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Foreword

These notes, largely based on the books [36, 38|, result from many years of collaboration with
several co-authors, especially Eric Walter (Research Director at CNRS, Gif-sur-Yvette, France)
and Andrej Pazman (Professor at Comenius University, Bratislava). They intend to give only
a short overview of the subject, decomposed into the following steps:

1. Models and their structural properties
2. Estimators

3. Optimisation of estimation criteria

4. Experimental design

5. (In)validation & testing

Points 3 and 5 will be almost skipped and point 4 will receive much less attention than it
deserves. This means that most of the developments will concern point 1, with particular
attention to the issues of identifiability and distinguishability of model structures, and point
2, where the problem caused by the presence of local optimas of the estimation criterion is
explained in details. Examples prevail over mathematical developments (and rigor) throughout
the notes, but references are given where precise results can be found.

Vocabulary & notations

We call system and denote S the physical “reality” on which observations are collected; we
act on the system through some inputs u(t) and collect information through the observations
y(t) of its outputs. For the sake of simplicity, mainly the case of only one observed output
will be considered (y(t) is then a scalar). Because S is a real system, it is subject to random
disturbances (perturbations), that we call errors and denote e(t). They will be considered as
random variables. For the moment one may consider ¢ as time, and think of a dynamical system.
Later on t will be replaced by some other, more general, explanatory variables, or experimental
conditions, x (not to be confounded with the state variable in a state-space representation).
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Figure 1: Flow of information in identification

The model M(6) corresponds to our theoretical vision of S (some mathematical equations),
which depends on 6, a vector of (unknown) parameters, § € IRP. Only parametric models
will be considered. The model receives the same inputs u(¢) as the system and responds by
ym(0,t). Hopefully y,,(0,t) will look like the observations y(t) collected on S. For that, we
need to choose a proper set of equations (the model structure) and find the good tuning of
the parameters. This is the purpose of system identification. Note the difference between the
model structure (the equations) and the model of parameters §. In some cases the prediction
of quantities that cannot be observed on S but can be predicted by M(0) is the main objective
of construction of the model. Such quantities are denoted z(6,t).

The flow of information in system identification can be summarized as in Figure 1. The
criterion defines the estimator and corresponds to a sort of distance between the quantities
y(t) that are observed on the system and those y,,(0,t) that are predicted by the model of
parameters 6. The role of the optimizer is to find the best value of 6 in terms of criterion value.
The presence of perturbations £(t) makes the observations y(¢) random (observed quantities
can be considered as realizations of random variables). The value g that optimizes the criterion,
the estimate of 6, is obtained from the observations, and is also random. We can thus consider
the mean, variance, etc., of é, and possibly try to minimize the variance to make the estimation
precise, this will be one of the objectives considered in Section 4.

1 Model structures

The choice of a model structure is called characterization. It is critical, and intuition often
plays a key role; it is of special importance since it defines the class within which the best
model will be looked for. The choice may in particular depend on

e the objective of modelling: analysis of physical phenomena, prediction of unobservable
quantities z(6, t), test, diagnosis, teaching, prediction (short or long term, e.g. for control),
regulation, signal processing (compression, filtering, echo cancellation. .. ), simulation. ..

e the conditions under which the model will be used: operating range (large/small signals)
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e the amount of information available, etc.

1.1 Knowledge-based or reproduction of some behavior?

Phenomenological models (knowledge-based) are based on physical equations. We give a simple
example.

Example 1 Consider a chemical reaction described as

01

—) 9
A, B—>C.

e

The assumption of first-order kinetics leads to the equations

d[A]
dt

d[B]
dt

d[C]

= —01[A] + 05[B] i

= 01[A] — (02 + 05)[B], = 05[B]
where [A], [B], [C], 01, 02, 03 have a physical meaning. The differential equations themselves

are imposed by the prior knowledge on (and assumptions about) the underlying phenomenon.

The simulation of a phenomenological model is sometimes complicated, but often accurate
and provides good predictions.

On the other hand, behavioral models only aim at reproducing some observed behavior.
Polynomials, splines, neural networks, support vector machines, etc., are possible candidates.
Their simulation and the estimation of their parameters are generally simple, but they should
be considered more like interpolators than predictors (in the sense that predictions outside the
range of observed outputs are not reliable).

1.2 Linear and nonlinear models

It is of paramount importance to distinguish clearly between two types of nonlinearities.
We say that a model structure is linear with respect to its inputs (LI) when

ym<9> t, a1U + 042u2> = alym(ea tv ul) + 052ym<97 ta u2) 9

which corresponds to a linear model in the sense of control theory.
We say that a model structure is linear with respect to its parameters (LP) when

Ym (101 + ols, t,u) = a1y, (61,1, 1) + oy (02, t,u),

which corresponds to a linear model in the sense of statistics.

LI structures usually have a limited domain of validity, but their study is facilitated by
the existence of classical results from linear control theory. Parameter estimation, and the
characterization of its precision, is easy for LP structures (in some cases, the estimator is given
by an explicit expression, as for Least-Squares, see (2) in Section 2.1). On the other hand,
non-LP (NLP) structures require the use of nonlinear statistics for studying the properties of
estimators. Most often knowledge based model structures, for which parameters have a physical
meaning, are NLP.
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1.3 Continuous or discrete time

The evolution of a dynamical system can be described by a set of differential or difference (i.e.
recurrence) equations, which respectively corresponds to a continuous or discrete-time model.
Note that a continuous-time model can be discretized to produce a discrete-time model, e.g.
in order to facilitate its simulation. On the other hand, some discrete-time models may have
no continuous-time counterpart. Discrete-time models impose constraints on the measurement
times (they should be multiple of the sampling period), whereas the measurement times can
be chosen individually for continuous-time models.

1.4 Choice of complexity

Complex structures have more degrees of freedom (they have more parameters) and therefore
more capability to reproduce complex behaviors: the model responses after estimation of the
parameters will be closer to the observations for a complex structure than for a simple one.
However, the additional degrees of freedom of a complex structure should not be employed
to reproduce the perturbations! The choice of a model structure of appropriate complexity
(a problem especially for behavioral models) is thus a difficult issue. We shall see in Section
2.4.2 how to make a compromise between complexity and performance (robustness) through
the definition of a suitable criterion.

We can already give the recommendation (see also Section 5) to spare some validation data
(which will not be used for parameter estimation), and try (at the very end) to predict them by
the model that has been constructed. This test often permits to reject overcomplicated struc-
tures that have produced a good fitting of the particular data used for parameter estimation,
but lack of robustness and are not able to suitably reproduce data associated with different
realizations of the perturbations.

1.5 Regression models

Regression models will often be used in the rest of the notes. They correspond to the situa-
tion where the perturbations that corrupt the observations can be considered as independent
with zero mean (we even often assume that they are i.i.d. —independently and identically
distributed). The term output-error model is sometimes used.

For instance, let y,,(0,t) be the solution of a differential equation, it may correspond to
[A](t) as in Example 1. Suppose that the observation number £ is taken at time ¢, so that

Y(te) = ym (0, t) + i

with (1) a sequence of independent random variables, with zero mean. Here § denotes the
unknown “true” value of 6. This means that we make the very strong assumption that the
system corresponds to a model structure of the type we have chosen, with some particular
value 6 for @, and an additive noise corrupting the observations.

