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Abstract- We address the problem of surveying of oceanic
parameters using autonomous instrumented mobile platforms.
As an example, we consider the problem of current mapping in
coastal areas. We study the impact on survey efficiency of  using
a priori knowledge concerning the surveyed field for on-line
guidance of the sensors, as an alternative to the classical
approach of executing a predefined trajectory, or to the more
recently proposed perception-driven observation strategies.
Availability of this a priori model enables extrapolation of the
measurements, as well as the determination of the information
yield by future observations, allowing the search for the best
next observation point. In the paper, we present simulation
results of the proposed on-line guidance  based on information
gain, and compare its efficiency to standard survey strategies.

I. INTRODUCTION
In this paper we address the problem of autonomous
surveying of oceanic parameters using instrumented mobile
platforms. As an example, we consider the problem of current
mapping in coastal areas. Traditionally, surveys are
conducted along a series of regular transects covering the
region of interest, with inter-transect spacing being dictated
by the characteristic variations of the observed field. In this
paper we consider the case when a priori information
concerning the surveyed field exists - as a result of previous
surveys, or of mathematical models - and study the impact on
survey efficiency of use of statistical models learned from
this knowledge for on-line guidance of the sensors.
The rationale behind our approach is that most natural fields
of interest are strongly inhomogeneous, defining spatial
patterns dictated by the geographic and environmental
surrounding conditions. In this sense, of all possible spatial
variation patterns inside a given area, only a very limited
number actually occur, that is, the set of actual possible
observations has reduced dimensionality. This means that the
values of the field in some regions are highly correlated to its
values on some other regions, and thus observation of the
latter should allow its prediction over the former. In this case,
actually requiring the vehicle to cover both regions is a waste
of survey time and vehicle energy. As an alternative to
systematic covering of the region of interest, we propose to
use this a priori knowledge about the spatial correlation of
the observed field to guide the sensor, on-line, to the regions
that yield the largest information gain about the overall field,
or the feature of interest to the user.
A priori knowledge about natural fields usually exists in the
form of maps corresponding to different exogenous

conditions, representing a large amount of data. The first
problem for implementing on-line guidance based on this
information is its efficient representation. We propose to
compress it using the notion of field subspaces. Each map
(over a discrete grid) is represented as a column of a large
dimensional matrix collecting all available data. Singular
Value Decomposition of this matrix yields the low-
dimensional subspace on which all maps can be
approximated up to a given error: the field subspace. In our
study, we use 51 maps of the horizontal current components
at the mouth of the river Rhone, predicted by mathematical
models over a grid of 15x22=330 points. The identified field
has dimension 28, for an error of .05%, and can be further
decreased if larger uncertainty can be tolerated (this threshold
should be set according to accuracy of measurements).
Availability of this (linear) a priori model enables
extrapolation of the measurements in one sub-region to its
values on unobserved regions, as well as determination of the
associated uncertainty by simple matrix computations.
Moreover, the determination of the information yield by
future observations can also be determined, allowing the
search for the best next observation point. In the paper, we
present simulation results of the proposed on-line guidance
based on information gain, and compare its efficiency to
other survey strategies.
The paper is organized in the following way. In Section II we
assess the problem of knowledge representation, describing
the subspace model used. In Section III we present how this
model allows extrapolation of measures from one area to
another, and in Section IV how the information gain of each
observation can be determined.
Finally, we present in Section V an algorithm able to guide
the sensor to the most informative areas of the sampled
region, and in Section VI we present some conclusions and
ideas for future work.

II. KNOWLEDGE  REPRESENTATION
In this section we present the mathematical model of the a
priori knowledge about the observed field, extracted from
learning examples.

A. Prior Knowledge

As we said previously, we apply our approach to the
observation of current fields by an autonomous sensor. More
precisely, we consider the observation of the field of ocean
currents at the mouth of the Rhône river in the South-East of



France. The prior knowledge  consists on current maps over a
2215×  horizontal point grid under a variety of external

conditions (river discharge and wind strength and direction)
predicted by mathematical models. We have a total of 51
examples, corresponding to different combination of the
values of the control variables in the following table :

Wind
direct.
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Wind
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0 .05 .2 .4

River
Disch.

