
 

Abstract--In this paper we present a novel approach to mobile
robot navigation in natural unstructured environments. Natural
scenes can be considered as random fields where a large number
of individual objects of random shape appear randomly
scattered in space. This randomness can be described by
statistical models. In this paper we use Random Closed Sets
(RCS) to model the random scattering and shape of the objects
observed, and base the navigation of a robot on maps of the RCS
model’s parameters. Contrary to the feature based approach to
robot navigation, this environment representation does not
require the existence of outstanding objects in the workspace,
and is robust with respect to small dynamic changes. We
address the problem of estimating the position of a mobile robot
assuming that the (statistical) map of the environment is
available a priori.  We also present an adaptive guidance
strategy that autonomously leads the robot to locations where
the perceptual observations result in the most efficient
reduction of its state uncertainty. Simulations demonstrate the
feasibility of our approach.

I. INTRODUCTION

There is a growing interest in the development of autonomous
underwater vehicles (AUV’s) for both military and civil
applications, such as sea-floor mapping and environment
monitoring. AUV’s offer a better alternative to human
intervention in ocean regions not easily accessible and for
long missions. The majority of the navigation systems of
AUVs currently in operation rely on the use of long baseline
(LBL) arrays of acoustic transponders or to periodic returns to
the surface for GPS fixes . These constraints violate the
covertness required by some military operations, or  imply
pre-mission tasks that increase the effective cost of each
operation. Moreover, for navigation in coastal areas, the short
height of the water column may severly degrade the
performance of LBL based systems. An alternative to these
approaches is to infer the robot’s positions from observation
of its environment. A number of robotic research teams have
addressed this problem, mostly considering in-door
environments.

While stable localisation methods have been proposed for
in-door robots, navigation of robots in natural environments
is still a challenge. We identify two reasons. First, we are
confronted with large scale open environments, that require
the ability to navigate to long distances. In the absence of
external position information, if pose estimation is based only
on dead-reckoning it results in an unbounded increase of the

estimation error. Perceptual information can be used in order
to overcome this limitation. The robot creates a map (or uses
an existing one), describing the workspace. This map, if it is
sufficiently rich, can be used maintain the uncertainty
affecting the robot’s position bounded during its entire
mission. The second point concerns the structure of the
environment. Natural scenes are highly unstructured, lacking
the geometric type of landmarks (spatially concentrated and
simple to describe) on which are based most indoor maps.

It is thus important to assess the question: “What is the
perceptual information that provides the best information for
pose estimation ?”. The most common approaches for
localising mobile robots are feature based, see e.g. [1][2].
Other methods use 3D elevation maps [11] (requiring non-flat
sea-bottoms), or the use of mosaics [3] based on visual
information (requiring flat bottoms). Localisation is basically
done by estimating the rigid motion that matches recently
observed features to those already contained in the map.

Natural environments have a random appearance. While in
structured environments it is possible to identify outstanding
features (that can be distinguished from neighbouring ones),
this is in general not possible in natural environments,
specially when the field of view is limited (myopic
perception) as it is the case in underwater robotics.
Mismatches due to unstable feature identification, or
sparseness of features, violate the basic assumptions behind
feature-based maps, and lead to the divergence of the
navigation systems that they support.

We propose a novel environment description suitable for
environments where identification of salient features is
difficult or impossible. Instead of creating a detailed
description of the environment as a collection of spatially
registrated features, we propose a representation by statistical
models that capture their local macroscopic characteristics.
These characteristics can be (i) the number of objects per unit
area, (ii) their spatial distribution, and/or (iii) the distribution
of basic local morphological attributes, such as shape, colour
or size. We consider this representation as an alternative to
other mapping approaches, which, if their underlying
conditions are satisfied, yield good results. The major
advantage of this representation is that it does not rely on
precise knowlegde of the position and shape of each
individual feature. Mismatch problems are thus eliminated,
and the representation is robust to distubances (small
displacement of objects, or shape deformations).

Another important topic on field robotics concerns the
efficient use of the environment  map. One of its important
utilisations is for path planning. An optimal path can be
chosen using a variety of criteria such as minimum path
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length or minimum uncertainty [13],[14]. For underwater
platforms, where the risk of loosing the platform is high, the
second criteria is in our opinion crucial [15]. Fully optimal
path planning in order to determine a (eventually large) set of
intermediate points is computationally heavy, since it imposes
search in a high dimensional. In this paper we present a 1-
step ahead predictor that guides the robot to the neighbooring
position where the information provided by the perceptual
observations is maximum.