More generally, in a regression model we shall denote

y(zr) = n(0, z1) + (1)

with n(0, ) the model response, equal to the mean of y(z) for given x and 6,

(0, z) = Eqo{y}
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Figure 2: Expectation surface &, and observations y
and x the design variable, which corresponds to the experimental conditions, such as time,

temperature, pressure, etc. We shall need vector notations to collect N quantities, with N the
number of observations (scalar), and we write

X =XN=(x1,...,2n) the design
y = [y(z1),. .., ylen)]" the (column) vector of observations
nx(0) = n(0,21),...,m(0,2x5)]" the (column) vector of model responses

1.6 Identifiability

Once a model structure has been chosen that depends on parameters ¢, one may naturally
wonder if (A) one has a chance to estimate 6 uniquely. However, this question is too vague to
receive a precise answer. We shall see that for regression models a related issue concerns (B)
the influence of a variation of € on nx(#). These questions are related since if a unique 6 can
be associated with any given 1y (#), then the answer to the first question is positive: 6 will be
estimated uniquely (almost surely...). This is due to the following, see [25].

Theorem 1 In a regression model, if the p.d.f. of € is absolutely continuous w.r.t. Lebesgue
measure, then there exists a unique vector nx(0) closest to y with probability one.

Here, closest is in the sense of euclidian distance, which corresponds to Least-Squares (LS)
estimation, see Section 2.1. The LS estimator 0% corresponds to the value of 6 such that the
distance from y to 7x(6) is minimum. The set of vectors nx () when 6 varies in its admissible
set © C IRP defines the expectation surface &,. It is indeed a p-dimensional surface in RV,
and in the regression model (1) nx(0) is the expectation of y. Figure 2 illustrates the situation
when p = 1 and N = 2. The small circle indicates the position of 7y (62s), the point of &,
closest to y.

If a unique 6 can be associated with any 7x(6), clearly the estimator észS is unique. The
analysis is quite simple for LP structures. Indeed, in that case nx(0) = R+ ¢ for some matrix
R and vector ¢, and nx(01) = nx(02) is equivalent to R#; = Rfs. The solution is thus unique
if and only if R has full rank, which is easy to test.

For a NLP structure, the problem is more difficult, the answer depending on the design X.
We thus consider an idealized framework where

e the system S is replaced by M(f), for some unknown 6;

e there are no perturbations;
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e we can collect as many data as we wish, and choose the design X (in particular the input
u(t)) as we want.

Let M(#) denote all possible behaviors for a model with parameters 6 (for a regression model,
this denotes all possible vectors of responses 1x(#) when X varies and N is arbitrarily large).

We then consider the following question (C): suppose that M(f) = M(6) for some @ (which
means that M (0) and M(f) have the same behavior), does it imply # = §? The answer is, in

general, of the following type.
Definition 1

e []; is structurally globally identifiable (s.g.i.) if for almost any 0, M(0) = M(0) = [A]; =
0];.
If each [0); is s.g.i., i =1,...,p, M(-) is s.g.i.

e [0]; is structurally locally identifiable (s.Li.) if for almost any 6, 3 some neighborhood

V(0) such that 0 € V(0) and M(0) = M(9) = [0]; = [A];.
If each [6); is s.li., i=1,...,p, M(-) is s.Li.

e [0]; is structurally unidentifiable (s.u.i.) if for almost any 0 and any neighborhood V(9),

30 € V(0) such that [0]; # [0]; and M(0) = M(0).
0]; is s.u.i. = M() is s.u.i.

Note that s.g.i. implies s.1.i. and that one component [f]; of § may be s.g.i. and another
one [0];, j # i, s.u.d.

There exist various methods to test model structures, LI or not, for identifiability, see e.g.
the surveys [35, 37|. Here we only indicate a simple one for stationary LI structures: in that
case the transfer function (matrix) characterizes all the input/output behavior M(f) and the
analysis is as follows.

1. Write the transfer function H (6, s) (or matrix H(0, s)), such that ¢,,(0,s) = H(0, s)u(s)
with ,,(0, s) and 4(s) the Laplace transforms of y,,(6,t) and u(t) respectively;

2. put it under a canonical form;

3. solve (w.r.t. 6): H(0,s) = H(6,s) (or H(,s) = H(0, s)).
e If there is a unique solution [4]; = [0];, [A]; is s.g.i.

e If there is a finite number of solutions for [4];, [A]; is s.Li.

e If there are several solutions for [f]; in any neighborhood of @, [f]; (and thus M(-))
is s.u.1.

The importance of using a canonical form can be seen from the following simple example.

Example 2 Suppose that

0
H(0,s) = )
( ,S) 02 + 035
Then, H(é, s) = H(0,s) does not imply {él = 01,05 = 05,05 = 03}. A canonical form can be
obtained for instance by simplifying numerators and denominators so that the highest degree
coefficient in s equals 1.




Eurotherm Winter School, Lecture, METTI 2005, Aussois, January 16-21, 2005

()
RO
03
02

Figure 3: Compartmental model in Example 3

Example 3 Figure 3 presents a compartmental model, where x1 and xo may either denote
the quantities of two different products (like in a chemical reaction) or quantities of the same
product in two different places (like in reservoirs). The parameters 0;, i = 1,...,3, are inverse
of time constants, and the model is described by the following state-space equations

al;]f(t) = —(91 + 92)1‘1(t) + 93:172(15) + U(t) , X7 (0) = 0,
85132(25) _
di 811'1 (t) - le‘g(t) s 1'2(0) =0.

The double arrow that connects y(t) to the xo compartment in Figure 3 means that xs is observed,
that is, the observation equation s

Ym(0,1) = x9(1).
The transfer function (in canonical form) of this structure is easily computed as

o
$2 4 s(01 + 0o + 03) + 0205

H(9,s) =

We can then test the structure for identifiability and

M(A) =M@)] < [H(O,s)=H(0,s)Vs],
él - 0_1 )
& 01 +0:+05 =0, +0,+ 05,
‘9203 == 9_26_3 .

Therefore, two solutions exist for 0:

0 = (01.02,05),
8/ - (0_170_370_2) )
which means that 0 is s.g.i. and 0y and 05 are s.l.i. (and M(-) is s.Li.).

Remark 1

1. In a regression model an estimator typically minimizes a distance between y (observed)
and nx(0). In Example 3 if we use an optimisation algorithm to find the estimator, we shall
find say é, but from the identifiability analysis above we know that o' =+ 0 gives exactly the same
distance to y.

2. In Example 3 if 0, = 0, then 05 and 05 are not identifiable. However, this corresponds to

an atypical value for 0y, hence the words “almost any 07 in the definition of identifiability, which
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Figure 4: Estimated and true states in Example 3 when 6 = 6

corresponds to a structural property. (We shall see in Section 1.7 that there exist situations
where no structural conclusion can be drawn.)

3. Identifiability s an important notion both for parameter and state estimations: in Exam-
ple 3, x1(t) is not observed, assume that it is reconstructed (e.g., by Kalman filtering). Then,
for any u(t) there exist two solutions (trajectories) for x1(t), and we can never know which one
is correct (but we know that we cannot know!). Figure j presents a realization of the true and
estimated states 1(t) and xo(t) when there is no misspecification of 0, that is, 0 = 0. Figure 5
corresponds to 0 = (01,03,0,).

4. Whatever the method that is used to test a model structure, at some point the prob-
lem amounts to solving a system of (often polynomial) equations. Computer algebra softwares
(MAPLE, Mathematica, Reduce, etc.) are then especially useful.

b. NLI structures are more difficult to test than LI ones and require particular techniques.
At the same time, they are generally “more identifiable” (and it is non trivial to exhibit an
example of a nonacademic NLI structure that is not s.g.i., even if such examples exist).