750 3000

B. Field subspace

A subset of the 51 maps provided by MUMM (10) has been
reserved to test the performance of the model. A reduced-
rank representation has been estimated by computing the
Singular Value Decomposition [2] of the 41660 × learning
matrix M:
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to the largest singular values define the field subspace
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effectively compressing the information in all the 41 660-
dimensional learning examples. Note that this represents for
this case an effective compression rate of about 36%. In the

previous equation, ⊥V is a matrix whose columns are

orthogonal to the vectors { }L

iiv 1= , representing the non-

modeled part of the field.
Using this  geometric model, we then infer a statistical a
priori model for the current vectors. By construction, the
elements of α are orthogonal, and have mean-square value
equal to the square of the corresponding  singular value.
Moreover, vectors α and ε are uncorrelated. To learn the
covariance matrix of vector ε, would require a huge number
of  learning examples. For this reason, we decided to model c
as a normal random vector, with mean value Vµα, where  µα 
is estimated as the sample mean using the 41 learning maps,
and covariance matrix
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where 1+Lλ  is the singular value associated to 1+Lν , which is
strictly larger than the true covariance. In this way, we are
sure that we do not overestimate the confidence that is
attached to the model learned  from prior knowledge.

C. Examples

Figure 1 shows one of the learning current fields (top plot)
and its projection on the estimated field subspace (bottom
plot). As expected the difference is not noticeable, and the
macroscopic geometric properties of the map have been
preserved.
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Fig. 1. Current field  for one of the learning examples (top)
and its projection in the field subspace (bottom).
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Fig. 2. Test field (top) and its projection on the field subspace
(bottom).



Figure 2 represents the same plots for one of the test fields,
not included in the learning set. Again, we see that the map
can be efficiently represented in the identified field subspace.

III. EXTRAPOLATION
The model described in the previous section allows the
extrapolation of measures taken over a limited given region,
yielding estimates of the current field over the entire grid. Let
z be a 2N dimensional vector of noisy  current measurements
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where pi are the points at which the measurements have been
taken. For simplicity, we consider all over this paper that the
observation points coincide with the grid points. This
condition can be relaxed with a slight increase in the
analytical complexity of the method. The observation noise n
has zero mean and known covariance matrix Σn, independent
of the order by which the points are visited. Note that this is a
realistic assumption in the case where the vehicle position is
obtained for instance by triangulation with respect to an
acoustic baseline array.
The observation vector z can be written in terms of the entire
current field as

nScz +=
where S is an 6602 ×N selection matrix, whose ith  and

(i+N)th rows are the Euclidean vector T
ipe )(  and T
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respectively.
The MAP (maximum a posteriori) estimate of the entire
vector is defined by
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The first factor, the likelihood of the observations given a
particular current field is a Gauss density of mean Sz and

known covariance matrix nΣ . The second term is the

statistical pdf learnt from a priori knowledge (gauss density

with mean αµ and covariance cΣ ) presented in the previous

section.
This statistical model yields the following unbiased estimate
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Note that  even if a single point is observed, i.e. N=1, we can
simultaneously update the entire current map.

IV. INFORMATION GAIN

The covariance matrix of this estimate (the variance of the
estimation error) is easily found to be given by
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showing how matrix S – the location of the observed points –
impacts the performance of the  overall estimated field.
The previous equations allows us to compute the information
gain yield by the observation of any individual grid point p .

In this way, we can determine which point will yield a larger
decrease in the error of the overall field estimate. The
numerical complexity of simultaneous determination of the N
points leading to the best performance (smaller covariance
matrix of the estimate) is prohibitive, even for off-line survey
design. We use a sub-optimal approach that consists in
determining these points iteratively, using a greedy strategy:
first the most informative point is found, assuming
observation at this point, the second best point is then
determined, and so on. There are several optimality criteria
that are typically used in the context of experience design, to
quantify what is meant by small covariance matrix [3]. The
most widely used criterion is by far the determinant of the
error covariance matrix. Using this criterion the iterative
search the next-best 40 points yield the map shown in Figure
3.

Fig. 3 : Information distribution.

In this plot, the (40) dark grid points surrounded by a white
line correspond to the most informative points, while the
background gray level represents the distribution of acquired
(new) information (darkest corresponding to strongest).
Using the 20 best points to observe the test field (not in the
learning set) represented on Figure 4  yields the global
(extrapolated) map shown in Figure 5.
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Fig. 4. True current field.



0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

Fig. 5. Estimated field using 20 measures.

The error distribution (in the same scale) is given in Figure 6.
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Fig. 6. Error field.

Note that the fact that the points were chosen to yield the
largest possible information gain, together with the structure
of the model built from the learning examples allow a very
rapid global assessment of the overall situation. Figure  7
represents, for the same example, the map extrapolated from
the 2 most informative points.
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Fig. 7. Map estimated from 2 most informative points.

V. INFORMATION GUIDANCE

In the previous section we saw that one can determine, prior
to any measurement, the best strategy to sample a given field.
However, in many situations, we may be interested in some
particular characteristic of the current field, for instance, the
lines of constant current intensity or of strongest variation. In
this case, as the simulations presented in a latter section
show, a rough global map can be obtained using a small
number of points, enabling guidance of the vehicle towards
the most relevant regions.
Below, we present our guidance approach in the context of an
iso-line acquisition mission: contour of constant current

intensity: teCc =2
.

