of wavelet coefficients at each
level of resolution. Indeed, it is well known in informa-
tion theory that maximizing the data sparsity improves
the coding performances [30].

The idea of adapting the prediction step of the
Butterfly-based scheme has been already introduced in
[31]. The main contributions of the current paper are:

• More technical details about the optimization algo-
rithm for the Butterfly-based lifting scheme;

• A more robust method for computing the update
operator for this scheme. The reason is that the
technique proposed in [31] sometimes fails be-
cause of a potential null divisor;

• An extension of the optimization algorithm to the
Loop-based lifting scheme [19], by taking into ac-
count the features of this scheme.

The rest of this paper is organized as follows. Section
2 introduces notions about semi-regular meshes and lift-
ing scheme for semi-regular meshes. Section 3 and 4
present our contributions, respectively for the Butterfly-
based and the Loop-based lifting schemes. Section 5
shows some experimental results, and we finally con-
clude in section 6.

2. Background and notations

2.1. Semi-regular meshes
A semi-regular meshML is based on a mesh hierar-

chy Ml (l ∈ {0, 1, ..., L}) that represents a given surface

at different levels of details, or resolutions (see Fig. 2).
M0 corresponds to the lowest resolution, and is called
thebase mesh. Ml is a subdivided version ofMl−1, and
corresponds tolth resolution. Subdivision consists in
splitting each triangle into four smaller ones by adding
new vertices on each edge, and then updating their po-
sition to fit as closely as possible to the original surface.
ML corresponds to the highest resolution of the given
surface.

Figure 2: Structure of a semi-regular mesh.

2.2. Wavelet filtering for semi-regular meshes

Let us denoteV j the set of vertices of a given mesh
M j , defined by their position in the Euclidean space.
Applying a wavelet transform toM j gives one mesh of
lower resolutionM j−1 defined by a set of verticesV j−1,
and a setC j of 3D wavelet coefficients. Figure 3 illus-
trates this decomposition.

  

 

LP 

HP 

Figure 3: Wavelet analysis of a semi-regular mesh.M j is transformed
into a meshM j−1 of lower resolution and a setC j of coefficients (rel-
ative to the red dots).

2.3. Lifting scheme

An efficient tool for building wavelet transforms
is the lifting scheme [16]. The main feature of the
lifting scheme is that all constructions are derived in the
spatial domain while the traditional approach relies on
the frequency domain. The lifting scheme has several
advantages [32], in particular for surface meshes. For
example, the lifting scheme i) leads to algorithms that
can be generalized to complex geometric situations;
ii) allows in place transformation, reducing the nec-
essary amount of memory; iii) leads to a reversible
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implementation (analysis/synthesis), faster than im-
plementation based on filter banks. Nevertheless, the
lifting scheme has few drawbacks. For instance, the sta-
bility of the transform is not guaranteed by construction.

The canonical lifting scheme (Figure 4) is based on
three steps:

• Split. We split the original data set into two sub-
sets. In our context, the verticesV j are split into
two subsetsV j

0 andV j
1 (green and red dots on the

figure 3);

• Predict. We take as input the subsetV j
0 and predict

the positions of the verticesV j
1 by using an oper-

ator P, so thatV j
1 = P(V j

0). The prediction errors
are the wavelet coefficientsC j ;

• Update. We take as inputC j and modify the posi-
tions of the verticesV j

0 by using an operatorU and
a gain (×2). We finally obtain the low resolution
meshM j−1, defined by a set of verticesV j−1.

For the synthesis, we only have to reverse the order and
the sign of the different steps (Figure 5).

+ 

Split -P U 

+ x2 

 

 

 

 

 

Figure 4: Analysis lifting scheme for semi-regular meshes.

/2 
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Figure 5: Synthesis lifting scheme for semi-regular meshes.

3. Adaptive Butterfly-based lifting scheme

In this section we present our optimization algorithm
for adapting the Butterfly-based lifting scheme to the
input mesh. This algorithm consists in finding for each
resolution the optimal operatorsP such as the sparsity
of the wavelet coefficients is maximized [31]. This algo-
rithm produces new stencils for each level of resolution.

Our wavelet coefficients are vector valued (three co-
ordinatesx, y, andz) and represented in local frames de-
pending on the surface normals [18]. When using local
frames, the state of the art wavelet coders consider the
tangential components (x andy), and the normal com-
ponents (z) separately. We thus propose to compute two
prediction operators,Pxy andPz, according to the two
sets of components. The algorithm presented below will
be used to getPxy and in parallelPz. For the conve-
nience of the readers, we define hereinafterP for both
Pxy andPz.