1.7 Distinguishability

The question now concerns the model structure itself, namely, (A) do we have a chance to
determine the right structure for S7 Again, this is too vague to receive a precise answer, and
we shall consider an idealized framework where

e the data are generated by M (f) for some unknown &;
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Figure 5: Estimated and true states in Example 3 when 6 = (01,03,0,)

e there are no perturbations;

e we can collect as many data as we wish, and choose the design X (in particular the input
u(t)) as we want.

We thus replace the system S by a model structure M(0), with 6 unknown. We propose a
structure M(-) different from M (-), now the question is (B) does 6 exist, such that f(0) = M()?
The answer may be as follows.

Definition 2

. M() is structurally distinguishable (s.d.) from M(-) if for almost any 0, there exists no
0 such that M(0) = M(A).

o If M(:) is s.d. from M(-) and M(-) is s.d. from M(-), then M(-) and M(-) are said s.d.

Note that the definition of s.d. is not symmetrical. The techniques used for studying iden-
tifiability can be used to test structures for distinguishability (note, however, that we hope
that a unique solution exists when testing for identifiability, whereas we hope that there are no
solutions when testing for distinguishability).

Example 4 Consider the two compartmental models presented in Figure 6. Using their trans-
fer functions to characterize their behaviors, similarly to Fxample 3, we obtain that the two
structures are s.g.i., but they are not s.d.
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Figure 6: Compartmental models tested for distinguishability in Example 4

Remark 2
1. Exzample 4 shows that s.g.i. of model structures does not imply their s.d. Conversely,
there exist structures that are s.d. but not s.g.i., see [34].
2. Consider the model structures associated with the following transfer functions
- 1 PPN 1

HO, s)= -, H(bs)=—— __ Ghe .
6.9 = i gs1g, HO) (5 + 61)(s + 6y)

Then M(-) is not distinguishable from M(-) if H has two real poles, but is distinguishable
otherwise. Since none of these cases can be considered as atypical, no structural conclusion can
be drawn in that case.

1.8 An example

We conclude this section by drawing attention to the fact that identifiability (and distinguisha-
bility) issues are often non trivial, even for LI structures, as illustrated by the next example.

Example 5 It corresponds again to a compartmental model, as shown in Figure 7. There is
one input u(t), that corresponds to the oral administration of a drug D. Four different outputs
can be observed:

e the concentration of D in the blood, y; = 6¢Dg;

e the concentration of metabolite M in the blood, yo = 0; Mg;
e the urinary execration of D, y3 = 05Dg;

e the urinary execration of M, y4s = 0,Mg.

There are seven parameters to estimate and fifteen possible input/ouput configurations. The
results of the identifiability study for each configuration are reported in Table 5 which indicates
the parameters that are s.g.i. and those that are s.l.i. (with the number of solutions).

Note that the model structure is never s.g.i., although there are only seven parameters for
four different outputs that are observed. When the structure is s.l.i., we can calculate all the
values of 6 that give the same behavior. Notice that observing yy,y> and ys is qualitatively

10
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Figure 7: Compartmental model tested for identifiability in Example 5

observed outputs | structure | s.g.i. parameters s.g.i. parameters
1 s.n.i.
2 s.n.i. 64 (3 sol.)
3 S.n.d.
4 s.n.i. 91, 92, 03, 94, 95 (6 SOI.)
1&2 s.n.i. 94
1&3 s.n.i.
1& 4 s.n.i. 0y, 6, 01,03, 05,0 (2 sol.)
2& 3 S.1.1. 04 61, 92, 03, 05, 97 (2 SOI.)
2& 4 S.1.1. 61,92,03,94705,97 (6 SOI.)
3&4 s.n.i. 92, 94 01,93, 95 (2 SO].)
1,2& 3 s.1i. 0, 01,05, 03,05, 05,07 (2 sol.)
1,2& 4 s.Li. 0,04, 0, 01,03, 05,0 (2 sol.)
1,3& 4 s.n.i. 0y, 0,4 01,03, 05,0 (2 sol.)
2, 3&4 S.1.1. 02, 94, 67 01, 03, 85 (2 SO].)
1, 2, 3&4 s.1.i. 02, 04, 07 91, 03, 95, 96 (2 SOI.)

Table 1: Results of identifiability tests in Example 5

11
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Figure 8: This structure is s.g.i.!

equivalent to observing yi,ya,ys and y4. (However, it is not equivalent quantitatively, in terms
of precision of the estimation.)

The situation will appear still less trivial when it will be noted that a more complex structure
can be s.g.i.! Indeed, consider the structure defined by Figure 8. There are two additional
parameters g and Oy with respect to the structure of Figure 7, we do not observe any additional
output, but the structure is now s.g.i. when y,ys,y3 and y, are observed!

2 Estimators

An estimator # minimizes a “distance” between the response of M(0) and the observations
collected on §. For a regression model, the estimation criterion thus measures the distance be-
tween the expectation surface £, and y, see Figure 2. The most intuitive estimator corresponds
to the euclidian distance, which is the situation presented in the figure.

2.1 Least squares

For N observations y, the (ordinary) LS estimator Y minimizes
1 N

In(0) = glly = mx O = Slyten) (0,0

with respect to # € © C IRP. Here © is some feasible parameter set, usually a compact subset
of IRP. The method can be traced back to Gauss and Legendre. A straightforward extension
corresponds to weighted LS, where the observation number k is weighted by some wy > 0, é% LS
thus minimizes

In(0) = 7 2 wilytoe) (0,

The weight wy, may depend on z;, and we shall write wy, = w(zy,).

When the model structure is LP, é% s can be calculated explicitly. Indeed, we have (6, x) =
r'(z)f for any z and 7y () can be written as 7x(f) = Rxf. Therefore, A}, ; minimizes
(y — Rx0)"W(y — Rx0) with W = diag(w, ..., wy). This gives

bi1s = (RYWRx) 'RiWy (2)
provided that R} WRy has full rank (a condition for identifiability, see Section 1.6).

12
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2.1.1 Data recursive LS

When the observations y(zy) are collected one after the other, on-line estimation is possible
and the data recursive WLS estimator is obtained by the following recurrence equations

p _p Pyr(zp)r (541) P

k+1 — k — )
i W (Tpr1) + 1T (Tpp1)Prr(hga)
A P.r

Oits = HWLS + 1 (Tke1)

W (Tpr1) + 1T (Tpp1)Prr(Th1)

X[y(Tps1) — TT@HI)%VLS] :

Let ko be the first integer such that r(x;),...,r(xy,) span IRP. The recursion can be initialized
at k = ko by
ko -1
Py, = D wlzr(z)r’ (z)| |
1=1
ko
GWLS = Py, ) _r(z)w(@)y(:).
i=1

With this initialisation the estimator exactly coincides with expression (2). If N is large
enough, one can simply initialize Py at C1,, with I, the p-dimensional identity matrix and C'
a large positive constant, and é?,v s at 0, the p-dimensional null vector. Indeed, if (1/N)
w(z;)r(z;)r " (x;) tends to a non-singular matrix as N — oo, the influence of this initialisation
will asymptotically vanish.

2.1.2 Repetitions of observations

Suppose that only m values of x; and w; are different, with n; observations y;(z;), j = 1,...,n;,
collected for the same z;, >/, n; = N.
One can then easily check that the WLS estimator is not modified when the y;(z;)’s, with

J =1,...,n;, are replaced by their mean y(x;) = (1/n;) Y7L, y;(;), that is, 0N, ¢ minimizes
! 1 & — 2
In = N anwz[y(ﬂﬁz) = (0, 2)]" . (3)
i=1

Indeed, we can write

Inl0) = 3 3D wly(w) ~ (6,
B ]1/' é; wily;(2:) — Gli) + Gl@:) — (0, )]
— %inlwl[y(x) n(0, ) + — ZwZZ yj(w:) — y(w:))?

where the second term does not depend on 6.

