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Abstract

Boolean networks are discrete dynamical systems extensively used to model biological regulatory networks.
The dynamical analysis of these networks suffers from the combinatorial explosion of the state space, which
grows exponentially with the number n of components. To face this problem, a classical approach consists
in deducing from the interaction graph of the network, which only contains n vertices, some information
on the dynamics of the network. In this paper, we present results in this topic, mainly by focusing on the
influence of positive and negative feedbacks.
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1 Introduction

Biological regulatory networks model the influence of biological components between
each other. While such relations can be deduced through experiments by biologists,
such systems can raise complex global dynamical behaviours and motivate the use
of formal verification techniques to validate a model, and predict and understand
particular behaviours, such as proteins productions dynamics [9,8].

Boolean Networks (BNs) are a typical formalism used to model biological reg-
ulatory networks dynamics (see the seminal work of Stuart Kauffman [19,20] and
René Thomas [46,48]). A BN associates to each component a Boolean value and a
local logical function describing its evolution in front of the value of other compon-
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ents of the network. The global dynamics is then a Boolean map applying the local
functions on component values, with different settings of iteration schemes.

Because the size of the state space is exponential with the number of components,
classical analysis, such as model-checking techniques, may be intractable with large
systems. To cope with this combinatorial explosion, an amount of work establish
relationships between the interaction graph of a BN and some properties on the
dynamics. An interaction graph references the positive and negative influences
between components into a signed directed graph having one vertex per component;
and hence is a compact and static abstraction of BN dynamics.

This paper aims at giving an insight of the different results on the relationships
between the interaction graph and the dynamical properties of BNs. These kinds of
results are of particular interest in the modelling of regulatory networks: those inter-
action graphs are generally the most reliable information on the biological system,
while few knowledge on their precise behaviours are available.

This paper is structured as follows. Sect. 2 presents the main definitions used in
this paper. Sect. 3 details the major results extracting dynamical properties of a BN
from the topology of its interaction graph. Finally, we discuss these state-of-the-art
approaches, and mention other static analysis techniques for BNs in Sect. 4.

2 Definitions

Notations. Let n be a positive integer, [n] = {1, . . . , n}, and B = {0, 1}. The ith
component of a point x ∈ Bn is denoted xi. If I ⊆ [n], then xI denotes the point
y ∈ Bn such that yi = 1 − xi if i ∈ I, and yi = xi otherwise. x is an abbreviation
for x[n], and if i ∈ [n], we write xi instead of x{i}. For all x, y ∈ Bn, we denote by
∆(x, y) the set of i ∈ [n] such that xi $= yi. Let f : Bn → Bn. The ith component
of f(x) is denoted fi(x). Hence, fi may be seen as a function from Bn to B. For all
x ∈ Bn, we set ∆f(x) = ∆(x, f(x)). Observe that f(x) = x∆f(x).

2.1 Boolean networks

A Boolean network is a discrete dynamical system that consists in a collection
of n Boolean components evolving along a discrete time by mutual interactions.
Dynamics of such a system are usually described by a directed graph on Bn that is
constructed from a Boolean function f : Bn → Bn. Several iteration graphs can be
considered. In the scope of this paper, we focus on the synchronous, asynchronous
and generalized iteration graphs.

Definition 2.1 [Iteration graphs]

• The synchronous iteration graph of f , denoted by sig(f), is the directed graph
on Bn that contains an arc x → y if and only if y = f(x) $= x.

• The asynchronous iteration graph of f , denoted by aig(f), is the directed graph
on Bn that contains an arc x → y if and only if there exists i ∈ ∆f(x) such that
y = xi.
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• The generalized iteration graph of f , denoted by gig(f), is the directed graph
on Bn that contains an arc x → y if and only if there exists a non empty set
I ⊆ ∆f(x) such that y = xI .

On the one hand, Kauffman [19,20] proposed to model gene (regulatory) net-
works with synchronous iteration graphs. One the other hand, Thomas [46,48,49]
argued that it is unlikely that several components change simultaneously their value,
and he proposed to model gene networks with asynchronous iteration graphs. In
constrast with the synchronous description, the asynchronous description is inde-
terministic: a state x may have several successors (the number of successors of x is
precisely |∆f(x)|). An other interesting feature of the asynchronous description is
that it can been seen has a relevant approximation of continuous descriptions based
on piece-wise linear differential systems [12,11,40,48,42]. Note that the generalized
iteration graph contains, as subgraphs, both the synchronous and asynchronous
iteration graphs.

In these three cases, the interpretation of f : Bn → Bn as a gene network is the
same: [n] corresponds to a set of genes, and at state x ∈ Bn: the protein encoded by
the ith gene is present if xi = 1 and absent otherwise, and the ith gene is expressed
(“on”) if fi(x) = 1 and unexpressed (“off”) otherwise. Hence, the gene expressions
depend on the “proteins concentration”, and the evolution of these concentrations
depends on the gene expressions.