3.1. Optimization of the operator P

The predict step is based on themodified Butterfly
scheme[33] defined by two stencils: the regular and the
irregular (Figure 6).

• For a given vertexv ∈ V j
1, the regular stencil is

used when its direct neighbors belonging toV j
0 are

regular (i.e., valence 6).

• The irregular stencil is chosen for any other case.

(a) Regular stencil. (b) Irregular stencil.

Figure 6: Prediction stencils of the Butterfly-based lifting scheme.

Our algorithm optimizes only the regular stencil, be-
cause there are too many configurations for the irregular
one (depending on the valence of the neighbors). Opti-
mizing all the potential irregular stencils may produce
a critical amount of side information (necessary for re-
constructing the meshes during synthesis).

Considering the level of resolutionj, the setC j of
wavelet coefficients is computed by using

C j = V j
1 − P(V j

0). (1)
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In order to increase the coding performances, we
wantC j to become as sparse as possible. One solution
proposed in the literature is to minimize theL1-norm of
this set [34]. So, maximizing the sparsity can be seen as
the minimization problem

min
α j
||V j

1 − Pα j (V j
0)||1, (2)

whereα j defines the weights ofP for the level of reso-
lution j.

To solve this problem, we define the unknown vec-

tor x =
(

α
j
0, α

j
1, . . . , α

j
9

)T
containing the ten weights of

P, andN(v) the set of ten neighbor vertices ofV j
0 and

depending on the regular stencil. We now define the
matrix A of dimension (nr × 10)

A =
[

N(V j
1(0)) ; N(V j

1(1)) ; . . .N(V j
1(nr − 1))

]

,(3)

wherenr is the number of vertices ofV j
1 on which the

regular stencil is applied at this resolution. We then de-
fine the vectorb

b =
(

V j
1(0),V j

1(1), . . .V j
1(nr − 1)

)T
. (4)

Finally, (2) can be solved by minimizing one function
f defined by

f : R10 7−→ R
x 7−→ f (x) = ||Ax − b||1. (5)

Since the Butterfly scheme is symmetric, we can
write

α0 = α1

α2 = α3

α4 = α5 = α6 = α7

α8 = α9. (6)

Finally, the functionf has only four unknown values
(α0, α2, α4 andα8) and can be written as following

f : R4 7−→ R
x 7−→ f (x) = ||Ax − b||1. (7)

This function f is convex (see Appendix A for de-
tails) and bounded by 0, sof has a unique and global
minimum. To find this minimum, we use the Nelder-
Mead simplex algorithm [35], but other algorithms may
be used. The proposed optimization algorithm is ap-
plied to each level of resolution, successively from the
highest to the lowest.

3.2. Computation of the new operator U

Considering the same level of resolutionj and the
canonical lifting scheme (Figure 4), the set of vertices
V j−1 is obtained by using

V j−1 = 2× (V j
0 + U(C j)), (8)

whereU is the update operator depending on a weight
γ and associated to the stencil given by Figure 7.

 

  

 

  

Figure 7: Update stencil of the Butterfly-based lifting scheme.

When the predictionP is based on a subdivision oper-
ator, the updateU, that depends onP, has to be chosen
for obtaining vanishing moments [32].P being modi-
fied at each level of resolution by the optimization al-
gorithm, the weightγ of the update operatorU has to
be recomputed. In this work, we choose to compute
γ such as to preserve the average betweenV j andV j−1.
Contrary to [31], we prefer using the robust method pro-
posed in [32]. The principle is to put all the vertices of
V j−1 and all the coefficients ofC j to zero, except one
coefficient ofC j put to 1 (see Figure 8).

Figure 8: Method for computingγ. The orange dot (a) represents the
only non null coefficient; the green dots (b) represent the two sole
vertices ofV j−1 with non null values after synthesis; the red dots rep-
resent the 43 vertices ofV j with non null values after synthesis.

We apply the synthesis filters, and obtainV j . A ma-
jority of the resulting vertices has null coordinates, ex-
cept 43 over which the non null coefficient C j spread.
These vertices are also shown on Figure 8. The value
associated to each vertex are given by Table 1.
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index count value
a 1 1 -2γα0

b 2 −γ

c 4 −γ(α0 + α2)
d 4 −γ(α0 + α4)
e 2 −γ(α0 + α8)
f 4 −γ(α2 + α4)
g 4 −γα2

h 4 −γα4

i 4 −γ(α4 + α8)
j 4 −γα8

k 4 −γα4

l 4 −γα4

m 2 −γα8

Table 1: Values of the 43 non null vertices ofV j obtaining after syn-
thesis from only one non-null coefficient ofC j .

