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Abstract
We address the problem of autonomous underwater vehicle guidance along the boundaries of different
benthic species using video information. This form of guidance provides  a robust navigation behavior
enabling observation of the occupancy of the sea bed independently of the presence of external position
references (either GPS or installed acoustic beacons). The major innovation of the work presented concerns
the image segmentation algorithm. It is an unsupervised algorithm, which identifies clusters in the space of
gray level probability distributions of image neighborhoods. The metric used to compare gray level
distributions is the Kullback-Leibler directed divergence, which is related to the probability of confusing
members of distinct clusters. The algorithm is self-tuned, in the sense that the number of clusters is
automatically determined. It works adaptively (frame-to-frame), updating the classes’ representations for
each new frame, accommodating gradual lighting and texture variations within the same region. The visual
controller, a simple integral law with saturation, controls heading rate to minimize the distance between the
contour and the image center, while keeping a constant forward speed along the body axis. A separate
controller (classic PI) keeps the robot at constant altitude from the sea bottom.  The design of these
controllers was based on the identified hydrodynamic model of the vehicle. The performance of the
algorithm proposed is validated by real experiments conducted with the robot Phantom 500 XTL (Deep
Oceans Engineering, USA)1.

                                                       
1 The Phantom 500 XTL manufactured by Deep Oceans Eng,  Palo Alto, USA, is used in the projects
Narval  and SUMARE benefiting form a special education/research arrangement.

1. Introduction
We present a novel approach to unsupervised image
segmentation, based on information theory tools, that
enables visual guidance of an underwater robot along the
contour of two natural sea-bed regions. Previous work on
perceptual guidance of underwater vehicles used the
simple geometry of man-made features – mostly linear,
e.g. pipelines. For the application that we consider –
autonomous mapping of the limits of natural benthic
regions – these approaches are not applicable, given the
lack of pure geometric features. Only a region-based
segmentation approach can detect the desired boundary,
enabling the subsequent generation of appropriate control
signals.
The paper is organized in the following way. First the
contour tracking problem using vision is introduced, and
the basic video processing/control architecture presented.
Then, we present the image segmentation algorithm,
showing examples of its use in a real environment at the
bay of Villefranche-sur-mer (France), for detecting the
boundary between posidonia and sand. We then present
the contour tracker. Finally, we present a results of a real
experiment where the robot (Phantom) uses vision to
track the boundary of two distinct regions.

2.  Control/perception architecture

The overall architecture of the robot Phantom is
presented in Figure 1. It comprises a global decisional
level, signal acquisition and processing modules,
positioning and mapping functions and a control module
that can enforce a series of distinct behaviors of the
vehicle.
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Figure 1: software architecture.
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The complete mission of the robot is defined as a series
of goals to be attained, which are translated, by the real-
time planner, into a plan (sequence of tasks) whose
execution is under the responsibility of the task execution
controller.
The work presented here corresponds to the execution of
one of these tasks: track a boundary between two distinct
species using visual information. The execution of this
task requires the cooperation between two distinct tools:
an image segmentation algorithm, which detects the
relevant information for guidance and a guidance
algorithm that keeps the contour in the visual field of the
robot as it progresses its observation.
The basic flow of information is represented in figure 2.
Using the video frames the image segmentation
algorithm extracts the contours between regions of
distinct texture. This is the input information for the
tracking controller that specifies the vehicle heading
reference that induces the appropriate rotation in the
horizontal. At the same time, constant references are kept
for the altitude controller, imposing a constant distance
from the sea floor during the entire observation, to
minimize tracking problems due to varying observation
conditions. In the present implementation, the surge
speed of the robot is also kept constant during the entire
observation. Control of this extra degree of freedom, for
instance increasing speed in the quasi-linear parts of the
contour, and decreasing it whenever the contour direction
is rapidly varying may increase efficiency of this
observation mode and will be the subject of future
studies.

Figure 2: contour tracking.