The paper is organised as follows. In section II we motivate
our approach, and propose, in section III, the use of RCS
models as suitable descriptions of unstructured environments.
Sections IV and V give an overview of how RCS models can
be used for mobile robot navigation. In section VI we present
the information guidance strategy that leads the robot to the
most informative areas of the workspace, and in section VII
we present preliminary simulation results that validate our
approach. We finally draw some conclusions in section VIII.

II. ENVIRONMENT DESCRIPTIONS

A detailed  description of a mobile robot’s environment is not
required for its navigation. The two basic criteria for the
evaluation of mapping approaches are (i) simplicity of coding
(efficiency) and (ii) robustness of recognition (performance).
The entities represented in the map depend, naturally, on the
nature of the environment in which the robot progresses. The
approach that we present here has been motivated by the need
of navigating in underwater regions using visual observations
of the sea bottom, for which the relevant information is
contained in a 2D manifold (the ocean bed). It can, in
principle, be extended to other sensors such as sonar, by
modeling the random nature of the received signals.

In general, a partition of the robot's workspace can be
defined by associating to each point a mark belonging to a
limited number of classes. Indoor environments can e.g. be
classified into 'corridors', 'walls', 'doors', … For outdoor
environments plausible classes are: 'stones', 'sand', 'tree', etc.
This is a rather coarse classification, but still adequate for
navigation if the classes are chosen in an appropriate way.
This discretised description of the environment can be
mathematically represented as the union of compact sets:
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In the equation above K  is a family of compact sets (set of
possible shapes) and M is the mark space, designating the
class to which the set belongs (describing attributes other than
shape).

Without loss of generality, we assume that the center of

gravity of the sets iΞ  is at the origin. The sum ii p+Ξ
denotes the set iΞ  translated by the vector 2ℜ∈ip .

The sets iΞ  describe thus the morphological characteristics
of the objects (or patches) and ip  their locations in the
workspace. An example is shown in Fig. 1. Fig. 1(a) shows a
raw image of the sea bottom at the Orkney islands in the

north of Scotland, where the light regions of the image
correspond to dead  'Maerl' (coraline alga). This image shows
well the patchy nature of this natural field. The classified
version of this image ( M  contains just two classes) is
illustrated in Fig. 1(b).

Most of the current approaches to map-based navigation
would attempt to describe the individual features of this

image (shape and the location of each set iΞ )., If no
distinctive features can be detected, as it is the case for this
example, the association of recent obserations to the map is
prone to mismatch, leading to erroneous position estimates.
Alternatively, we considering that the patches form a random
pattern, which can be formally modelled using the notion of
random closed sets (RCS), and map just the statistical
characteristics of the sets { }ip and { }iΞ .

  
(a)                                                      (b)

Fig. 1  Image of  a ‘Maerl’ field, taken in the North of Scotland. (b) the
segmented image showing the random distribution of the patches.

III. MODELLING OF SCATTERED OBJECTS AS RANDOM

CLOSED SETS

Random closed sets are mathematical models appropriate for
modelling of random-like patterns. They have been frequently
used in biological and physical studies in order to analyse
natural patterns. Good introductions to this formalism can be
found in [4][5].

A random closed set (a collection of randomly shaped
compact sets, as given by equation (1)) is a doubly stochastic
process, also called germ-grain model. A first random point
process describes the spatial location of objects (germs),
denoted by ip  in equation (1), at which realisations of a
second stochastic process (grains) determine the local
morphology of the field, i.e. the characteristics of the sets iΞ .
The intersection between distinct patches can be non empty.
The distribution of the germs can, for example, be clustered,
structured or uniformly distributed, see Fig. 2.

We assume that the counting measure µ  associated to the
point process (germ model) is a member of a parameterised
family of distributions pG :

{ }Γ∈=∈ λµµ λ :pG ,

where Γ  is a compact set. The vector λ  is the collection of
parameters that determine the statistical distribution of the
locations ip . The shape process (grain model) constrains the
set of possible elementary shapes (e.g. to discs of random
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radius, lines of random orientation or mixtures of them).
Similarly to the germ process, we consider that the
distribution of the shapes can be parameterised by a finite
number of parameters γ , such that

{ }Λ∈=∈ Ξ λκκ γ :
0

G ,

where κ  is a probability measure over the space of possible
shapes, Λ is a compact set and 0Ξ is a random shape.
Different model types can be obtained by considering distinct
pairs of families OGGp Ξ,  (for instance, for pG : homogeneous
Poisson point process, regular pattern, etc., and for 0ΞG :
discs whose radii are uniformly distributed in an interval, line
segments of random length and orientation, etc.).