In this case, the average ofV j is equal to

1
43

(1− 2γ − 12γα0 − 12γα2 − 24γα4 − 12γα8) .(9)

Since the average ofV j−1 is null, equation (9) has to be
also null. We finally obtain

γ =
1

2+ 12α0 + 12α2 + 24α4 + 12α8
. (10)

3.3. Validation of the algorithm

To verify the efficiency of our optimization algorithm,
we compare theL1-norm of the wavelet coefficients
obtained with the state of the art Butterfly-based lift-
ing scheme (Classical), and with the proposed adaptive
scheme (Optimized I). The results for Vase Lion are pre-
sented in Table 2.

Classical Optimized (I) Optimized (II)
res TC NC TC NC TC NC
1 83.76 132.21 84.41 126.40 83.80 125.18
2 62.32 134.32 62.21 125.53 62.10 125.50
3 45.80 126.92 45.10 116.87 45.08 116.88
4 31.53 77.88 29.94 69.53 29.93 69.51
5 21.08 42.15 20.22 39.22 20.22 39.21
6 13.81 26.10 13.50 25.78 13.50 25.78

Table 2: L1-norm of the tangential and normal components (TC
and NC) of the wavelet coefficients obtained with the state of the
art Butterfly-based lifting scheme (Classical) and with our adaptive
scheme (Optimized (I)) for Vase Lion. Optimized (II)is our adaptive
scheme without constraint of symmetry.res is the level of resolution.

We observe that theL1-norm of each subset is glob-
ally lower with our adaptive scheme. Similar results are
obtained for all the experimented models, proving that

our algorithm works well. Nevertheless, for few mod-
els (e.g. Vase Lion, Table 2), our algorithm does not
decrease theL1-norm of the tangential components of
lowest resolution. This issue sometimes arises, only at
this resolution, when a majority of vertices are irregular
and requires the irregular stencil. In this specific case,
our optimization algorithm may not be effective at this
resolution but remains efficient for the other resolutions.

We also studied the influence of the constraint of
symmetry (6) required by the prediction stencil. The
columnOptimized (II)presents the results of our algo-
rithm without this constraint. We observe that the re-
sults are similar. The constrained optimization process
being three times faster (see Table 3), we finally retain
this variant for the experimentations (Section 5).

4. Adaptive Loop-based lifting scheme

As introduced in Section 1, we now expand
our optimization technique to the Loop-based lifting
scheme [19]. This transform, illustrated by figure 9, dif-
fers from the canonical lifting scheme.

+ 

Split -P U2 

+ 

-U1 

+ /  

 

 

 

 

 

Figure 9: Analysis Loop-based lifting scheme[19].

The main features of this scheme are:

• a prediction operatorP depending on two weights
ρ0 andρ1 (see Figure 10(a));

• an update operatorU1 applied before the predict
step depending on a weightδ (see Figure 10(b)). A
gain 1

β
(that depends on the valence of the vertices)

is also applied;

• a second operatorU2 depending on weightsω (see
Figure 10(c)). This step is applied to obtain a
biorthogonal wavelet transform.

Note that the two update filters depend on the weightsρ

of P.

6

Preprint



Model # resolution # vertices Optimized (I) Optimized (II)
Bimba 7 999426 79 207
Rabbit 6 163842 13 34

Vase Lion 6 675842 55 141

Table 3: Computation time (in seconds) for optimizing the Butterfly-based scheme (Matlab implementation).

  

 

 

(a) Prediction.

 

  

 

  

(b) First update.

  

 

 

(c) Second update.

Figure 10: Stencils of the Loop-based lifting scheme.

4.1. Optimization of the operators P and U1

We still minimize theL1-norm of the wavelet coef-
ficients at each level of resolution, but the tangential
and the normal components are not considered sepa-
rately, unlike the Butterfly case. Indeed, if two predic-
tion operatorsPxy andPz are computed (for the tangen-
tial and the normal components), we obtain two sets of
wavelet functions for each vertex, and the orthogonal-
ization done by the update filterU2 becomes impossible
[19]. Thus, at each level of resolution, the algorithm
takes the set of vector valued coefficients as input, and
gives only one optimizedP.