13
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Figure 9: nX(é]LVS) is the orthogonal projection of y on &,
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Figure 10: Local minima may always exist when S, is curved

Suppose that the system corresponds to a model with parameters 8 corrupted by additive
independent perturbations. The repetition of observations at x; has then the same effect as
if 7j(x;) was moved closer to n(f, x;) as the n;’s increase. In the space of arithmetic means of
observations y(z;), the expectation surface &, is invariant by repetitions, and y thus moves
closer to nx (), a point on &,. In terms of criterion value, it corresponds to (3) tending to zero
as the n;’s increase.

2.1.3 Local minima

We only consider the case of the LS estimator 6, but the developments are valid for WLS
estimation too (with a modification of the metric of the space).

The vector nx(égs) corresponds to the orthogonal projection of y on the expectation surface
&, =A{nx(0), 0 € IRP}, see Figure 9. It should be clear from Figure 10 that local minima may
always exist when the surface S, is curved. When local minima exist, it is difficult to know
if the solution to the minimisation of the estimation criterion Jy(6) given by the optimizer
corresponds to the global minimum or a local minimum, which can be far from éJLVS

The existence of local minima depends on the distance of y to &,, on the curvature of &,
and on the size of the admissible parameter space O, see for instance [5, 6, 7, 8]. The following
example (see [9]) illustrates the difficulties.
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Figure 11: Local minima in Example 6 depending on the location of y

Example 6 We take n(0,x) = 0{z}, + 0*{x}s, 0 € IR, and perform two observations, at
x1 = (1,0) and z9 = (0,1). Three regions are delimited in Figure 11: the full-line parabola
corresponds to &,, when y belongs to the multimodality region on the top (the region where
JIn(0) has two minima), a local minimum always exists; when 'y is in the convexity region on
the bottom, the criterion Jn(0) is a convex function of 0, which can only have one (global)
minimum; the intermediate region corresponds to observations such that Jyx(0) has a unique
minimum but is not convex. Also, one can show that when y lies between the two dashed curves,
if two minima 0 and 0' exist they are necessarily distant from each other by more than 1, that
is, |0 — 6| > 1.

Such a precise analysis is possible only in very simple cases. Also, the distance of y to &,
and the curvature of &, do not give all the information, as shown by the following modification
of the example.

We modify n(0, ) when x < 0 and take now n(0,x) = [0{x}1+0*{x}2]I r+(0)+[sin(0){z}+
2[1 — cos(0)|{z}2]Ir-(0), where O € [—5.5,00) and where I 4 denotes the indicator of the set
A: Ty(z) =1 if x € A and equals 0 otherwise. The two observations are still performed at
1 = (1,0) and xo = (0,1). Figure 12 presents the new expectation surface S,: local minima
may now exist whatever the value of y.

When optimizing Jy(#) with some numerical algorithm it is important to know that there
is no other better minimum than the estimated value which is obtained.

There is a trivial situation where the minimum 7y (6) is unique: it is when &, is flat: nx(6)
is then the projection of y on a p-dimensional hyperplane. We can try to obtain this situation

by playing with the design.

Example 6 (continued)
Repeat two observations at xo = 1 = (1,0); &, then becomes

E,={(-1,-1)" +a(1,1)", a>0},

15
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Figure 12: &, for a modification of 7(6, z) in Example 6, two observations at x; = (1,0) and
Ty = (07 1)

that s, a straight line. To any given y corresponds a unique Ny, its orthogonal projection on
the line.

However, we omitted one difficulty in previous example: the intrinsic curvature of the model
is zero for almost any' @ but it is infinite for some particular values of 6, and this induces a loss
of global identifiability. Everything happens as if we had folded S, over itself.

Example 6 (continued) Take xy not exactly equal to xy but close to xy, e.g., xo = (1,0.1).
Figure 13 shows S,: it is folded and close to the straight line obtained when xy = w1, the
curvature is small for most values of 0, but large where the folding occurs.

When zo = x1 = (1,0), S, is completely folded and three different 8 may give the same
nx(0). Suppose that it is the case, y being projected on fj = nx (61) = nx (02) = nx (03) for three
different values él, éQ, 05. We now perform a third observation, at x3 # x5 = x1. The design X'
is given by X' = (x1,x9 = 1,23 # 1) with x1 = (1,0), z3 = (0,1). We can replace the first two
observations by their arithmetic mean y(x,), see Section 2.1.2. Consider the two dimensional
space formed by y(x1) and y(xs). In this space, S, has the same form as in Figure 12 and the
three estimates él, ég, ég give three points A, B,C on &,, see Figure 14; y should then be close to
A, B or C. One can then initialize the optimizer (the search algorithm) at él, then ég, then ég,
compare the estimators obtained in terms of Jy and decide which one to retain. The decision
may be difficult when y is close to A or B, but we shall see in Section 2.1.4 how repetitions of
the design X' can help.

Following the steps presented in Example 6, we formulate the next recommendations to face
the presence of local minima.

1. Start with a design X consisting of repetitions of observations (X should contain p dif-
ferent experimental conditions when dim(f) = p). &, is then flat and one given y results

"When the intrinsic curvature of the model is zero for any 6, the model is said intrinsically linear.
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Figure 13: &, for the same model as in Figure 12 but with z, = (1,0.1)

3.5

251

0.5

Figure 14: &, for three observations at z1 = zo = (1,0) and 23 = (0, 1) in Example 6
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in one unique projection § = nx(#). However, several 9 s may exist that give the same
7. One must thus solve the equations 7y (0) =17 w.r.t. 6 and obtain all solutions 6;.

2. Use previous solutions 6; to initialize the optimizer with a design X’ D X (containing more
points than X) such that there is global identifiability for X": ny.(0) = nx/(0") = 6 = ¢'.
(Such a design exists if the structure is s.g.i.)

3. Even if X’ ensures global identifiability, values of € that are far away may correspond to
values of nx(0) that are almost equal, see A, B in Figure 14. When y falls in such an
area different estimates may exist that are associated with values of Jy(6) almost similar.
Deciding which estimated value to use is then difficult. However, repeating observations
with X’ has the same effect as moving y closer to &,, see Section 2.1.2, which helps to
decide. This will receive a more formal interpretation in Section 2.1.4.

We conclude this section on local minima by a numerical example.

Example 7 The regression model is n(0,x) = 6121 + 0w + 03(1 — z1) + 03(1 — z3). When
three observations are collected at x' = (1, 0)7, x> = (1, 1)" and x*> = (0, 1)" the surface
&, 1s curved, and local minima may therefore exist. We follow the steps recommended above,
and start with a design X with repetitions: x* = (1, 0)7, x> = x®> = (1, 1)". The associated
vector of observations isy = (5,—12,—8) . Figure 15 presents the level sets for the estimation
criterion Jy(0) (distance from y to nx(0)). The folding of &, makes the model only locally
identifiable: ' = (61,6,)T and 2 = (0, + 20, — 1,1 —0,)" give the same nx(0). For anyy, the
projection on &, is unique, the optimizer will yzeld one of the two points 0 or 02 from which
the other is easily obtained.

