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ABSTRACT
It is well known in wavelet image coding that the biorthog-
onality of wavelet filters influences the estimation of the
Mean Square Error (MSE) due to data quantization. It has
been indeed shown that the MSE can be approximated by a
weighted MSE with the weights depending on the synthesis
filters [1, 2]. These works have been carried on canonical
sampling grid for 1D signals or 2D images. In this paper we
propose an elegant solution to compute the weights in case
of 3D meshes sampled on a triangular grid. We show that
the weights can depend only on the polyphase components
of the synthesis filter bank, allowing an easy computation
for filters based on a lifting scheme. In particular, we com-
pute the weights for the well-known Butterfly lifting scheme.
Then we show that using the proposed MSE approximation
improves the performances of a model-based bit allocation
process. We obtain an encoding gain up to 3�5 dB compared
to the state-of-the-art zerotree coders.

1. INTRODUCTION

Today semiregular remeshing and wavelet transforms are
more and more exploited in mesh processing to perform effi-
cient compression methods [3, 4]. A wavelet-based coder in-
cludes generally a bit allocation process dispatching the bits
across the wavelet subbands, in order to improve the data
compression. One method frequently used is to minimize
the MSE of the data quantization for a given target bitrate.
In order to speed the allocation process up, the MSE can be
approximated by a weighted sum of the MSE of each coef-
ficient subband. It is indeed shown that using biorthogonal
filters weights the amount of quantization error which ap-
pears on a reconstructed data, and that the weights depend
on the coefficients of the synthesis filters [1, 2]. In this paper,
we develop the formulation of the weighted MSE for a trian-
gular edge lattice. Moreover, we show that the weights can
depend only on the polyphase components of the synthesis
filter bank, which is very useful in case of lifting schemes.
Experimentally, we show that using this MSE approximation
in a model-based bit allocation improves the coding perfor-
mance of a wavelet coder for any semiregular mesh (obtained
with [5] or [6]) and any version of the Butterfly-based lifting
scheme (lifted or unlifted). The proposed coder finally out-
performs the state-of-the-art zerotree coders [3, 4].

The remainder of this paper is organized as follows. Sec-
tion 2 develops the MSE approximation of a mesh geome-
try quantized with a wavelet coder. Section 3 provides the
weight values for the Butterfly-based lifting schemes. Then,
we experiment the effects of these weights thanks to a model-
based bit allocation for triangular mesh coders in section 4,
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Figure 1: Downsampling grid of the triangular edge lattice.

and conclude in section 5.

2. MSE APPROXIMATION ON A TRIANGULAR
EDGE LATTICE

2.1 Challenge

A semiregular mesh is based on a triangular edge lattice [7]
(see fig. 1). A wavelet transform for meshes corresponds
consequently to a 4-channel filter bank. Hence, the geometry
of a semiregular mesh M is transformed into 4 cosets �xi� i �
0� ����3� on account of an analysis filter bank �hi� i � 0� ����3�
and a downsampling � D (see fig. 2). The cosets are then
quantized and the quantization error ε i between the ith coset
xi and its quantized value x̂i is given by:

εi � �xi � x̂i�� (1)

This formulation corresponds to the additive noise model of
quantizers given by [8]. An upsampling � D followed by a
synthesis wavelet transform gi provides the geometry of the
reconstructed mesh M̂. The challenge of this section is to
obtain the MSE of the quantized mesh geometry according
to the quantization error of each wavelet subband and the
knowledge of the synthesis filter bank.

2.2 MSE of a quantized mesh

In order to simplify the derivation, let us consider the source
mesh M as a realization of a stationary and ergodic ran-
dom process [8]. So the total quantization error ε can be

M

D

Q D

D

+M
^

Q

Dh3

h0

g3

g0

x0

x3

x0

x3

^

^

Figure 2: Principle of a 4-channel wavelet coder.



considered as a deterministic quantity, and is defined by
ε � �ε ��� �

�
M ���� M̂ ���

�
� � � � � K�, K being the

sampling grid. K is given by K � Γ�2 with Γ an inversible
matrix permitting to obtain the datas sampled on the triangu-
lar edge lattice instead of the canonical lattice �2. However,
we can assume Γ is the identity, since this matrix influences
only the choice of the neighbors for the filters [7]. Therefore
the MSE between the geometry of the source mesh and the
quantized one can be written as:

σ2
ε �

1
Ns

�rε���� � (2)

where rε ��� is the autocorrelation function of ε , � is the null
vector of dimension 2, and Ns is the number of samples of
the input signal. The energy of the signal ε , denoted r ε ���,
can be developed by exploiting

RE ��� � E ���E ���1�� (3)

with E ��� the z-transform of ε , and � � �z1�z2�. According
to Fig. 2, E ��� can be formulated in function of the error of
each coset si [9]:

E ��� �
3

∑
i�0

Gi���Ei��
D�� (4)

with Ei��� and Gi��� respectively the z-transform of εi related
to si, and of the synthesis filter gi. D is the dilation matrix
relative to the upsampling [7], �D � ���1

��
�2�, with � j the

jth column vector of the matrix D, and �� j given by:

�
� j �

2

∏
n�1

z
� j�n�
n � (5)

By assuming there is no cross-correlation between errors
εi��� and εi��

�� (for all � �� �
�) [8], we can write

Ei��
D�E j��

�D� � δi� j REi��
D�

with REi��� the z-transform of the autocorrelation function
of the recontruction error ε i, and δi� j the Krönecker symbol
defined by

δi� j �

�
1 si i � j,
0 si i �� j.