The predictor depends on two parametersρ0 and
ρ1. So, the minimization problem for this scheme is
min{ρ0,ρ1} ||C

j ||1. But, contrary to the Butterfly-based
scheme, the coefficients are obtained after two steps,U1

andP. The prediction operatorP and the first update
operatorU1 have to be optimized simultaneously, and
the minimization problem becomes

min
{ρ0,ρ1}

||V j
1 − P

















V j
0 − U1

(

V j
1

)

β

















||1. (11)

When minimizing this function, the weightδ of U1 and
β must be recomputed at each iteration, since they de-
pend onρ0 andρ1. For a vertexv of V j

0, they are formu-
lated by

β(n) =
1

1− ρ0

(

ρ0 + 2ρ1 cos
2π
n

)2

, (12)

δ(n) =
1− β(n)

n
. (13)

wheren is the valence ofv at this resolution.
To find the optimal weightsρ∗ at each resolution,

we use the same algorithm than for the Butterfly-
based scheme,i.e., the Nelder-Mead simplex algorithm
[35]. To respect the constraint of the Loop subdivision
scheme, we assume that the sum of the four weights of
the prediction stencil is equal to one.

4.2. Computation of the new operator U2

Now we have to modify the second update operator
U2 that depends onω. In [19] the author details how
computingω in function of the weightsρ, to finally
get a biorthogonal wavelet scheme. Since our algorithm
modifies the predictor at each resolution level, we also
have to compute new weightsω at each resolution level.

As explained in [19], we have to solveAω = b, where
A is a symmetric 4× 4 matrix

A =





























a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33





























,

andb is a 4× 1 matrix defined byb = [b0 b1 b2 b3]T .
Finally, the key problem is to computeai j andbi that
depend onρ. Once these weights computed, the weights
ω relative to each vertex of each resolution are obtained
by computingω = A−1b. For the convenience of the
readers, details of how computing the termsai j andbi

can be found in Appendix B.

4.3. Validation of the method

To validate our optimization algorithm for the Loop-
based lifting scheme, we compared theL1-norm of the
wavelet coefficients obtained with the classical scheme
(Classical), and with our adaptive scheme (Optimized),
for several models. The results for Joan of Arc are pre-
sented in Table 4. We observe that our optimization
algorithm is also efficient with the Loop-based lifting
scheme, since theL1-norm values are always signifi-
cantly lower with our adaptive scheme.
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Classical Optimized
res TC NC TC NC
1 13.63 15.51 8.05 11.65
2 16.49 17.24 13.18 14.96
3 16.02 16.85 13.78 15.37
4 15.89 16.91 14.74 16.06
5 12.70 13.82 12.56 13.80

Table 4: L1-norm of the tangential and normal components (TC and
NC) of the wavelet coefficients obtained with the state of the art Loop-
based lifting scheme (Classical) and with our adaptive scheme (Opti-
mized) for Joan of Arc. res is the level of resolution.

Wavelet 
Transform 

Quantizer 
Entropy 
Coding 

Connectivity 
Coding 

Semi-regular 

Mesh 

ntropy

Specific Bitrate 

Compressed 

File 
+ 

Figure 11: Overview of wavelet coder for semi-regular meshes.

5. Application to the geometry compression

To evaluate if our technique improves the coding of
the semi-regular meshes, we now include our adaptive
transform into a wavelet coder.

The main steps of a wavelet coder (Figure 11) are:

1. Wavelet transform. This stage provides the sub-
bands of 3D wavelet coefficients and the lowest
resolution mesh.

2. Connectivity coder. The connectivity of the low-
est resolution mesh is lossless encoded (for in-
stance, with [36]).

3. Quantizer. The subbands of coefficients are quan-
tized so that the minimum reconstruction error is
introduced, according to a specific bitrate.

4. Entropy coding. The quantized data are entropy
coded.

We experiment two coders. The first one is called PGC
[18]. This is the first wavelet coder for semi-regular
meshes (see section 1.1), and the most popular. The sec-
ond one is the coder of [24, 25], called hereinafter EDQ.
This coder includes a bit allocation that minimizes the
reconstruction error by computing the optimal quanti-
zation steps{qi} of each subband for a specific bitrate
Rtarget. This allocation is done by minimizing the La-
grangian criterion

Jλ({qi}) = DT({qi}) + λ(RT({qi}) − Rtarget), (14)

whereDT is the mean square error between the quan-
tized and the original vertices, andRT is the bitrate.

Assuming that the distribution of the tangential and the
normal components can be modeled by a Generalized
Gaussian Distribution, theoretical models are used for
estimating the bitrate and the distortion of each sub-
band. We choose to experiment this coder because it is
model-based. We would like to verify if our optimiza-
tion algorithm is also relevant for such a coder, in other
words if our algorithm does not drastically change the
statistical properties of the wavelet coefficients.