The random closed set model is thus given by the model type

),( )()(
, 0

ji
pji GGM Ξ= . A particular model jiMM ,∈  is specified by

the parameter vector ( )γλθ ,= , { }γλ κµθ ,)( =M , where
)(i

pG∈λµ and )(
0

jGΞ∈γκ .

The aim of the theory of random closed sets is to determine

the model type jiM , and the model parameter ( )γλθ ˆ,ˆˆ= , such

that an observed scene (inside an observation window (OW)

of size )(OWν , where ()ν is the Lebesgue measure) is a typical

realisation of the random closed set model jiMM ,)( ∈θ .

   
(a)                                       (b)

   
(c)                                       (d)

Fig. 2  Example of RCS models. with different point processes. (a) isotropic
boolean model, (b) anisotropic boolean model, (c) clustered distribution and (d)
regular distribution of the grains.

It is often difficult to obtain direct estimates of the counting
measures and of the morphological characteristics of the sets

iΞ  from classified images, especially when the elementary
grains iΞ may overlap, as illustrated in Fig. 2. Estimation of
the distributions of the germ and the grain processes by direct
identification of each individual shape is in these cases
impossible.

We exploit here an important property of random closed
sets [6], stating that the distribution of any general random
closed set is uniquely determined by the hitting capacity

which is, for each compact set K, the probability that the
intersection of  K with the RCS Ξ  is not empty:

K∈∀∅≠∩Ξ=Ξ KKPKT  ),(  )(
(2)

The important fact is that knowledge of the hitting
capacities for all K∈K is equivalent to knowledge of the
model parameter θ  (assuming the model type to be known).
In the case of isotropic models (θ  is independent of the
location and orientation of the observer) we know that

)()( pKTKT += ΞΞ . Under the assumption that the RCS
model is locally isotropic (inside the observation window
WO) we can obtain empirical estimates of the hitting
capacities from classified images.

For obvious reasons (limited computational capacities) we
are  able to estimate the hitting capacities only for a finite
collection of compact sets { }nn KKK ,,1 K= , which we call
structuring elements [7].

For some model types we can find analytical forms of
equation (2), allowing us to compute the hitting probabilities
in terms of the model parameters θ . This is the case for the
well studied boolean model. The germ process is a Poisson
point process, determined by the intensity parameter λ , and
the grains are i.i.d. realisations of compact sets. The hitting
capacity for boolean models can be shown (see [4]) to be

))),((exp(1)( 0 KEKT (⊕Ξ−−=Ξ νλ κ

where ⊕  is the Minkowski-addition { }BbAabaBA ∈∈∀+=⊕ ,, ,
(.)E  is the statistical expectation operator with respect to the

measure κ of the shape process and { }KxxK ∈−= ,
(

. In this
presentation of our approach to mobile robot. navigation we
concentrate on Boolean models. Ongoing work concerns
characterisation of other types of random closed set models as
those illustrated in Fig. 2  Example of RCS models. with
different point processes. (a) isotropic boolean model, (b)
anisotropic boolean model, (c) clustered distribution and (d)
regular distribution of the grains., in particular clustered
models, which seem good candidates to describe some kinds
of natural scenes.

In general, the shape and distributions of the objects

present change throughout the workspace, induced by varying

temperature, soil fertility, ocean current, etc. If these

variations are abrupt, we can partition the workspace into

disjoint areas kA  (see Fig. 3), whose macroscopic

characteristics are described by different types of statistical

models )(, θkk jiM :

),()(    ,  )()(

1
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where )(θkM is the model associated to area kA . To model

smooth variations of the field inside each region kA , we let

the model parameter θ  depend on the location x

Map:   ( ) kAxxxxx ∈=→   ;)(),(  )( γλθ .

(3)

The approach to navigation of robots in natural environments

proposed here considers that the map given in the previous

equation has been learned by (or given a priori to) the robot,

i.e., the robot knows the partition { }kA and the piecewise

continuous vector field defined by equation (3).

           

 
1A

2A

Fig. 3  The workspace is segmented in two areas. If the robot passes the
boundary, localisation is possible. In the case of large pose uncertainty the set of
possible locations (all along the boundary), is very large.

