Théorie de l'Information et Statistique

Codage source

M. J. Rendas

Type theor

Sanov

Tests d'hypothèses

Plar

- Méthode des types
- Tests d'hypothèses : le Lemme de Stein
- estimation paramétrique

Méthode des types

Codage source

M. J. Rendas

Type theory

Théorème de Sanov

Tests d'hypothèses

$$X_1, ..., X_n, X_i \in \mathcal{X} = \{1, ..., m\}, |\mathcal{X}| = m$$

Type

 P_x , le type de la séquence $x = x_1, \dots, x_n$ mesure la fréquence de chaque symbole de \mathcal{X} dans la séquence x:

$$P_X(i) = \frac{N_i(x)}{n}, \qquad N_i(x) = |\{x_k = i\}|, \qquad i = 1, ..., m$$

 P_x est une loi de probabilité (aussi appelé "loi empirique" de x).

\mathcal{P}_n

 \mathcal{P}_n est l'ensemble de types qui peuvent être obtenus à partir d'une séquence de longueur n:

$$\mathcal{P}_n = \{P = (p(1), \dots, p(m)) :$$

$$p(i) = \frac{n_i}{n}, n_i \in \{0, \dots, m\}, \sum_i n_i = n\}$$

$$|\mathcal{P}_n| \leq (n+1)^m$$
.

Le nombre de types est polynomial en $n \Rightarrow$ le nombre de séquences avec un type donné doit être exponentiel

Exemple

Codage source

M. J. Rendas

Type theory

Sanov

d'hypothèses

Pour $\mathcal{X} = \{a, b, c\}(m = 3)$, et n = 3, les possibles types sont

$$\mathcal{P}_n \ = \ \{ [1\ 0\ 0] \ , \\ = \ [2/3\ 1/3\ 0] \ , \\ = \ [2/3\ 0\ 1/3] \ , \\ = \ [1/3\ 1/3\ 1/3] \ , \\ = \ [1/3\ 2/3\ 0] \ , \\ = \ [1/3\ 0\ 2/3] \ , \\ = \ [0\ 1\ 0] \ , \\ = \ [0\ 2/3\ 1/3] \ , \\ = \ [0\ 1/3\ 2/3] \ , \\ = \ [0\ 0\ 1] \}$$

Sanov

Tests d'hypothèses

Classe du type P, T(P)

T(P) est l'ensemble de séquences qui ont le type P:

$$T(P) = \{x \in \mathcal{X}^n : P_x = P\}$$

Exemple

Codage source

M. J. Rendas

Type theory

Théorème de Sanov

Tests d'hypothèse: Pour $\mathcal{X} = \{a, b, c\}(m = 3)$, et n = 3, la classe du type $p = [2/3\ 0\ 1/3]$ est

$$T([2/3 \ 0 \ 1/3]) = \{aac, aca, caa\}$$

Theorème

La probabilité d'une séquence iid dépend uniquement de son type: si $x_1, \ldots x_n \sim Q$

$$Q(x) = 2^{-n(H(P_x) + D(P_x||Q))}$$

$$\Rightarrow x \in T(Q) \Rightarrow Q(x) = 2^{-nH(Q)}$$
.

Theorème

$$\forall P \in \mathcal{P}_n, x_i \in \mathcal{X},$$

$$\frac{1}{(n+1)^m} 2^{nH(P)} \le |T(P)| \le 2^{nH(P)}$$

La taille des classes de chaque type a une dépendance exponentielle en *n*.

Exemple (cont.)