5.1. Results for the Butterfly-based scheme

Tables 5 to 10 show the values of PSNR and RMS for
three models (Vase Lion, Bimba and Rabbit), analyzed
with the classical or with our adaptive Butterfly-based
scheme, and then compressed with PGC or with EDQ.

The RMS corresponds to the surface-based Root
Mean Square error, computed between the original ir-
regular mesh and the reconstructed semi-regular with
MESH tools [37]. The PSNR is given by

PS NR(dB) = 20log10
BB

RMS
, (15)

with BB the length of the bounding box diagonal. The
bitrates are given in bits per irregular vertex (b/iv). For
the adaptive scheme, the bitrate includes the set of opti-
mized weights, needed for decoding.

Classical Optimized (I) Gain
Bitrate RMS PSNR RMS PSNR RMS
2.50 5.49 68.03 5.19 68.51 5.37%
3.50 4.08 70.60 3.82 71.16 6.29%
5.50 2.70 74.20 2.57 74.62 4.75%
9.00 1.84 77.52 1.78 77.79 3.00%
11.00 1.58 78.86 1.53 79.14 3.13%
13.00 1.46 79.54 1.40 79.91 4.22%

Table 5: Coding results for Vase Lion when using the Butterfly-based
schemes and PGC. The RMS is in multiples of 10−4.

Classical Optimized (I) Gain
Bitrate RMS PSNR RMS PSNR RMS
1.75 10.21 81.91 10.14 82.38 5.28%
2.50 8.43 85.04 8.24 85.24 2.20%
3.50 6.36 87.79 6.31 87.56 0.77%
5.50 4.76 90.01 4.65 90.21 2.31%
9.00 3.76 92.06 3.70 92.18 1.42%
11.00 3.46 92.78 3.43 92.85 0.87%

Table 6: Coding results for Bimba when using Butterfly-based
schemes and PGC. The RMS is in multiples of 10−5.
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Classical Optimized (I) Gain
Bitrate RMS PSNR RMS PSNR RMS
1.75 7.81 81.53 7.66 81.70 2.01%
2.50 6.41 83.25 6.38 83.29 0.43%
3.50 5.69 84.29 5.59 84.43 1.65%
5.50 5.04 85.33 4.99 85.43 1.06%
9.00 4.61 86.11 4.59 86.15 0.46%
13.00 4.48 86.35 4.48 86.36 0.14%

Table 7: Coding results for Rabbit when using Butterfly-based
schemes and PGC.The RMS is in multiples of 10−6.

Classical Optimized (I) Gain
Bitrate RMS PSNR RMS PSNR RMS
2.58 5.06 68.73 4.83 69.14 4.68%
3.51 3.87 71.07 3.78 71.27 2.33%
5.33 2.78 73.92 2.71 74.17 2.77%
8.90 1.78 77.79 1.71 78.15 4.01%
10.78 1.62 78.63 1.53 79.11 5.34%
12.70 1.45 79.56 1.40 79.88 3.60%

Table 8: Coding results for Vase Lion when using Butterfly-based
schemes and EDQ. The RMS is in multiples of 10−4.

Classical Optimized (I) Gain
Bitrate RMS PSNR RMS PSNR RMS
1.55 10.39 80.70 10.29 81.36 7.33%
2.17 9.86 83.68 9.21 84.27 6.58%
3.03 7.03 86.62 6.87 86.82 2.23%
4.75 5.15 89.32 5.02 89.54 2.42%
7.85 3.94 91.64 3.90 91.74 1.09%
9.60 3.62 92.38 3.55 92.54 1.90%

Table 9: Coding results for Bimba when using Butterfly-based
schemes and EDQ. The RMS is in multiples of 10−5.

Classical Optimized (I) Gain
Bitrate RMS PSNR RMS PSNR RMS
1.07 9.96 79.42 9.79 79.573 1.72%
1.89 7.12 82.34 7.03 82.450 1.23%
2.63 6.45 83.19 6.39 83.277 1.00%
3.65 5.46 84.64 5.44 84.670 0.40%
10.20 4.51 86.30 4.50 86.25 0.29%

Table 10: Coding results for Rabbit when using Butterfly-based
schemes and EDQ. The RMS is in multiples of 10−6.