IV. MOBILE ROBOT NAVIGATION BASED ON RCS MODELS

We address now the problem of using the map defined in the
previous section to estimate the robot location. Local
observations provide useful information for localisation only
inside anisotropic areas of the RCS (the model parameter is a
function of the location). An anisotropic field is illustrated in
Fig. 2(b). In this case the pose error can be permanently
corrected and positioning uncertainty is kept bounded.
Accuracy of the localisation depends on the informativeness
of the field: strong variations of the field result in more
accurate pose estimates since distinction between different
locations inside the area is more accurate. If the areas kA  are
isotropic, localisation is only possible when the robot observes
a boundary between adjacent areas, indicated by an abrupt
change of the model parameter or of the model type (Fig. 2(a)
illustrates an isotropic field). The problem is that during
navigation inside isotropic areas the pose error growths
considerably leading to a large uncertainty when the robot
reaches the boundary, and ultimately resulting in a large set
of possible true locations along the boundary (ambiguity).
Most approaches to position estimation for mobile robots use
Extended Kalman filters, and must thus assume that the
observations are differentiable with respect to the robot‘s
state. Navigation between adjacent areas requires in this case
a first symbolic association step, prior to actual observations
filtering. We propose a method that does not rely on this two
step decomposition.

We first formulate the general framework of the Bayesian
approach to localisation. Assume that the dynamic model of
the robot's state kX and the observation model are known:

1111   ),( −−−− += kkkk wuXfX ,

(4)

kkk vXhY   )( += ,

(5)

where (.,.)f and (.)h are known (non-linear) functions,

CUCf →×: , ECh →: ,, where C is the configuration space

of the robot's state, U is the space of the control input, ku ,

E is the space of the perceptual observations and kkw ν,1−  are

uncorrelated, zero-mean white noises. The optimal MMSE

estimate of the robot's state given the past observations

{ },,,1 kk YYY K=  is given by the conditional mean

∫=
C

kkkkk dXYXpXX ,)(ˆ

where ( )k
k YXp |  is the posterior density, which can be

recursively updated by alternating prediction and filtering
steps:

)()()(
Filt.

1
Pred.

11 kkkkkk YXpYXpYXp →→ −−− .

(4)
The prediction step (convolution) propagates the probability
distribution in the state space according to the dynamic
model. If kY is the output of a memoryless observer, the
filtering step (pointwise multiplication) computes

).()()( 1 kkkkkk XYpYXpYXp −∝

The observations ( )kkk ZDY ,=  contain proprioceptive

observations kD  (velocity, heading,…) and measures kZ ,

obtained using perceptual sensors (vision, sonar,…). The

measures kZ  are in our case estimates of the hitting

capacities for a set of structuring elements nK . These

estimates are obtained directly from the classified images:

)}(ˆ,),(ˆˆ 1 nkkkk KTKTTZ K== . If we assume that, given the

robot’s state, the proprioceptive and the perceptual

observations are uncorrelated we obtain:

),)(ˆ()()( kkkkkk XTpXDpXYp θ=

since the observations kZ  depend on kX  only through the

parameters of the RCS model at that point. In order to use an

optimal filter we need to know the conditional

density ))(ˆ( kk XTp θ , which is, in general, not Gaussian.

The equations above define the general framework of

navigation using a Bayesian approach. In the actual state of

the work we are restricted to RCS models that are locally

(inside the observation window) isotropic. For these models
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grains are indicated), along with the location of the robot and
the position estimate (obtained by an EKF), indicated by a
large cross (with a large error, resulting from the previous
dead-reckoning period). The ellipse indicates the initial
uncertainty (predicted by an EKF)  and the square the area
that is observed by the camera.

Fig. 5  Realisation of a random field, where the change of the intensity of the
point process defines the frontier (indicated by the segments) between the areas.

A simulated (non-observed) ocean current perturbates the
nominal trajectory of the robot, resulting in an important drift
between the true position and its dead-reckoning estimate.
Throughout the trajectory, that was chosen in order to
guarantee that the frontier is crossed, images are acquired at
regular time intervals. The perceptual observations are
empirical estimates of the hitting capacity { })(ˆ 1KTZ kk = for a
single structuring element (square of side length 10) that are
directly obtained from the images based on a fixed number N
= 30 of samples.

The Gaussian mixture is triggered when the boundary lies
inside the significant support of the uncertainty of the EKF
estimate. The uncertainty support ( σ3 ) is  indicated by the
thin ellipsis. The terms of the Gaussian mixture are indicated
in Fig. 6 by the plus signs and the boundary of the principal
support (coverage %99 ) of the posterior density is indicated
by the thick line (initially Gaussian). The mean of the
mixture (the Minimum Mean Square Error estimate) is
shown as a large circle and the trajectory (in the subsequent
figures) in shown as a dashed line.