3. Image Segmentation
We present in this section the image segmentation
algorithm that is used in the context of contour tracking.
It is an  unsupervised algorithm that automatically adjusts
to the complexity of the observed scene. The algorithm is
based on the analysis of the probability distribution of
image intensity (gray level) over small neighborhoods,
and uses formal decision theory tools to iteratively learn
the distributions of the classes present in the image. We
first present some results from type theory on which our
algorithm is based. Then, we present the segmentation
algorithm, and show some results obtained with real
images.
3.1 Type theory
Type theory is a branch of statistics that studies repeated
realizations of a basic random variable. Let X be a

discrete random variable (rv) with probability space
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We quote without proof several results related to the type
of a sequence that will be used in the sequel. The
interested reader is referred to [2] for the demonstrations.
Lemma 1.
The probability of observing a given sequence of n iid2

realizations of a rv with pd µ depends only on its type
and is given by
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In the above expression, )(νH  is the Shannon entropy

of the distribution ν, and )( µνD  is the Kullback-

Liebler directed divergence (also called relative entropy)
between ν and µ:
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Both H and D are always positive. Other properties can
be found in [2].
Lemma 2.
Let nL be the set of all possible types of a sequence

)(nx . Then,
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The proof of this statement can be found in [2].
We can now state the following result
Lemma 3.
Consider that we are given two sequences of length n

                                                       
2 iid stands for independent and identically distributed.
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contour being guaranteed by the comparison with the
same classes’ representatives (determined by the
segmentation algorithm).

3.4 Adaptive segmentation
Actual use of the segmented images for contour tracking
imposes stringent constraints on the complexity image
processing step. We defined an adaptive version of the
previous algorithm, which, starting from an initial full-
complexity step (the algorithm described in section 3.2),
adaptively updates the number of classes and their
representatives, accommodating slow variations of the
classes’ characteristics. Instead of starting form scratch at
each new image frame, the algorithm uses the prototypes
obtained in the previous frame, assigns the observed
types to one of them (according to minimal Kullback
divergence) and updates them. After convergence, the
classes are  tested for homogeneity, as explained in
section 3.2, and new classes are created if required. These
steps are repeated until the number of classes remains
constant.

3.5 Results
We present in this section results obtained with the
algorithm described in the previous subsection on real
underwater images taken with the ROV Phantom,3

equipped of a video camera pointing at the sea bottom.
The test set contains images from Villefranche-sur-mer,
in the south of France where only two classes are present
(sand and posidonia). The following images show the
results obtained: the first frame (where the intial
representation of the two classes present is learned) and
frames numbers

frame # 000.

                                                       
3 Phantom is a product of Deep Ocean Engineering, USA, and
has been available to the team working in projects Narval and
Sumare thanks to special educational arrangement.

frame # 050.

frame # 200.

4. Contour Tracker

The main objectives of the contour tracker are:

 (i) to maintain the vehicle at a constant
distance from the bottom (altitude
stabilization),

 (ii) to track the sea-bed boundary detected by
the image segmentation algorithm.

We consider that the vehicle body motion is
controlled  with the usual decoupled structure:

- altitude closed loop controller,
- heading closed loop controller,
- surge speed open loop controller.

Note that this control structure is justified for the
Phantom 500. This vehicle is equipped only with two
horizontal thrusters and a vertical thruster : the number of
actuators is smaller than the number of degrees of
freedom. Pitch, roll and sway dynamics are not controlled
but assumed to be intrinsically stable. The three thrusters
are speed controlled. The 3 decoupled design models for
the body motion are reasonably simple and capture the
main dynamical features of the vehicle dynamics. The
basic control structure (inner body motion control loops
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Figure 5: tracker control variables.

Figure 6: visual controller.
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5. Results from real experiments
The next images show frames recorded during a contour
tracking experiment at Villefranche-sur-mer, where the
robot follows a curved part of the boundary between
posidonia and sand.
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 5. Conclusions

In this paper we presented a novel algorithm for image
segmentation based on computation of local estimates of
the distribution of the intensity level of the image. The
algorithm is based on information theory concepts, and
automatically adjusts to the complexity of the observed
image estimating the number of classes present and their
characteristics. We also presented a companion contour
adjusting algorithm, which enables more precise
estimation of the regions’ boundaries. The detected
contour is the input to a contour tracking controller,
which issues the heading commands that keep the
observed contour in the visual field of the robot. Results
of the image segmentation on real images acquired in two
distinct environments, and of contour tracking in a real
underwater environment are presented, showing the
adequacy of the proposed approach.
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