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Abstract 
The paper presents signal processing and control 
algorithms that enable autonomous tracking of the 
boundaries between distinct benthic regions by an 
AUV equipped of a profiler sonar. A novel sonar 
classification algorithm is presented, which uses the 
signature of the ocean floor in the incoming 
profilers to discriminate between distinct materials. 
By exploiting sonar scans of the region below the 
robot, a classical control loop is closed around the 
sonar classifications, using a feedback signal that is 
robust with respect to classification errors'. 
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INTRODUCTION 
The ability to track natural boundaries defined in the 
ocean floor by distinct habitats is useful in several 
applications, either military (avoidance of dangerous 
operational regions) or civilian (physical 
oceanography studies, study of the evolution of 
biological species,...). In the past, we assessed the 
problem of boundary tracking using visual 
information [1]. However, use of video data in the 
ocean can be often compromised by lack of ambient 
light, or by water turbulence. A more robust 
alternative is the use of acoustic sensors. In this 
communication, we present work on the definition 
of signal processing and automatic control 
algorithms to implement a contour-tracking 
behavior based on the information provided by a 
mechanically scanning profiler sonar. 

ARCHITECTURE 
The underwater platform used in the study is the 
ROV Phantom,1 shown in Figure 2. This robot is 

                                                           
1 Phantom is a Remotely Operated Vehicle produced 

by Deep Ocean Engineering, USA, which has 
been made available for research in underwater 
robotics at I3S through a special educational 
arrangement. 

equipped of three thrusters, two allowing control in 
the horizontal plane (forward, reverse, turning) and 
another controlling the motion in the vertical plane 
(up/down motions), and of the following navigation 
and perception sensors: a magnetic compass, a rate 
gyro, a pressure (depth) gauge, an altimeter, a 
profiler sonar mounted on a tilt platform and a video 
camera. Moreover, each axis has been equipped of 
sensors allowing the measurement of the rotation 
speed of the corresponding motor shaft. The vehicle 
is linked to a dry-end operational station through an 
umbilical cable of about 120 meters, which allows 
remote automatic control of the robot. 
The software architecture of the complete system is 
spread over three distinct processors. On two 
personal computers run several threads that are 
dedicated to signal acquisition, high-level control 
and signal processing. Low-level control loops (the 
motor controllers, as well as basic heading, rate, 
depth, and altitude control loops) run in a 
specialized board, which accepts reference values 
from the two other processors. 
The Phantom is programmed through a specially 
designed user interface, which allows the definition 
of a mission as a sequence of basic parametrized 
tasks: go-to, visit a sequence of way-points, visual 
tracking and station keeping. The actual 
implementation of all these basic navigation and 
observation behaviours is the result of the European 
project NARVAL which finished in 2001, and was 
done in collaboration with other partners2. This 
paper concerns the definition of an additional 
behaviour: sonar tracking, i.e., the use of sonar 
information to guide an autonomous vehicle along 
the boundary between distinct habitats occupying 
the sea floor.  

                                                           
2 NARVAL (Navigation of Autonomous Robots Via 

Active Environmental Perception) was an 
ESPRIT-LTR project, partially funded by the 
European Community, whose leader was Instituto 
Superior Técnico. For more information, visit 
http://isr.ist.utl.pt 
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The implementation of this behaviour required the 
definition of two new software modules: the sonar 

classifier, whose goal is to associate a label kC  

(class) to each newly acquired profile kp , and the 
acoustic controller, whose responsibilty is to 

generate appropriate commands kr  that guide the 
robot along the contour between the distinct classes. 
The next two sections describe each of these two 
blocks, in bold in the Figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1. Signal processing and control 
architecture 

SONAR CLASSIFICATION 

The sensor 
The sensor used to scan the sea bed is a Tritech 
Seaking profiler Sonar. During our experiments, the 
following configuration has been used : 

• The sonar is mounted in the front of the ROV 
(see Figure 2). It is oriented towards the sea 
bottom and scans between +30° to 
mechanical step  0.9°. 

• Depth resolution: ± 0.02 m. 

• Frequency of the emitted signal: 1.2 MHz. 

• Beamwidth: 1.4° Conical 

 

 

 

 

 

 

Figure 2: The ROV and the exterioceptives 
sensors. 

The features 
The sea bottom observed at Villefranche-sur-mer 
presents only two classes: posidonia and sand. To 
perform pattern recognition, features must be 
extracted from the raw data.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Echoes received from posidonia and 
sand sea bottom. 