A global on-line guidance criterion which would search, over
the entire set of grid points, for the one that yields a better
overall performance, can lead to an erratic path of the vehicle,
switching observation between regions of the workspace
widely spaced apart. Instead, we use a local criterion,
searching amongst the neighbors of the current point which
are also neighbors of the contour, for the one that optimizes
the quality of estimation of the contour point that is worst
estimated (min-max approach). The neighborhood considered
is expanded incrementally until at least one good candidate
point is found. Let p be the current point grid, and Ip the set of
neighbors of p which are also neighbors of the contour points
j. To each contour point j we associate the two grid points
(j1,j2) which are its closest neighbors (one on each side of the
contour). Let l  be the distance between the contour point and
point j1. This distance is a non-linear function of the North
and East components of the current estimates at j1 and j2, and
the determination of statistics of its error require intensive
numerical computations. By using a 1st order Taylor series
and neglecting the correlation between the estimates of the
two components of the currents, we can approximate
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where )(
21 ijj zΣ  is the covariance matrix of the error of the

intensity estimates at points j1 and j2 if point i is observed,
determined from the covariance of the horizontal and vertical
components (see Section IV) by neglecting their cross-
correlation.

The next point to be observed is then given by

)|(maxminarg* ijp
jpIi

Σ=
∈

.

In Figures 8-11 we show the evolution of the estimated
contour level using this strategy during an observation where

the goal is to map the iso-intensity line 14.0
2 =c .



The true current field used in the simulations shown below is
one of the 10 maps reserved for testing. The star in the plots
indicates the current vehicle position. The true contour is the
boundary of the gray area, and its estimate, obtained using the
prior model and all the observations up to the current one, is
drawn as a solid line. The hexagram  indicates the target
point, identified as the most informative with respect to the
neighboring region of the contour as explained above.  Figure
8 shows the estimated contour after a single random;y chosen
point has been observed. Since the vehicle is started in a very
uninformative region, the estimate is very poor.
We can see that our strategy effectively guides the vehicle
towards the most informative region, which it reaches after  5
observations, see Figure 9. The vehicle then follows an
almost linear path at the interior of the contour, until its
boundary is reached, see Figure 10, which shows the contour
estimated after 13 observations.  Note that at this point the
vehicle has already a good knowledge of the overall contour
shape. Our algorithm then guides the vehicle in a zig-zagging
path alternating on both sides of the contour.
Finally note that with only 27 a good global representation
has been obtained, see Figure 11. We stress that in this
example, the observations are contaminated by a strong level
of noise. This can be appreciated by the fact that the
estimated contour in the region actually observed is at a
considerable distance from the true one.
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Fig. 8. Initial contour estimation.

The efficiency of our approach should be contrasted to purely
perception-driven (not model-based) observation approaches.
Often, as in the example shown, the initial observation point
is not in the neighborhood of the feature of interest, and with
purely perception driven approaches the vehicle has no
information regarding its location. A random wandering
approach, or a systematic geometric pattern of search (e.g.,
spirals) must then be used to detect the region of interest, see
e.g. [1], penalizing the efficiency of the observation.
Moreover, we note that the use of a priori information
enables observation of the contour without requiring
oscillation of the vehicle on each side of the contour, as for
perception-guided control strategies [1], which are prone to
lost of tracking problems which decrease their performance.

VI. CONCLUSIONS
In this paper we presented an approach to the observation of
natural phenomena which combines on-line perceptual
guidance and a model-based approach. Note that our prior
knowledge is a statistical model, and should not be confused
with approximate (or partially known) deterministic prior
maps which are frequently used in the context of the
navigation of autonomous robots.
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Figure 9: Estimated contour (5 observation points).
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Fig. 10. Estimated contour (13 observation points).
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Fig. 11. Estimated contour (27 observation points).



For phenomena for which a considerable amount of prior
knowledge exists, for instance in the form of maps, we have
shown that it is possible to compress this information in such
a way that it can be used to extrapolate localized measures to
have a global estimate of the overall observed field. We
show, by simulation examples, that use of this extrapolated
global  maps can considerably increase the efficiency of
environmental surveys.
The work presented here considers several simplifying
assumptions and constraints that will be dropped in the
future. In particular, we constrained the observation points to
be identical to the grid points at which the learning maps are
defined. This constrain can be dropped with a corresponding
increase of the numerical complexity of the method, by
considering that the matrix S that defines the observation
vector is actually an interpolation matrix.
Our guidance strategy considers as candidate observation
points, the points in the immediate neighborhood of the
current point. Instead, a criterion combining distance to the
target point and the increase in performance that it yields can
be more efficient. We will analyze this possibility in the
future.
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