Hence, Eq. (3) and (4) provide:

RE ��� �
3

∑
i�0

RGi���REi��
D�� (6)

Applying the inverse z-transform on Eq. (6) yields the for-
mulation of the autocorrelation function of the reconstruction
error:

rε��� �
3

∑
i�0

∑
τ

rgi�τ�rεi�D�� τ�� (7)

The energy rε��� of the signal ε is then given by:

rε ��� �
3

∑
i�0

∑
τ

rgi�τ�rεi��τ�� (8)

By assuming that the quantization error samplings are uncor-
related [8], rεi��τ� � 0 if τ �� �, and consequently,

rε��� �
3

∑
i�0

rgi���rεi���� (9)

Now, the problem is to deal with rgi��� and rεi���.

2.3 Energy of the synthesis filter

The energy of the synthesis filter rgi��� is given by:

rgi��� �
1

2π j

�
Γ

Gi���Gi��
�1���1 d�� (10)

According to the downsampling grid (see fig. 1), a synthesis
filter bank �gi� on a triangular edge lattice can be formulated
according to the polyphase notation:

Gi��� �
3

∑
j�0

�
�� j Gi� j��

D� for i � �0� ����3� � (11)

with Gi� j��� the i� jth polyphase component of the synthesis
filters, defined by

Gi� j��� � ∑
���2

gi �D�� � j��
��

� (12)

and �
�� j the shift relative to the jth coset [7]. By exploiting

(11) and (12), (10) can be developed in:

rgi��� �
1

2π j

3

∑
u�0

3

∑
v�0

∑
���2

∑
����2

gi �D�� �u�

gi �D�� �v�

�
Γ
�
��D��D����u��v���d�� (13)

Using Cauchy theorem, that is,

1
2π j

�
Γ
�
���d��

�
1 if �� ��

0 else,

the integral operator of Eq. (13) is equal to � if
��D��D��� �u � �v � �� is satisfied. The dilation matrix
D being invertible, this condition becomes

�����
��� �D�1

�u�D�1
�v� � �� (14)

By studying the definition domains of the variables [7], we
find that the only set of solutions of the condition (14) is ��
�
� and �� 	. Finally, the energy of the synthesis filter rgi���

is given by

rgi��� �
3

∑
j�0

∑
���2

gi �D�� � j�
2
� (15)

with gi �D�� � j� � gi� j ��� the coefficient k of the jth

polyphase component of the synthesis filter i.

2.4 Energy of the quantization error

By assuming that the quantization error samplings are uncor-
related [8], the energy rεi��� is:

rεi��� � ∑
���2

εi���
2 � Nsiσ

2
εi

� (16)

where σ 2
εi

stands for the MSE of the coset si, and Nsi the
number of samples of si.



2.5 Solution for a one-level decomposition

Finally, by merging (15), (16) and (9) in (2), we obtain the
expression of the MSE of a reconstructed mesh :

σ2
ε �

3

∑
i�0

Nsi

Ns
wiσ2

εi
with wi �

3

∑
j�0

∑
���2

gi� j ���
2
� (17)

where gi� j ��� represents the coefficient k of the jth polyphase
component of the synthesis filter i. Note that the proposed
formulation allows to deduce the weights wi from only the
coefficients �gi� j ���� of the polyphase matrix components of
the synthesis filters. This is useful for a lifting scheme, since
the weights can be obtained directly from the polyphase com-
ponents, without computing the synthesis filter bank.

2.6 Solution for a N-level decomposition

Mostly wavelet coders exploit several levels of decomposi-
tion by applying several times the wavelet transform on the
coset of lowest frequency (fig. 3). By the same way as for the
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Figure 3: A 4-channel wavelet coder with 2 levels of decom-
position.

one-level decomposition, the MSE across a N-level wavelet
coder can be approximated by:

σ2
ε �

NsN�1�0

Ns
WN�1�0σ2

εN�1�0
�

N�1

∑
i�0

3

∑
l�1

Nsi�l

Ns
Wi�lσ2

εi�l
� (18)

where Nsi� j , σ 2
εi� j

, and Wi�l represent respectively the number
of samples, the MSE, and the weights relative to the coset
�i� j�, with i the level of decomposition and j the channel
index1. The weights Wi�l depend on the weights �wi� defined
for a one-level decomposition:

Wi�l � �w0�
i wl � (19)

3. COMPUTATION OF WEIGHTS FOR THE
BUTTERLFY-BASED LIFTING SCHEME

This lifting scheme exists in two different versions: the clas-
sical lifted version (a prediction step and an update step), and
the unlifted version (only a prediction step). The description
of this lifting scheme can be found in [10].