Method 
The segmentation algorithm exploits the fact that the 
sonar profiles corresponding to sea floor regions 
occupied by distinct materials (in our experiments 
we work in a boundary between sand and Posidonia) 
have distinct shapes. Discriminative features have 
been selected to describe each received profile, such 

that each complete profile kp  is reduced to a small 

set of parameters kf . In the current implementation 

kf is simply the energy of the profile around the 
detected maximum (see eq. 1). 
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The segmentation algorithm associates to each 

possible class iC  a probability distribution of these 

features, )|( ik Cfp , which is initially unknown. 
These probability distributions are learned 
dynamically by the algorithm described below. 
We first introduce some nomenclature and notation. 
Let X be a discrete random variable (rv) with 

probability space ( )PA,,Ω  where 

{ }Laaa ,,, 21 L=Ω  is the (finite discrete) 

realization space, A  is a sigma-field of subsets of 
Ω  and P  is a probability measure. We denote by 
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lower-case letters x the realizations of X . 

Consider a sequence { } n
n

n xxxx Ω∈= ,..,, 21
)( of n 

independent realizations of X. The type of )(nx , 

which we denote by [ ]1,0:)( aΩnx
ν is the 

empirical estimate of the probability law of X, and is 
given by: 
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Consider that we are given two sequences of length 
n: 

( ) ( ),,..,,.., 22
)(

211
)(

1 11 nn xxxandxxxx nn ==  

of iid discrete rv’s taking values in alphabet 

{ }:1,.., Laa=Ω , with L=Ω . The MDL (Minimum 

Description Length, see [2]) test for choosing 
between the two hypothesis: 
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The algorithm is copmposed of two steps: a learning 
phase, on which the platform autonomously learns 
the probability distributions that describe the classes 
present using the expressions given above, and a 
subsequent tracking phase during which the 
Bayesian test presented below uses the probabilistic 
model learned in the previous stage to assign a label 

kC to each received profile. 

Classification 
Association of each type iv  to a class k is made by 
choosing the class that minimizes the Kullback-
Leibler distance to the classes’ representatives: 

( ) ( )n
mi

m
ik DD ννν min* = . (5) 

The next section presents the contour tracking 
method using the segmentation of the sonar 
measures. 

CONTOUR TRACKING 
The role of the acoustic tracker is to use the 
information yield by the sonar classification 

algorithm, i.e., the sequence of indexes kC , to 
generate control signals for the robot lower level 
control loops. To minimize problems due to 
variability induced by changing observation 
conditions, we impose that the detected contours be 
observed at constant altitude. This reduces the 
control problem to guidance in the horizontal plane. 
Ideally, we want the robot’s center of gravity to 
describe a curve that is the parallel translation of the 
observed contour, whose shape is unknown. We 
have assessed the problem of contour tracking with 
an autonomous platform in [3], where it is shown 
that a classic proportional-derivative controller with 
suitably defined gains, and using an error signal that 
is the distance of the robot to the tracked contour in 
the direction horizontal to the tracked line, achieves 
the control objective of driving this distance to zero. 
In the application considered in [3], tracking of iso-
depth lines with a platform equipped of a single 
beam acoustic altimeter, this error signal is 
approximated proportional to the difference between 
the altitude of the tracked line and the measured 
altitude. The problem assessed here presents an 
additional difficulty: the sensor through which the 
contour is detected is discrete, giving only 
information about which side of the contour the 
robot is placed on, see Figure 4. In this sense, useful 
control information is concentrated only in the 
instants at which the detected class changes, 
indicating that the robot crossed the contour. 
Convenient design of control loops around discrete 
sensors (controllers that typically switch between 
saturation levels, along transition hysthereses) 
cannot be done using simple PID-like methods, and 
are prone to oscillatory behaviors. 
 
 
 
 
 
 
 
 
 

Figure 4 : Sensor information during acoustic 
tracking of a contour between two distinct sea 

bed habitats 

We use the ability of the sonar head to mechanically 
steer the sonar beam, to base control in a smoothed 

Ck=-1 

Ck=1 
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signal which allows a convenient level of 
performance. We briefly explain the methodology 
below. Consider that the sonar is made to 
periodically scan an angular sector ],[ φφ ∆∆−  with 

an angular resolution  sN/φδφ ∆= , in the vertical 
plane that passes through the center of sonar 
reference frame (orthogonal to the robot direction of 
motion).  
Ideally, in the absence of classification errors, and 
when the robot is perfectly aligned with the 
boundary (the center of the sonar reference frame is 
at the vertical of the contour) the detected signal will 
be a periodic signal that oscillates between +1 and 1, 

with a period equal to sN . The signal 
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is thus an indicator of the offset of the robot with 
respect to the boundary: it is equal to zero when the 
robot is centered on the contour, negative if it is on 
the left side of the boundary, and positive otherwise.  
We propose to use this “error” signal as a substitute 
for the continuous error distance that drives the iso-
depth line tracker in [3]. The discrete nature of this 
error signal prevents consideration of a derivative 
term in the control law. 
As it has been fully motivated in [3], the natural 
control input to track an horizontal line is to control 
the yaw rate of the vehicle, which is equivalent to 
controlling the curvature of the robot trajectory at 
each point. The output of our acoustic controller is 
thus the input  of the yaw rate controller, imposing 
an instantaneous rotation speed of the platform in 
the horizontal plane: 

ksk eKr =  (7) 

with ke  defined by eq. (6). 