Codage source

M. J. Rendas

Type theory

Théorème de Sanov

Tests d'hypothèses Pour $\mathcal{X} = \{a, b, c\}(m = 3)$, et n = 3, nous avons vu que la taille de la classe du type $p = [2/3 \ 0 \ 1/3]$ est égale à 3. Pour cette loi,

$$H(p) = \frac{2}{3}\log_2(3/2) + \frac{1}{3}\log_2(3) = 0.9183$$

et nous pouvons vérifier

$$0.1055 = \frac{1}{(n+1)^m} 2^{nH(P)} \le 3 = |T(P)| \le 2^{nH(P)} = 6.75$$

Theorème

$$\forall P \in \mathcal{P}_n, x_i \in \mathcal{X}, x_i \sim Q$$

$$\frac{1}{(n+1)^m} 2^{-nD(P||Q)} \le \Pr\left\{T(P)\right\} \le 2^{-nD(P||Q)}$$

 \Rightarrow pour $P \neq Q$, $Pr\{T(P)\} \rightarrow 0$

Exemple (cont.)

Codage source

M. J. Rendas

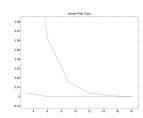
Type theory

Théorème de Sanov

Tests d'hypothèses Pour $\mathcal{X} = \{a, b, c\}(m = 3)$, et n = 3, soit T(p) la classe du type $p = [2/3 \ 0 \ 1/3]$. Si $X_i \sim Q = [1/31/31/3]$, alors

$$D(p||Q)=\frac{2}{3}$$

et nous obtenons la variations suivante pour les bornes inférieure et supérieur du théorème du transparent précédant :



Codage source

M. J. Rendas

Type theory

Théorème de Sanov

Tests d'hypothèses

Theorème de Sanov

 $x_i \in \mathcal{X}, \, x_i \sim Q$ (iid). $E \subset \mathcal{P}$ un ensemble de lois de probabilité.

Alors

$$Q^{n}(E) = Q^{n}(E \cap \mathcal{P}_{n}) \leq (n+1)^{m} 2^{-nD(P^{\star}||Q)}$$

οù

$$P^{\star} = \arg\min_{P \in E} D(P||Q)$$

Si E coincide avec la fermeture de son intérieur, alors

$$\frac{1}{n}\log Q^n(E)\to -D(P^*||Q)$$

Ce théorème affirme que la probabilité d'un ensemble E est dominée par l'entropie relative entre l'élément de E plus proche (au sens de l'entropie relative) de la vraie distribution des données.

Le résultat reste valable pour des variables aléatoires continues.

Illustration du théorème de Sanov

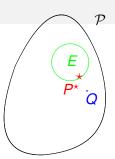
Codage source

M. J. Rendas

Type theory

Théorème de Sanov

Tests d'hypothèses



$$Q^{n}(E) \leq (n+1)^{m} 2^{-nD(P^{*}||Q)}$$

heorème

 $E \subset \mathcal{P}$ un ensemble *convexe* de lois de probabilité, et $Q \notin E$. Soit

$$P^* = \arg\min_{P \in E} D(P||Q)$$

Alors, $\forall P \in \mathcal{P}$,

$$D(P||Q) \geq D(P||P^*) + D(P^*||Q)$$

Ce théorème est une sorte de ""théorème de Pythagore" pour l'entropie relative (qui n'est pas une distance!).

Lemme

$$D(P||Q) \ge \frac{1}{2\ln 2} ||P - Q||_1^2$$

Ce Lemme affirme que convergence en entropie relative implique convergence dans la norme L_1 .

Codage source

M. J. Rendas

Type theory

Théorème de

Sanov

Tests d'hypothèses

Théorème

 $E \subset \mathcal{P}$ un ensemble *convexe* de lois de probabilité, et $Q \notin E$. $x_i \in \mathcal{X}, i = 1, \dots, n, x_i \sim Q$ (iid). Soit

$$P^{\star} = \arg\min_{P \in E} D(P||Q)$$

Alors,

$$\Pr\{x_1=a|P_x\in E\}\to P^\star(a)$$

en probabilité quand $n \to \infty$.

Une version plus forte de ce théorème affirme que

$$\Pr\{x_1 = a_1 \cdots x_m = a_m | P_x \in E\} \to \prod_{i=1}^m P^*(a_i)$$

en probabilité, quand $n \to \infty$.