3.1 Polyphase matrix for a 4-channel lifting scheme

As we said in the previous section, only the polyphase com-
ponents are needed to compute the weights. In the case of a

1�N� 1� corresponds to the lowest decomposition level. Hence, the in-
dex �N�1�0� is relative to the low frequency subband of the mesh geometry.

4-channel lifting scheme, the polyphase matrix is [7]:

G �

�
��

1 p1 p2 p3
�u1 1�u1p1 �u1 p2 �u1 p3
�u2 �u2 p1 1�u2p2 �u2 p3
�u3 �u3 p1 �u3 p2 1�u3p3

�
�	 (20)

with pi and ui the prediction and update operators associated
to the ith coset. Hence, identifying this matrix with the oper-
ators pi and ui of any 4-channel lifting scheme, and using the
formulation (17) allows to compute directly the correspond-
ing weights wi, without designing the synthesis filter bank.

The weights for the lifted Butterfly-based transform,
computed by substituting the z-transform of the prediction
and update operators in each component of the polyphase
matrix given by (20), are:


w0 � 169
256 	 0�66015625

w1 � w2 � w3 � 1727
2048 	 0�843261715�

(21)

Similarly, the weights for the unlifted Butterfly-based trans-
form are:


w0 � 169
256 	 0�66015625

w1 � w2 � w3 � 1�

(22)

4. EXPERIMENTAL RESULTS

To show the interest of taking into account the biorthogonal-
ity of the Butterfly-based filters in a bit allocation process,
we experiment the coder presented in [11] (see fig. 4).
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Figure 4: Proposed coder for semiregular meshes.

The source mesh M (obtained thanks to a remeshing
method like [5] or [6]) is transformed in several subbands
of wavelet coefficients thanks to the Butterfly-based lifting
scheme. The coordinates of the wavelet coefficients are then
encoded with scalar quantizers SQ (depending on the optimal
quantization steps computed during the allocation process).
An entropy coding is finally applied on the quantized coef-
ficients. In parallel, the connectivity of the coarse mesh is
encoded with the coder of [12].

The objective of the allocation process is to determine
the set of the quantization steps �q� (used to quantize the
subbands) that minimizes the distortion defined by the MSE
σ2

ε at a given specific bitrate Rtarget :

�P�

�
minimize σ 2

ε ��q��
with constraint RT ��q�� � Rtarget �

(23)

where RT represents the total bitrate. This constrained allo-
cation problem can be defined by a lagrangian criterion:

Jλ ��q�� � σ 2
ε ��q�� �λ �RT ��q���Rtarget� � (24)



with λ the lagrangian operator. σ 2
ε and RT are expressed

in function of models for the bitrate and the MSE of each
subband. The solutions can be obtained by differentiating
(24) with respect to the quantization steps �q� and λ , and by
solving the resulting system. For more explanations about
the coder and the allocation problem, see [11].

To show that the weighted MSE can be exploited for any
semiregular mesh independently of the remeshing method,
we deal with two versions of this coder. The first version,
named the MAPS coder, exploits the remesher MAPS [5]
and the lifted Butterfly-based transform. The second version,
named the NORMAL coder, exploits the Normal Remesher
[6] and the unlifted Butterfly-based transform.

We compare the quality of the reconstructed meshes ac-
cording to two cases: (1) the total distortion is only the sum
of the MSE across the subbands; (2) the total distortion is the
weighted MSE using the values computed in section 3. The
comparison criterion is the frequently used PSNR given by

PSNR � 20log10

�
peak
dS

�
�

where peak is the bounding box diagonal of the original
object, and ds is the RMSE between the original irregular
mesh and the reconstructed one (computed with MESH [13]).
Fig. 5 and 6 show respectively the curves PSNR/bitrate (in
bits/irregular vertex) for BUNNY encoded with the MAPS
coder and VENUS encoded with the NORMAL coder. We
globally observe that using the weighted MSE improves the
coding performance for any model and any version of the
lifting scheme. In addition, to prove the interest of using the
weighted MSE in mesh coding, we compare our coders with
the state-of-the-art zerotree coders: PGC [3] including MAPS
and the lifted version of the Butterfly-based transform, and
NMC [4] including the Normal Remesher and the unlifted
version. We observe that finally the proposed coders outper-
form the corresponding zerotree coders (up to 3�5 dB).

5. CONCLUSION

In this paper we have developed the formulation of the
weighted MSE on a triangular edge lattice. We show that
the weights can depend only on the polyphase components
of the synthesis filters which is very useful in case of lift-
ing schemes. Experimentally, we show that using this MSE
approximation in a model-based bit allocation improves the
coding performance of a wavelet coder for any kind of
semiregular meshes and any version of the Butterfly-based
lifting scheme: the proposed coders finally outperform the
state-of-the-art coders PGC and NMC (up to 3�5 dB).
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