Globally the proposed adaptive scheme improves the
coding whatever the coder. The maximum gain is 6.29%
for Vase Lion, 7.33% for Bimba, and 2.01% for Rab-
bit. The most significant gains are obtained for Vase
Lion and Bimba, in particular at low and medium bi-
trates, where there is a room for improvement. The
gain is lower for Rabbit, even negligible at some bi-
trates. These results confirm our assumptions: the more
the surface has important high frequency variations, the
more our adaptive transform is efficient.

In addition, Figure 12 show the visual benefits of the
proposed Butterfly-based technique. This figure shows
the distribution of the reconstruction error of Vase Lion,
analyzed with the classical transform and with the adap-
tive transform (compressed with EDQ). One can argue
that our adaptive wavelet transform tends to better pre-
serve the high frequency details of the non-smooth re-
gions, such as the mane. On the other hand, the classical
transform seems to introduce less errors on smooth re-
gions, such as the muzzle. These results confirm the
fact that our adaptive transform is better suited for non-
smooth regions. Thus, it could be interesting in the fu-
ture to combine the two transforms in a region-based
wavelet coding scheme. For instance, after using a seg-
mentation technique sharing the mesh in two regions
(smoothvsdetailed), we could analyze them separately
(smooth region= classical transform, detailed region=
adaptive transform). The coding gain should be superior
and the visual quality better.

We also compare the efficiency of the two transforms
applied on meshes with salient features, for which the
classical Butterfly-based scheme is generally less effi-
cient. Figure 13 shows that our adaptive scheme tends
to further preserve the salient features of Knot.

5.2. Results for the Loop-based scheme
Tables 11 to 13 gives the PSNR and RMS for Vase

Lion, Bimba and Rabbit analyzed with the classical or
with the adaptive Loop-based scheme, and then com-
pressed with PGC. Our optimization algorithm also im-
proves the coding performances when the Loop-based
is used. Globally the gain is even higher than with But-
terfly. The maximum gain is 19.55% for Vase Lion,
19.73% for Bimba, and 6.31% for Rabbit, still at low
bitrates.

One drawback of the classical Loop-based wavelet is
to create distorted low resolution meshes, in particular
when the input is complex. By comparing the resolu-
tions of several models, we observe that the proposed
adaptive scheme creates low resolution meshes less dis-
torted than with the original scheme. Figure 14 illus-
trates this fact. This is a very interesting feature, which
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(a) Classical wavelet. (b) Adaptive wavelet.

Figure 12: Distribution of the reconstruction error of Vase Lion, analyzed with the classical and with the adaptive Butterfly-based scheme (com-
pressed with EDQ). The color corresponds to the magnitude of the distance point-surface computed between the original mesh and the compressed
(MESH tools).

(a) Original Knot. (b) A salient feature (zoom).

(c) Classical wavelet transform.(d) Adaptive wavelet transform.

Figure 13: Salient features of compressed models tend to be better
preserved with our adaptive Butterfly-based scheme.

Classical Adaptive Gain
Bitrate RMS PSNR RMS PSNR RMS

2.5 10.53 59.13 10.39 59.95 9.01%
5.5 6.99 65.92 5.63 67.81 19.55%
9 4.47 69.80 4.43 69.89 1.08%
11 3.35 72.30 3.26 72.54 2.70%

Table 11: Coding results for Vase Lion when using Loop-based
schemes and PGC. The RMS is in multiples of 10−4.

Classical Adaptive Gain
Bitrate RMS PSNR RMS PSNR RMS

1 4.96 69.64 3.98 71.55 19.73%
1.75 2.71 74.90 2.39 76.00 11.86%
3.5 1.44 80.36 1.41 80.55 2.17%
9 0.78 85.76 0.77 85.86 1.16%

Table 12: Coding results for Bimba when using Loop-based schemes
and PGC. The RMS is in multiples of 10−4.
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(a) Left: original model; top: our adaptive scheme; bottom: the classical scheme.

(b) Left: original model; top: our adaptive scheme; bottom: the classical scheme.

Figure 14: At low resolutions, the shape of the original model is better preserved with our adaptive Loop-based scheme.
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Classical Adaptive Gain
Bitrate RMS PSNR RMS PSNR RMS
1.75 10.01 79.34 9.54 79.80 5.18%
5.5 5.50 84.58 5.47 84.63 0.63%
9 4.79 85.79 4.79 85.79 0.38%
11 4.60 86.13 4.59 86.16 0.33%

Table 13: Coding results for Rabbit when using Loop-based schemes
and PGC. The RMS is in multiples of 10−6.

can be exploited in a progressive application (transmis-
sion, coding, and so on).