Fig. 6  Creation of the Gaussian Mixture Model. The terms are indicated by the
plus signs.

At each iteration the robot searched for the optimal control
input, restricted to those driving the robot inside a cone in
front of the robot. The angular aperture of the cone was
restricted to 90 degrees and the most distant position was at
70 (the size of the observation window, indicated by the large
square is 260x260). It should be noted that due to the
stochastic nature of the observations (see figure Fig. 4 for the
uncertainty of the observed hitting capacities), the effective
uncertainty reduction does not coïncide with the predicted
one. Fig. 7 shows, however, that the effective mean square
error follows well the predicted error throughout the whole
trajectory.

0 5 10 15 20 25 30 35 40
0
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10

12
x 10
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Iteration

Effective mean square error
Predicted mean square error

Fig. 7 The effective mean square error after application of the optimal action is
close to the predicted error.

        
Fig. 8 Observations of the scene (a) inside area 1, (b) on the boundary, (c) inside
area 2.
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The progression of the robot is illustrated in Figures 8,9
and 10 for three iterations. The typical images of the field
(inside area 1, on the boundary and inside area 2) obtained by
the simulated camera are indicated in Fig. 8. Due to the
optimal control input the robot is driven in direction of the
boundary (Fig. 9), where the information gain of the perceptual
observations is maximal. Upon reaching the boundary, the
uncertainty reduction, illustrated by Fig. 10 and Fig. 7 (around
iteration 15), is considerable. The robot maintains then its
trajectory along the boundary (in an oscillating manner), as
illustrated in Fig. 11. The uncertainty (perpendicular to the
boundary) remains boundded. This is not the case for the
uncertainty in the direction of motion of the robot. In order to
reduce this uncertainty, the best action to be performed is to
turn and to go back to the corner. In the actual
implementation we restricted the control to movements in
front of the robot (taking roughly into account the dynamic
contraints of the vehicle), precluding thus backward motion.
However there is no conceptual difficulty in predicting the
optimal position in a circular region around the robot and
perform local path planning to drive the robot to that
position.

Fig. 9  The simulated robot is located at the boundary. The estimate of the
gaussian mixture filter can exploit the perceptual observations, while the EKF
estimate predicts a null gain

Fig. 10  The simulated robot passed entirely to the second area (lower intensity).
At this step (compare with the previous figure) the uncertainty reduction is most
significant. The scaling parameter of the terms still located in the area with the
larger intensity is close to 0 and can be removed from the mixture.

Fig. 11  The robot maintains its trajectory  on the boundary, since it provides the
best information. The pose error of the EKF estimate has grown throughout the
whole trajectory (the pose estimate is no longer inside the figure).

VIII. CONCLUSIONS

In this paper we propose a novel environment description
for robot navigation, using the formalism of random closed
set models. These models capture the principal characteristics
of  natural environments. The approach was motivated by the
fact that identification of outstanding features, on which the
majority of existing approaches to robot localisation is based,
is not always possible. Description by statistical models does
not rely on the identification of outstanding features and
knowledge of their exact location (or shapes) is not required,
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resulting in increased robustness with respect to small
changes.

 We present approximate expressions that enable definition
of an approximation of the Bayesian estimator of the robot
state for RCS models. We addressed the problem of ambiguity
in the workspace, precluding the use of a simple EKF, when
uncertainty of the estimated pose is very large. An approach
that is related to multiple hypothesis, the Gaussian mixture
model, is proposed and its feasibility is demonstrated by
simulation results. In order to use the RCS map in an efficient
way we propose an observation strategy that drives the robot
to locations inside the workspace where the information
provided by the perceptual observations results in the most
significant reduction of uncertainty.

A series of open problems must still be studied more
thoroughly. In particular, we need to handle more complex
RCS models which are good candidates to describe real
environments. We focus our attention especially on clustered
or regular distributions of the grains. Approximate analytical
expressions for the hitting capacities need to be found for
these models. Another issue concerns the Gaussian mixture
model. In particular we need to add additional terms (a split
of significant ones) to the mixture in the case where the
linearisation is no longer valid. Close terms can on the
contrary be fused in order to reduce the complexity of the
filter. Fusion must not result in a decrease of uncertainty.
Finally the problem of joint mapping and localisation for this
kind of environment representations must be addressed in
order to realise fully autonomous progression of a robot in a
priori unknown environments: the robot must be able to
simultaneously estimate the map (the model type along with
the model parameter) and its position, using the
autonomously created map.
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