6

Figure 15: Level sets for Jy(6) for three observations at x! = (1, 0)7, x2 = x3 = (1, 1),
y = (5,—12,—8) ", Example 7

We complement X by a fourth observation at x* = (0, 1)7, that is, X' consists of x! =
(1, 0)7, x2 =x* = (1, 1)" and x* = (0, 1)". The vector of observations becomes y =

18
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Figure 16: Level sets for Jy(6) for four observations at x!
xt=(0,1)", y=(5-12,-8,-250)", Example 7

=1, 0", x*=x*=(1, 1)" and

(5, —12,—8,—250)". Figure 16 presents the new configuration of the level sets for Jx(0). When

the search is successively initialized at each of the minima in Figure 15, the global optimum will
easily be located.

2.1.4 Asymptotic properties

In order to study the asymptotic properties of an estimator we need to specify how the exper-

imental variables (design points) xy’s are generated. In particular, the proofs are “easy” in two
2
cases”:

A) the z;’s form a sequence of i.i.d. random variables (vectors) with probability measure £
(random design);

B) the sequence (z;) accumulates on a finite number K of points x’ receiving weights £(z') > 0
with 3K ¢(2') = 1 (convergence to a discrete design measure).

We suppose A or B satisfied in what follows. Note in particular that B contains the case
where a given design X is repeated. We write a.s. for almost surely.

Consider an estimator 6~ that minimizes Jy(#). Then the asymptotic properties of 6~ are
related to those of Jy(6) and

o if Jy(0) *3 J(0) (almost surely) uniformly in 6 (when Jy () can be written as a sum
of stochastically independent terms, this corresponds to a uniform Strong Law of Large
Numbers) and if Jy(6) is continuous in 6 for any N and J(6) has a unique minimum at
6 =6, then

-
N0, N — o

2The standard reference for the asymptotic properties of the LS estimator in a general situation is [17]. One

can also refer to [1] for rigorous developments. In both cases the proofs are more complicated than in the
situations A and B below.
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e the local behavior of J(6) around @ (its derivatives) and the uniform almost sure conver-
gence of the derivatives of Jy(6) give the asymptotic normal distribution of 6" around 6.
We shall denote N (m, C) the normal distribution with mean m and variance-covariance
matrix C.

Consider (W)LS estimation in nonlinear regression. We suppose that
y(zr) =n(0,24) +er, 0€0, 2, €X, k=1,2,... (4)

where (g) is a sequence of independent random variables with E,(g;,) = 0 and E,(¢}) = o*(x)
with 0 < a < 0?(x) < b < oo for any z € X.
We shall use the following technical assumptions:

Hg: O is a compact subset of IRP such that © C int(0), the closure of the interior int(©) of
.

H1,: n(#,z) is bounded on X x © and 7(§, z) is continuous in § € © Vz € X.

H2,: 0 € int(©) and Va € X, n(0, z) is two times continuously differentiable with respect to
0 € int(0©), these first two derivatives are bounded on X X int(©).

The WLS estimator 6%, ¢ minimizes

1 N
== NZ {Ek {Ek (H,xk)]Q,

with w(z) bounded on X'. One can show that it satisfies the following:

e if Ho and H1, are satisfied together with the estimability condition®
[ w@)n(d,2) = (@', 2)2¢(dz) =0 0" =0,
X

then 0, ¢ %% 0, N — co.
o If, moreover, H2, is satisfied and the matrix

M(6.0) = [ i) 200 DD oy

has full rank, then
VN(OY s —0) % 2 ~ N(0,C(w,£,8)), N— oo,
where
C(U}, 57 9) - Mfl(gv 0)M2(€7 9>MI1<€7 9)
with

My(6,0) = [ w?(@)o(a) D ONCD) ().

3Note that for an asymptotically discrete de51gn which corresponds to situation B, an integral written
S f(x)&(dx) corresponds to the discrete sum ZZ L F@H)E(ah).
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One can show that C(w, &,0) — M~L(, ) is non-negative definite for any w(x), where

Mie.8) = [ o) 20D D) e(ar)

and C(w,&,0) = M7L(,0) for w(z) = co~2(x) with ¢ a positive constant. Weighting by
the inverse of the variance of the errors is thus optimum among WLS estimators in terms of
asymptotic variance of the estimator.

Consider now the case of n repetitions of a design X = (z',... 2™), with N = mn the
total number of observations. The criterion J) (#) obtained by replacing the observations by
their mean, see (3), satisfies

In(0) = w(a') (8, ') —n(0,2")]*, n — oo

1

m iz
and the convergence is uniform in 6 under He and H1,. Repetitions may thus help to solve
ambiguity problems such as that encountered in Example 6. Consider again Figure 14, if y
is close to A or B there exist two distant estimates 6; and 0y associated with almost similar
criterion values Jy(0;) ~ Jy(02). By repetitions of the design, J} will tend to zero for one the

the 6;’s only, thus indicating that the other estimate corresponds to a local optimum.

2.1.5 Errors with parameterized variance

In some situations the assumption of constant variance o2 for the errors &, in the model (4) is
not satisfied. When the variance is non stationary, it is reasonable to suppose that it depends
on x. Assume that

E. (¢3) = A0, 21), B>0.

We shall use the following technical assumptions.

H1,: A\(#, ) is bounded on X, A=}(f, x) is bounded on X x © and A(#, x) is continuous on ©
Ve e X.

H2,: Vx € X, \(6,x) is two times continuously differentiable with respect to 6 € int(©), these
first two derivatives are bounded on X X int(©).

The ordinary LS estimator is still (strongly) consistent and asymptotically normal in this
context of non stationary variance under the assumptions used in the previous section. However,
we have seen that among WLS estimators the variance was minimum when the weights were
given by A™1(6, ). The problem is that they cannot be used since  is unknown. . .

It would be tempting to use weights that depend on 6, that is, to minimize

1 & [y(a) — 00, z))?
N kz::l A0, z,)

However, this method must be rejected since one can easily show that the corresponding esti-
mator is not consistent.
A simple method consists in using two steps of LS estimation:

1. use ordinary LS (w(z) = 1), which gives the estimator 6;
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2. use WLS with weights w(z) = A1 (A, 2;); denote by 02, ¢ the (Two-Stage LS) esti-
mator obtained at this second stage.

One can then show that when the experimental design satisfies the conditions A or B of Section
2.14

e Ho, H1, and H1), together with the estimability condition
/ NG, )0, x) — n(@'2)2E(dz) = 0 = 6 =0,
X

imply éCZ]YSLS 36, N — oo,

e If, moreover, H2, and H2, are satisfied and the matrix

- 8779:5) on(0, x)
/ A~ o0 o oo o)

has full rank, then
VN(0Rgr5—0) % 2 ~ N(0,M71(£,0)), N — o0.

Note that under suitable conditions QTS Ls thus has minimum variance among WLS estimators.
The same idea can be repeated for more than two steps, with Qk minimizing

1 N
Jen(0) = N Z YO ) [y(ae) — (0, 2p)]?, k> 2

and 0V = éJLVS For a fixed number N of observations, one can use similar steps until convergence
of the estimator, that is HA,]CV -~ é,iv_l (one can show that for N large enough convergence will
occur with probability one). The corresponding estimator is called iteratively re-weighted LS.
It has the same asymptotic properties as the TSLS estimator presented here, although their
performances may differ for finite V.

One can refer to [18, 10| for an alternative method, inspired from maximum likelihood
estimation, see Section 2.4, and to [4] for a comparison of this method with the TSLS approach
presented here (which is more robust to misspecification of the variance function).

2.2 Other distances, other estimators

Taking other distances than the quadratic (Euclidian) gives other estimators than LS. For
instance, one can use absolute values (Lj-norm), which results in the criterion

1
JN(Q)ZNH}’—UX N =+ Zly (zx) — n(0, )]

for a regression model. It is important to note that Jx(6) is not differentiable everywhere, which
may cause difficulties for its optimisation. We shall see in Section 2.3 (Huber’s M-estimator)
how Jy(#) can be modified to avoid this difficulty.