6. Conclusion and future works

We described an algorithm for optimizing two
wavelet transforms for semi-regular meshes based on
lifting scheme: the Butterfly- and the Loop-based trans-
form. Our optimization consists in computing a predic-
tion operatorP that maximizes the sparsity of wavelet
coefficients (by minimizing theL1-norm) for improv-
ing the subsequent coding. This optimization is done
at each level of resolution during the analysis. Exper-
imental results show that our optimization algorithm
improves significantly the coding of non-smooth mod-
els whatever the wavelet transform used. Visually, the
adaptive Butterfly-based scheme also tends to further
preserve the regions of high frequency details and the
salient features. Finally, The Loop-based scheme cre-
ates low resolution meshes less distorted than the origi-
nal transform, which is very interesting for progressive
applications.

For the future, a thorough study of the statistics of the
coefficients could be relevant to know how these lifting
schemes can be further improved, and to develop new
minimization criteria. In parallel, an in-depth evalua-
tion of the performances of the algorithm in function
of the input mesh could be also interesting. Another
promising work could be the development of a region-
based analysis for complex models. As proposed in the
experimental section, it could be interesting to adapt the
filters to several regions of the input, in function of the
high frequency details (classical/adaptive transform for
smooth/non smooth region for instance). Such an ap-
proach should improve the global quality of the encoded
meshes.
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Appendix A. Convexity of the function f

This section shows that the functionf developed for
improving the Butterfly-based lifting scheme is convex
(see Section 3). We recall that the functionf is given by

f : R10 7−→ R
x 7−→ f (x) = ||Ax − b||1,

with

x =
(

α
j
0, α

j
0, α

j
2, α

j
2, α

j
4, α

j
4, α

j
4, α

j
4, α

j
8, α

j
8

)T
.

By definition, the functionf can be written as:

f (x) =

nr−1
∑

i=0

|Aix − bi |,

=

nr−1
∑

i=0

gi(x),

whereAi are the rows ofA, bi are the values ofb, and
nr is the number of vertices ofV j

1 on which the regular
stencil is applied at this level of resolution. Considering
(x,y) ∈ R10, andλ ∈ [0, 1], we get

gi(λx + (1− λ)y) = |Ai(λx + (1− λ)y) − bi |,

= |λAix + (1− λ)Aiy − bi |,

= |λ(Aix − bi) + (1− λ)(Aiy − bi)|,

≤ |λ(Aix − bi)| + |(1− λ)(Aiy − bi)|.

λ ∈ [0, 1], soλ and (1−λ) are positive. We can deduce
that

gi(λx + (1− λ)y) ≤ λ|Aix − bi | + (1− λ)|Aiy − bi |,

and finally:

gi(λx + (1− λ)y) ≤ λgi(x) + (1− λ)gi(y).

Thus, the functiongi is convex. Since the objective
function f is a sum ofgi, f is also convex.
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Appendix B. Computation of ai j and bi

This section gives details about the computation of
the termsai j andbi needed to find the weightsρ of the
operatorU2 of the Loop-based lifting scheme (see Sec-
tion 4.2).
The final goal is to solveAω = b, whereA is a symmet-
ric 4× 4 matrix

A =





























a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33





























,

andb is a 4× 1 matrix b = [b0 b1 b2 b3]T . ai j andbi

are defined by the inner productsai j =< φi , φ j > and
bi =< ψl , φi >, with φi the ith scaling function (i = 0..4)
of the Loop transform, andψl the lazy wavelet. To ex-
plain how computingai j andbi , we give the examples of
b1 =< ψl , φ1 > anda11 =< φ1, φ1 >. Figure B.15 shows
the discrete scaling functionφ1 and the lazy wavelet,
with the associated parameters. Note that theith scal-
ing functionφi is associated with the weightωi (Figures
10(c) and B.16). By superposing those two stencils and
computing the discrete inner product, we can easily con-
clude thatb1 is equal toγ0δ0 + α1δ1 + ρ0, where

αi = ρ0 +

(

ρ0 + 2ρ1 cos
2π
ni

)2

,

βi =
1

1− ρ0
(αi − ρ0) ,

γi =
1− αi

ni
,

δi =
1− βi

ni
,

ni being the valence of the associated vertex. Similarly,
the computation ofa11 can be done by superposing the
stencil ofφ1 on itself, and we obtainγ2