 EXPERIMENTAL RESULTS 
We present below preliminary results using the 
algorithms presented in the previous sections. 

Segmentation 
Using the segmentation algorithm we detect 2 
classes. The histograms are estimated with a 
sequence composed of 50 measures (see figure 5). 
 

 

 

 

 

 

 

 

 

 

Figure 5: Estimated histograms for the 2 classes 
(yellow = sand and green = posidonia) and the 

mixture (red). 

Sonar scans and video images (2 images/sec) were 
recorded along the trajectory of the robot, driven 
manually along a boundary that crosses posidonia 
and sand regions. Off line, a mosaic of video image 
was created to enable evaluation of the classification 
result. The sonar scans are classified using the 
segmentation method. Profiles for which the 
maximum is less than the minimal distance of 0.4m 
were rejected, since they correspond to returns due 
to the crash-frame of the robot. This resulted in the 
elimination of 12.2% of the received profiles. Using 
the geometrical model that relates the sonar and 
video frames, we can superimposed the classified 
scans onto the mosaic images, as shown in figure 6. 
light points (yellow) correspond to sand, adn nedium 
gray (green) to Posidonia. The table below presents 
the classifier’s performance.  

Table1. Classification results 

 class sand class 
posidonia 

class sand 97.2 % 5.8 % 

class 
posidonia 

2.8 % 94.2 % 

As Figure 6 shows, the classifier has a stable 
behaviour, with large sections being assigned to the 
same class. The majorityof the errors contributing to 
the off-diagonal terns of the previous table are most 
probably due to misalignement of the sonar and 
video reference frames, induciung spurious errors in 
the boundaries. 
 
We do not have yet results of sea trials 
demonstrating the tracking performance under close 
loop of the complete system. We hope to be able to 
present experimental results of the complete system 
for the final version of the paper, and present below 
simulation results that illustrate the expected level of 
tracking performance. 
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Contour Tracking 
We performed simulations of the tracker described 
in the previous section, considering complete system 
simulation of the motion in the horizontal plane 
(including thruster dynamics and low level control 
loops). The robot was driven at a nominal surge 
speed of 0.5 m/s, control rate is 10 Hz, and sonar 
rate (rate of classified sonar profiles) is 20 Hz 
(operating height is 2 meters). Sonar scanning 

parameters are 5−=∆φ  and 9=sN . Controller 

gain is 01.0=sK . 
Figure 7 shows tracking under noiseless conditions 
(all profiles are correctly classified) of a contour of 
small curvature. The top plot shows the tracked 
contour line (solid black line) and the robot 
trajectory (in blue). The probed sea-floor points are 
shown in red. The central plot shows the evolution 

of the classification signal kC , which, as we see, 
oscillates between –1 and 1, indicating that the robot 
is well centered above the contour. Finally, the 

bottom plot shows evolution of the error signal ke . 
As we see, this signal oscillates around zero (the 
situation of perfect tracking). Figure 8 shows 
tracking of a contour with regions of larger 
curvature, using a scanned cone of larger angular 
aperture. 
In this last case, we can see distinguish an initial 
acquisition phase, during which the error signal 
saturates twice, followed by a period of effective 
tracking of the contour line. 
Figures 9 and 10 show tracking of a contour line 
under classification outliers (errors). The probability 
of error is the same for both classes, and is equal to 
0.1. We can see the more erratic aspect of the 

classification signal kC , and the irregular structure 

of the error signal `ke . Note the smoothing effect of 

the control signal, which is increased in the case of 
Figure 10, for which a wider scanning angle is used. 

CONCLUSIONS 
We presented below preliminary results on contour 
tracking using classified sonar profiles. Several 
future directions for improving performance are 
currently under study. One consists in considering 
simultaneous control of the robot’s yaw rate and 
surge speed. Indeed, at constant surge speed, 
controlling yaw rate is equivalent to controlling the 
curvature of the robot’s trajectory, which is equal to 
the ratio urk /= , where u is the surge speed. Since 
the robot’s rotational speed is bounded in absolute 
value, it may happen that to attain the desired 
rotational speed, it is necessary to decrease surge 
speed. Additionally, we are currently studying the 
use of more than a single feature to classify sonar 
returns, still using a non-parametric approach to 
modeling of the classes’ distributions. 
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Figure 6: Classification of sonar measures in 2 classes using the segmentation method. In yellow the 
classification into class sand, in green into the class posidonia. 
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Figure 7: Tracking a contour. 
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Figure 8: Tracking in noiseless situation. 
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Figure 9: Simulation under classification errors (Probability of error = 0.1). 
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Figure 10: Tracking under noise (larger scan, Probability of error 0.1). 

 
 
 