The optimum of Jy(f) is not always unique, not even for s.g.i. models structures, as illus-
trated by the following example.
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Example 8 Take n(0, 1) = 0,463, n(0,z2) = n(0,x3) = 01+ 05 and suppose thaty = (5,2,4).
Then Jn(0) =2 for any 0 such that 61 + 03 =5 and 2 < 0; + 0, < 4.

Also, the asymptotic properties are more difficult to derive than for LS estimation due to
the lack of differentiability, see for instance Chap. 5 of [32].

There is, however, one situation where L;-estimation is easy to use: when the model struc-
ture is LP. Suppose that n(f,z) = r'(z)f. Then, the minimisation of Jy(#) is equivalent to
the minimisation of fo:l oy, under the constraints

—akgy(mk)—rT(a:k)Hgak, k’Zl,,N

There are N + p variables (o = (ay,...,ay)" and ), 2N constraints linear in o and 6, and
the objective S0 | ay is linear too. This is thus a linear programming problem and many tools
exist to solve it.

Despite all these difficulties L;-estimation has an advantage over LS estimation. It concerns
robustness with respect to outliers (“bad data”), which we illustrate by an example.

Example 9 Consider a regression model with observations given by
y(x;) = 0y exp(—0az;) + ¢,

where the unknown value* of 0 is (1,2)7, the errors ¢; are i.i.d. normal N'(0, 0?) with o = 5 1075.
The design corresponds to 200 points x; equally spaced in [0, 1].

Suppose that a failure of the sensor used to collect observations occurs from ¢ = 11 to 1 = 30
and from i = 50 to i = 64; the corresponding values of y(x;) are then equal to zero. The
observations correspond to the dots in Figure 17, with © on the horizontal azxis. The predicted
response n(éivs, x;) for the LS estimator is indicated by the dashed line in the same figure. The
outliers corresponding to the failure of the sensor have a very strong influence on éivs and the
response is strongly attracted by the observations set at zero. This is due to the fact that the
LS criterion uses squared errors, so that large errors have a very strong effect. The predicted
response for Lq-estimation is indicated by the full line, the criterion now uses absolute values
of errors, large errors have less influence and the curve is less attracted towards the x azis.

2.3 M-estimation

LS and Li-estimation are particular cases of M-estimation where the criterion to be minimized
is given by

1
In(0) = N ply(x;) —n(0, )]
i=1
with p a function which is minimum at zero.

For instance, the Huber estimator satisfies

(c) = e?/2 if le] <0
PREZN 6lel — 62/2  otherwise,

with § some positive threshold. A plot of p(e) is given in Figure 18 (full line), together with a
plot of the absolute value of its first derivative (dashed line).

4The value is unknown for the estimator, we use this value for simulating data, which will permit to compare
the estimated response with the true one.
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Figure 17: Observations (dots), model response for LS estimation (dashed line), model response
for Ly-estimation (full line), Example 9
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Figure 18: Huber’s function p (full line) and absolute value of its derivative p’ (dashed line)

Tukey’s estimator is given by

[e2 — et /5% +e8/(30%)]/2 if le|] <6
ple) = { 62/6 otherwise.

A plot of p(e) is given in Figure 19 (full line), together with a plot of the absolute value of its
first derivative (dashed line).

The behavior of the derivative p’ explains why Huber’s estimator is called non-redescending
whereas Tukey’s is called redescending. Notice that Huber’s estimator makes a smooth compro-
mise between LS estimation (for small errors, |e| < 0) and Lj-estimation (for large errors). It
thus preserves the robustness property of Li-estimation and at the same time is differentiable
everywhere, so that standard optimisation algorithm can be used for its minimisation.
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Figure 19: Tukey’s function p (full line) and absolute value of its derivative p’ (dashed line)

2.4 Maximum likelihood
2.4.1 The ML estimator

The likelihood of y corresponds to the conditional probability density of the observations y
given the model parameters 6, which we shall denote 7(y|f). When we estimate parameters, y
is given (observations) and the maximum likelihood (ML) estimator 6%, maximizes 7(y|6).

Consider a regression model with N observations corrupted by i.i.d. errors with probability
density function (p.d.f.) ¢(-). Then,

=z

::12

7(yl|f) = H y(x;)|0] = y(xg) — (0, z)] .

k=1 k;:l

Since the function logarithm is strictly increasing, we can equivalently minimize

N
—logm(yl0) = > _ —logoly(xr) — n(0,zx)]-
k=1
The ML estimator is therefore a M-estimator for p(e) = —log ¢(e): the estimation method is

adapted to the distribution of the perturbations. Different p.d.f. ¢ yield different estimators:
LS for Gaussian distributions, Li-estimation for Laplace distributions, etc.
More generally, ¢(-) may depend on x, with ¢,, the p.d.f. of the error ¢, that corrupts the

observation y(zy), and 03}, then minimizes

N

> —log gy, [y(zx) — 00, x1)] .

k=1

One can show that under suitable assumptions, similar to those used in Section 2.1.4,
VN (03, — 0) is asymptotically normal with minimum variance, given by the inverse of the
Fisher information matriz:

VNG, —0) % 2~ N(0,M;1(E,0)), N — oo,

with
on(0,r) on(d,x)

Mi(E,0) = [ Tola) =gp™ Z95 ()
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Figure 20: Bayesian estimation

where [,(z) is the Fisher information for location,

Ip(z) = /_O:O lziz;] pa(e) de.

2.4.2 Model structure selection

Consider the situation where several structures M; compete to describe the behavior of a
system S. For instance, they may correspond to behavioral models with increasing complexity,
that is, increasing number of parameters, with p; parameters for M;.

We naturally wish to find the best structure and estimate its parameters. The Akaike
Information Criterion gives probably the most famous method. It is given by

. L1
jarc(0,i) = v [—log 7(yl|0) + pi]

to be minimized with respect to 6 and i. When the model structure is fixed, minimizing
Jarc(0,1) with respect to 6 corresponds to maximum likelihood estimation. Let 0; be the
estimated value of § for M,, the idea is to choose M; with jAIc(éi,z') minimum. Note that
complex structures are penalized due to the term p;.

Other selection methods exist that rely on similar ideas of penalizing complex structures
to avoid over-parameterization (unnecessary complexity), see, e.g., [33]. They differ by their

definition of penalization (the way p; enters the criterion).

2.5 Bayesian estimation

In Bayesian estimation the parameters 6 are considered as random variables, with a known

(or rather guessed) p.d.f. w(6) (the prior distribution). After N observations y we can then

construct the posterior distribution of the parameters 7(f|y). It will be more concentrated than

the prior due to the information added by the observations. Figure 20 shows the situation.
Applying Bayes rule we obtain,

m(0,y) w(yld)m(0)

"0 =5 T )
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The maximum a posteriori estimator 63, maximizes 7(f|y), that is, maximizes

logm(y|0) + logm(6) .
———— ——
log-likelihood log prior

Both the information on the nature of the perturbations (log-likelihood) and the information
on the model parameters (log prior) are thus taken into account.
Under suitable assumptions, 63 ,» has the same asymptotic properties as the ML estimator.

2.6 Prediction-error methods

So far we only detailed the case of regression models. There exist situations where the obser-
vations ¥, are not independent. The idea of prediction-error methods is to construct variables
e(zk, 0), the prediction errors, that form a sequence of independent random variables when
6 = 0 (under the assumption that the data are generated by the model M(f) corrupted by
some perturbations). For a regression model, they correspond to the output errors, the differ-
ences between the observations and the model responses.