0 +α
2
1+ γ

2
2 + γ

2
3 +

(n1−3)γ2
6+n1(ρ2

0+ ρ
2
1). Notice that, as Bertram in [19],

we consider that the vertices of the scaling functions that
are not on the Loop stencil (blue dots on figure B.16) are
regular (valence 6). Therefore their value is equal toγ6

on Figure B.15.
By following the same method on all theai j andbi ,

we finally obtain forA

a00 = α2
0 + γ

2
1 + γ

2
2 + γ

2
3 + (n0 − 3)γ2

6 + n0(ρ
2
0 + ρ

2
1)

a01 = a10 = α0γ0 + γ1α1 + γ
2
2 + γ

2
3 + ρ

2
0 + 4ρ0ρ1

a02 = a20 = α0γ0 + γ
2
1 + γ2α2 + γ

2
6 + ρ

2
0 + 4ρ0ρ1

a03 = a30 = α0γ0 + γ
2
1 + γ

2
6 + γ3α3 + ρ

2
0 + 4ρ0ρ1

a11 = γ2
0 + α

2
1 + γ

2
2 + γ

2
3 + (n1 − 3)γ2

6 + n1(ρ2
0 + ρ

2
1)

  

 

 

 

 

  

  

  

  

  
  

  

  

  

1     

Figure B.15: Discrete scaling functionφ1 (left) and Lazy waveletψl

(right) of the Loop-based scheme.

  

 

 

 

Figure B.16: Position of the four scaling functions and the lazy
wavelet for the Loop-based prediction stencil.

a12 = a21 = γ
2
0 + α1γ1 + γ2α2 + γ

2
6 + ρ

2
0 + 4ρ0ρ1

a13 = a31 = γ
2
0 + α1γ1 + γ

2
6 + γ3α3 + ρ

2
0 + 4ρ0ρ1

a22 = γ2
0 + γ

2
1 + α

2
2 + (n2 − 2)γ2

6 + n2(ρ2
0 + ρ

2
1)

a23 = a32 = γ
2
0 + γ

2
1 + ρ

2
1

a33 = γ2
0 + γ

2
1 + α

2
3 + (n3 − 2)γ2

6 + n3(ρ2
0 + ρ

2
1).

Similarly, we also obtain

b0 = (α0δ0 + γ1δ1 + ρ0)

b1 = (γ0δ0 + α1δ1 + ρ0)

b2 = b3 = (γ0δ0 + γ1δ1 + ρ1).
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[21] M. Charina, J. Stöckler, Tight wavelet frames for subdivision,
Journal of Computational and Applied Mathematics 221 (2)
(2008) 293–301.

[22] P. Jingliang, K. Chang-Su, C.-C. J. Kuo, Technologies for 3D
mesh compression: A survey, Journal of Visual Communication
and Image Representation 16 (2005) 688–733.

[23] A. Khodakovsky, I. Guskov, Compression of normal meshes,
in: Geometric Modeling for Scientific Visualization, Springer-
Verlag, 2003, pp. 189–206.

[24] F. Payan, M. Antonini, An efficient bit allocation for compress-
ing normal meshes with an error-driven quantization, Elsevier
Computer Aided Geometry Design 22 (5) (2005) 466–486.

[25] F. Payan, M. Antonini, Mean square error approximation for
wavelet-based semiregular mesh compression, IEEE Transac-
tions on Visualization and Computer Graphics (TVCG) 12 (5)

(2006) 649–657.
[26] J.-Y. Sim, C.-S. Kim, C. J. Kuo, S.-U. Lee, Normal mesh com-

pression based on rate-distortion optimization, in: Proceedings
of the IEEE Workshop on MultiMedia Signal Processing, 2002,
pp. 13–16.

[27] S. Lavu, H. Choi, R. Baraniuk, Geometry compression of nor-
mal meshes using rate-distortion algorithms, in: Proceedings of
the Eurographics/ACM SIGGRAPH symposium on Geometry
processing, Vol. 43, 2003, pp. 52–61.

[28] L. Denis, S. M. Satti, A. Munteanu, J. Cornelis, P. Schelkens,
Scalable intraband and composite wavelet-based coding of
semiregular meshes, IEEE Transactions on Multimedia 12 (8)
(2010) 773–789.

[29] G. Piella, H. J. A. M. Heijmans, H. J. A. M. Heijmans, Adaptive
lifting schemes with perfect reconstruction, IEEE Transactions
on Signal Processing 50 (2001) 1620–1630.

[30] S. Mallat, A wavelet tour of signal processing, Academic Press,
1998.

[31] A. Kammoun, F. Payan, M. Antonini, Optimized butterfly-based
lifting scheme for semi-regular meshes, in: Proceedings of IEEE
International Conference in Image Processing (ICIP), Brussels,
Belgium, 2011, pp. 1293–1296.
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