Illustration du théorème conditionnel

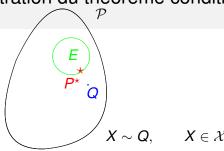
Codage source

M. J. Rendas

Type theory

Théorème de Sanov

Tests d'hypothèse:



$$\Pr(x_1 = a | P_x \in E) = P^*(a), \quad a \in \mathcal{X}$$

Type theory

Sanov

Tests d'hypothèses $H_1 : Q = P_1$ $H_2 : Q = P_2$

Déterminer $A \subset \mathcal{X}^n$ tel que

$$g_A(x) = \begin{cases} 1, & x \in A \\ 2, & x \in A^c \end{cases}$$

minimize

$$\alpha_g = \Pr\{g(x) = 2|H_1\} = P_1(A^c)$$

sous la contrainte

$$\beta_g = \Pr\{g(x) = 1 | H_2\} = P_2(A) \le \beta^*$$

Solution

Soit $A_n(T)$ le sous-ensemble de \mathcal{X}^n

$$A_n(T) = \left\{ x \in \mathcal{X}^n : \frac{P_1(x)}{P_2(x)} > T \right\}$$

et $g_{A_n(T)}$ la fonction de décision qui lui est associée. Alors, $\forall A \subset \mathcal{X}^n$,

$$\alpha_{g_A} \le \alpha_{g_{A_n(T)}} \to \beta_{g_A} \ge \beta_{g_{A_n(T)}}$$

Ce théorème affrirme que le détecteur optimal (de Neyman-Pearson) est un test du rapport de vraisemblance.

Solution (en fonction d'entropies relatives)

L'ensemble $A_n(T)$ qui défini le test topimal peut être défini comme

$$A_n(T) = \left\{ x \in \mathcal{X}^n : D(P_x||P_2) - D(P_x||P_1) > \frac{1}{n} \log T \right\}$$

Cette expression montre que le test optimal peut être identifié avec une région de décision dans l'espace des types.

emme de Stein

 $x_i \in \mathcal{X}, i = 1, \ldots, n, x_i \sim Q$ (iid). Admettons que dans le test de H_1 vs H_2 , $D(P_1||P_2) < \infty$. Soit $A_n \subset \mathcal{X}^n$, et pour $\epsilon \in]0, 0.5[$ soit

$$\beta_{\mathbf{n}}^{\epsilon} = \min_{\alpha_{g_{\mathbf{A}\mathbf{n}}} < \epsilon} \beta_{g_{\mathbf{A}\mathbf{n}}}$$

Alors

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log \beta_n^{\epsilon} = -D(P_1||P_2)$$

Ce théorème nous donne le meilleur taux de diminution de l'erreur (β) quand l'autre erreur (α) tend lentement vers zéro.

Borne de Chernoff

La borne de Chernoff caractérise le comportement des *test Bayésiens*.

 $x_i \in \mathcal{X}, i=1,\ldots,n, \, x_i \sim Q$ (iid). Admettons que dans le test de H_1 vs H_2 , $D(P_1||P_2) < \infty$), et $P(H_1) = \pi_1$, $P(H_2) = \pi_2$. Soit

$$D^* = \lim_{n \to \infty} \min_{A \subset \mathcal{X}^n} -\frac{1}{n} \log P_e$$

où P_e est la probalité d'erreur.

Alors, le meuilleur taux de diminution de l'erreur est

$$D^{\star} = D(P_{\lambda^{\star}}||P_1) = D(P_{\lambda^{\star}}||P_2)$$

Dans le théorème précédent

$$P_{\lambda}(x) = \frac{P_1^{\lambda}(x)P_2^{1-\lambda}(x)}{\sum_{a \in \mathcal{X}} P_1^{\lambda}(a)P_2^{1-\lambda}(a)}, \qquad x \in \mathcal{X}$$

et λ^* est déterminé par (information de Chernoff)

$$D(P_{\lambda^*}||P_1) = D(P_{\lambda^*}||P_2)$$