Consider for instance the Box & Jenkins model, frequently used in time series. One has

y=F(0,9u+G(0,q)e,

where ¢~! corresponds to the delay operator, that is, ¢ ‘z(k) = x(k — i) for any variable z,

and F and G are rational functions in ¢71, e.g., F(0,q) = (01¢7' + 62¢73)/(¢7* + 63¢72). The
prediction errors are then given by

e(k,0) = G (0. q)[y(k) — F(0, q)u(k)]

and are obtained by filtering the sequences of inputs u(k) and outputs y(k).

The estimation criteria presented in the previous sections must then be applied to the
prediction errors. One may refer especially to [23| for a detailed presentation of identification
for such dynamical systems, see also [14, 3].

3 Optimisation

The problem consists in minimizing Jy(6) with respect to § € ©. The method to be used
depends on several factors among which:

1. the definition of the admissible parameter set which may involve some constraints to be
taken into account;

2. the fact that Jy(#) may or may not be differentiable with respect to 6;
3. the possible presence of local minima;
4. the dimension p of 6;

5. the online collection of the data which may call for the online estimation of the model
parameters.

27



Eurotherm Winter School, Lecture, METTI 2005, Aussois, January 16-21, 2005

Optimisation is by itself a very broad topic, and we shall only briefly comment the five
points above.

1.

Parameter estimation most often does not involve constraints. Indeed, suppose that a
model structure requires some function f(€) to be negative for the model to make sense.
Imposing the constraint during the optimisation of Jy(6) may then produce two types
of solutions. Either f (éN ) < 0, in which case the model makes sense, but ignoring the
constraint would have produced the same estimate 6N , or the constraint is active and
f (éN ) = 0. In that case the model is just on the edge, and it is advisable to check its
validity.

The typical case where constraints have to be introduced is when the computation of the
model response involves some simulations that can be carried out only for some admissible
parameter values. For instance, a differential equation may become unstable depending
on the value of 6. The role of the constraints is then to avoid some “bad regions” during
the search of the estimator carried out by the optimizer.

Optimisation in the presence of constraints is more difficult than without, and constraints
should be removed as far as possible. Sometimes this can be done by a reparameterization
of the model (e.g., replace 6; that should be positive by #;® which is always positive).

It is important that Jy(0) is differentiable. Optimisation methods for non-differentiable
criteria exist, but are less standard and usually slower than methods for differentiable
problems. Also, standard methods that do not use derivatives do not necessarily work
when the criterion is not differentiable: for instance, the Nelder-Mead simplex algorithm
[24] or the Powell method [27] should not be used for non-differentiable criteria.

It is therefore advisable to modify a non-differentiable criterion to make it differentiable,
compare for instance Huber’s M-estimator of Section 2.3 with the L;-estimator of Section
2.2

The presence of local minima may require the use of global optimisation algorithms. Most
of them (genetic algorithms, simulated annealing, etc.) do not guarantee that they have
reached the global minimum. Interval methods (see e.g. [16]) provide guaranteed results
but can be slow when dim(6) is large. Hence one should try to remove local minima as
far as possible. Some indications on how to proceed have been given in Section 2.1.3.

. When Jy(0) is differentiable, there are no constraints on ¢ and local solutions are ac-

ceptable, one still has to choose the method which is most adapted (i.e., that gives the
solution in shortest time). This is not mandatory if the problem has only to be solved
one time, but it becomes an issue if similar problems have to be solved routinely. Then, if
the problem corresponds to LS estimation, the Gauss-Newton algorithm is recommended.
If not, quasi-Newton methods [12] (also called variable metric) can be used for dim(f)
not too large (say less than 20, because matrices are manipulated), and conjugate gradi-
ents algorithms [13] for large to very large dimensions (in image processing applications
for instance). Different implementations exist, giving different names for algorithms, for
instance Davidon-Fletcher-Powell for quasi-Newton and Polak-Ribiére for conjugate gra-
dients.

There exist recursive methods that update the estimator 0 after the arrival of each new
observation. So, if #V is the estimator after (z1,%1),...,(zx,yy) are known, after the
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new data (zyy1,yn+1) the estimator becomes ON+L = N 4 f(éN,yNH,xNH). In the
case of LS estimation this is similar to a linearisation of the problem, followed by the
application of one step of recursive LS, see Section 2.1.1. Such recursive methods also
exist for maximum likelihood estimation. Under suitable assumptions the asymptotic
behavior of recursive methods is the same as for off-line, non recursive, ones (but the
proofs of these asymptotic properties are more difficult).

A general recommendation is not to try to implement one’s own algorithm and use existing
subroutines from software libraries. Also, comparing different methods on the same problem
often proves useful.

Efficient optimizers require the computation of the first-order derivatives of the criterion with
respect to the components [0]; of 0, i = 1,..., p. For regression models, the estimation criterion
Jn(6) depends on 6 through the model responses 7(6,xy), so that the derivatives of Jy(6)
can be obtained by the computation of the sensitivity functions® (0, zy)/d[0);, i = 1,...,p.
When 7(0, x) is obtained by simulating a differential (respectively recurrence) equation of order
q, On(0,x)/0[0]; is also obtained by simulating a differential (respectively recurrence) equation
of order ¢. Simplifications are possible for LI structures with known initial conditions, so that
an equation of order 2¢ only has to be simulated whatever p (and not of order pq), see chap.
4 of [36, 38]. An adjoint state method is also presented there for models given by recurrence
equations, which permits to compute the derivatives of Jy(6) with respect to the [6];’s in two
simulations only: one goes forward, that is, in direct time, as the recurrence that computes the
model response, and calculates Jy(6); the other goes backward and calculates the derivatives.
Since a computer code can be considered as a recurrence equation (consider the line number
k as being executed at time k), it comes as no surprise that the adjoint state method can be
extended for computing the derivatives of any function J(0). This corresponds to the dual (or
adjoint) code technique used in automatic differentiation, see, e.g., [15].

A final recommendation is to use one of the methods just mentioned to compute exact
derivatives, rather than using approximation by finite differences, which may be not only very
approximate by also much slower.

4 Experimental design

Again, this is quite a broad topic which we shall only briefly touch, mainly through examples
(hopefully motivating).

4.1 Parameter estimation

Experimental design for parameter estimation aims at providing a small dispersion for the
parameter estimates.

Example 10 We have to determine the weights of eight objets with a spring balance, as shown
in Figure 21. The objects have weights m;, i = 1,...,8, the errors ¢; are i.i.d. N'(0,0?).
We shall use two methods.

Method 1 We weigh each objet successively. This gives
y(i)=m;+¢,i=1,...,8,

5When the prediction-error method is used, sensitivities of the prediction error have to be used.
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Yy=m3; — Mg +E¢€

Figure 21: The spring balance used in Example 10

and the estimated weight of objet i is simply m; = y(i), which is distributed ~ N (m;, 0?).
To gain in precision, we repeat the experiment 8 times and average the results: it gives

new estimates m; ~ N (m;,0%/8). This method uses 64 observations.

Method 2 We use 8 different configurations, with for each of them some objects on the left
and some on the right:

yl = m1+m2+m3+m4+m5+m6+m7+m8+61,
y(2 my + mo + Mg — My — M5 — Mg — M7 + Mg + €2,
y3 m1—mg—m3+m4+m5—m6—m7—l—m8+63,

mip — Mg — M3 — My — M5 + Mg + My + Mg + €4,

—m1 + Mg — M3 + My — M5 + Mg — My + Mg + €5,
= —m1—|—m2—m3—m4—|—m5—m6+m7+m8+66,
= —mi —mg+mg+my—ms—meg+ my+mg+ €7,
= —m1—m2+m3—m4+m5+m6—m7—{—m8—|—68.

ot

e e
BUR=2)

<
AAAA/EA/—\A
— N N N N N N

<
o)

Since there are 8 observations for 8 parameters, we obtain the estimates by solving previous
equations when setting the €;’s to zero,

-y +y2) +yB) +y() —y(5) —y6) —y(7) —y(©B)

my = , etc.

8

Therefore,
€1+ €+ €3+ € — €5 —€g— €7 — €3

8 Y

Since the €;’ are independent, we obtain 1h; ~ N (m;,0*/8) but with 8 observations only!

etc.

m1:m1+

In Example 10, the construction of a “good” design corresponds to a combinatorial problem.
When the design variables x; are real numbers, optimum design for parameter estimation is
(classically) obtained by optimizing a scalar function of the (asymptotic) covariance matrix of
the estimator.

For instance, for WLS estimation in a regression model with weighting by the inverse of the
variance o?(x) of the errors, the asymptotic covariance matrix of é% g 1s the inverse of

o [ o Onl0,x) In(d, )
M(E,0) = [ o 2a) T TEE el

see Section 2.1.4. Other matrices are obtained for other estimators, see e.g. Sections 2.1.5,
2.4. Note the role of the sensitivity functions, already useful to compute the derivative of the
estimation criterion, see Section 3.
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One should thus choose ¢ that makes M~ (¢, ) as small as possible. Note that M depends
on # which is unknown. A classical approach called local design consists in using a prior guess
6, hopefully not too far from #. We then work with M€, é) For instance, one can maximize
log det M(&, é), which is called D-optimum design. Classical references are [11, 31|.

The optimal £* (specific algorithms are indicated in the above references) takes the form of a
discrete distribution on the experimental domain X, with k support points ', ..., 2" receiving
weights wy, ..., ws, and naturally Zle w; = 1 (it can be considered as the ideal distribution
of experimental effort that one should use). One can show that k¥ < 1+ p(p + 1)/2 is always
enough, with p the number of parameters. Quite often for D-optimal experiments k£ = p. When
one plans to collect N observations, one should then try to distribute them as closely to £* as
possible. That is, n; observations should be made for z = z* where n;/N approximates the
optimal weight w;.

The same methodology can be used to design optimal inputs for parameter estimation in
dynamical systems, see [14, 39]. For LI structures, one can either choose the input sequence
u(k) (for a discrete-time system) or the shape of the spectrum (power spectral density) of u
(for a discrete or continuous-time system). In the latter case, the optimum corresponds to a
discrete spectrum (sinusoids) with a few components only.

We already mentioned the dependence of the optimum design on a prior guess 6 (this is
always the case for NLP structures). Three approaches can be used to go beyond, see e.g. chap.
6 of |36, 38|.

1. One can use the expected value of the design criterion, e.g., log det M(f 9) with respect
to @ distributed with some density 7 and maximize [logdet M(€,8)m(0)d0.

2. One can use a maximin approach, and consider the worst value of the design criterion
with respect to 6 in some set ©. We then maximize min,_g log det M(¢, 0).

3. One can use a sequential design approach, where each design phase is followed by an
observation and an estimation stage:

- design x, — observe y(x;) — estimate 0 — design a1 -

Remark 3

1. It is important in sequential design that at each estimation stage the estimator 0% uses all
the data available y(x1),...,y(zg).

The asymptotic properties of the estimator ék, k — oo, are not the same for a sequential
design as when the xy’s are chosen independently of the observations (as random or de-
terministic constants). This remark applies even for LS, even in linear models, see e.g.

[21, 22, 20].

2. The design of the experiment for NLP models can also be based on non-asymptotic prop-
erties of estimators. However, this requires rather complicated developments, see, e.q.,

[26, 29].

3. In some situations the estimation of parameters is only an intermediate step towards a
more specific objective, for instance the optimisation of the system. The position of the
optimum then depends on the parameters to be estimated, which can be taken into account
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in the definition of a design criterion especially adapted to this final objective, see [11, 81].
When the design is sequential, this is strongly related to adaptive control in control theory,
see, e.g., [28, 30].

4.2 Model discrimination

This is the quantitative counterpart to distinguishability considered in Section 1.7. We only
present one example taken from [2]. The method used is described in the same reference.

Example 11 ([2]) The system corresponds to a chemical reaction A — B; there are two
explanatory variables: x = (time t, temperature T'). We wish to know whether the reaction is

of 1st, 2nd, 3rd or 4th order.
Therefore, there are four competing model structures:

nW(01,x) = exp[—bitexp(—61,/T)],
19(6:%) = 1+921texlp(—922/T)’
1”65, ) 1+ 2631tex;(—932 /T2
7 (04, x) .

[1+ 3041t exp(—040/T)]V/3 "

each one depending on two parameters. One can check that they are distinguishable.
We perform some simulations and generate observations with the second structure, that is,

y(x;) = 0P (0, %;) + ¢

with B = (400, 5000)"T the true value of the parameters in model 2. The (e;);’s are i.i.d.
N(0,02) with o = 0.05.

The admissible experimental domain X s given by: 0 <t < 150, 450 < T < 600, see Figure
23.

The design approach we consider is sequential. After the observation of y(x;), j =1,...,k,
we

e estimate éf by LS for each structure;

e estimate the probability 7;(k) that the model i is correct, i = 1,...,4 (with the procedure
described in [2]).

The design process is initialized by assuming equal probabilities for all models, m;(0) = 1/4,
1=1,...,4, and choosing the first four design points X1, ...,X4 reasonably spread in X. Figure
22 presents the evolution of the four probabilities m;(k) as functions of k. We quickly detect that
models 1 and 4 are not correct. The four initial points tend to indicate that model 3 has a higher
probability than model 2 of being correct. However, the careful choice of the successive points
made by the procedure yields a correct decision after a reasonably small number of observations.

The sequence of design points generated by the procedure is presented in Figure 23. The first
four points have been chosen without prior knowledge. The next points tend to accumulate on
a small number of different conditions, considered as the most informative for discriminating
between the competing structures.
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Figure 22: Evolution of the 4 probabilities m;(k) in Example 11
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Figure 23: Sequence of design points x; in Example 11
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5 (In)validation and testing

A first approach for testing the model consists in testing the residuals, y(z;) — n(0, ;) in a
regression model, or more generally the prediction errors e(k, oN ). They should correspond to a
sequence of independent random variables, and independence is a statistical property that can
be tested. Also, different assumptions that have been used, such as stationarity or normality of
the distribution of the perturbations, can also be tested on the residuals, see, e.g., [19]. Quite
often, it is already instructive to simply plot the residuals as a function of k.

A second approach is based on validation data (2%,y(x%)), j = 1,..., M, not used for the

construction of the model, and consists in comparing the y(z’;)’s with their predictions n(6N, oy
by the model constructed from the estimation data (z;,y(x;)), j=1,..., V.

When the results are not satisfying, the model (and maybe the assumptions) must be
changed. E.g., one may have to modify the estimator because the initial assumptions on the
distribution of the perturbations proved to be wrong, see Section 2.4, or one may have to
abandon the stationarity assumption, and assume that the variance depends on x, see Section
2.1.5. Sometimes the collection of more data will prove necessary to choose between rival
models. Experimental design should then be considered, see Section 4.2.
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