Example 2.2 [Running example] n = 3 and f is defined by:

f1(x) = x3 ∧ (x1 ∨ x2), f2(x) = x3, f3(x) = x1 ∨ x2 ∨ x3.

The synchronous, asynchronous and generalized iteration graphs of f are:

2.2 Fixed points and attractors

A point x ∈ Bn is a fixed point of f if x = f(x). Fixed points are of particular
interest, since they correspond to stable states (in each iteration graph, x is a fixed
point of f if and only if it has no successor). In the context of gene networks, fixed
points correspond to stable patterns of gene expressions and are often associated to
particular biological functions. In the next definition, the notion of fixed point is
extended to the one of attractor.
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Definition 2.3 [Attractors] Let Γ be the synchronous, asynchronous or generalized
iteration graph of f . The attractors of Γ are the smallest non empty subsets A ⊆ Bn

without leaving arc, i.e. such that for every arc x → y in Γ, if x ∈ A then y ∈ A.
An attractor of cardinality at least two is said cyclic.

It derives that a cyclic attractor does not contain any fixed point. As a con-
sequence, once a system is inside a cyclic attractor, it cannot reach a fixed point, and
it necessarily describes sustained oscillations. Other easy observations on attractors
follow.

Proposition 2.4 A point x is a fixed point of f if and only if {x} is an attractor
of Γ. The non-cyclic attractors of Γ can thus be identified to the fixed points of f .
Also, for every x in Bn, there exists at least one path starting from x that reaches
an attractor. Consequently, Γ has always at least one attractor.

Example 2.5 [Running example continued] The attractors of aig(f) and gig(f)
are the fixed point 000 and the cyclic attractor {001, 011, 101, 111}. The attractors
of sig(f) are the fixed point 000 and the cyclic attractor {011, 101, 111}.

2.3 Interaction graphs

Inherent to the notion of Boolean network is the one of interaction graph. Such a
graph depicts, in a very coarse way, the qualitative interactions between components,
and is usually represented as a directed graph with [n] as vertex set. An arc from j

to i then means that the evolution of the ith component depends on the evolution of
the jth one. Here, we consider two kinds of interactions: the positive and negative
ones. This hence leads us to consider signed directed graphs.

Definition 2.6 [Signed directed graph] A signed directed graph on [n] is a graph
G whose the set of vertices is [n], and whose the set of arcs is a subset of [n] ×
{+,−}× [n]. If (j, s, i) is an arc of G, we say that G has an arc from j to i of sign
s. G is simple if, for every i, j ∈ [n], there exists at most one arc from j to i. A
positive (resp. negative) cycle of G is an elementary directed cycle that contains an
even (resp. odd) number of negative arcs. The length of a cycle is the number of
arcs it involves.

We are now in position to define, in a natural way, the interaction graph of a
network whose the dynamics are described from f : Bn → Bn.

Definition 2.7 [Interaction graph of f ] The interaction graph of f , denoted by
G(f), is the signed directed graph on [n] defined by: for all i, j ∈ [n], there exists
a positive (resp. negative) arc from j to i if and only if there exists x ∈ Bn with
xj = 0 such that fi(x) < fi(xj) (resp. fi(x) > fi(xj)).

In other words, there exists a positive (resp. negative) arc from j to i if, in at
least one state x, an increase of xj induces an increase (resp. decrease) of fi(x), i.e.
the appearance of the jth protein turns on (resp. off) the ith gene.
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Example 2.8 [Running example continued] The interaction graph of f follows. It
has a negative cycle of length one, and a positive cycle of length one, two and three.
Note also that it is simple.
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3 Static analysis based on the interaction graph

3.1 Absence of cycle and convergence toward a unique fixed point

The following fundamental fixed point theorem of Robert [34,35] shows that the
presence of a cycle in the interaction graph is necessary to prevent a simple syn-
chronous convergence toward a unique fixed point.

Theorem 3.1 If G(f) has no cycle, then f has a unique fixed point x, and every
path of sig(f) reaches this fixed point (in at most n steps).

This convergence result was latter proved for asynchronous iteration graphs by
Robert [36], and for generalized iteration graphs by Bahi and Michel [5] (actually,
these authors proved the convergence for a much more general class of iteration
schemes that include delays of communication between components).

Theorem 3.2 If G(f) has no cycle, then f has a unique fixed point, and every path
of gig(f) reaches this fixed point.

3.2 Absence of positive cycle and upper bound on the number of fixed points

In 1980, Thomas stated the following general rule: a necessary condition for a
dynamical system to admit several stable states is the presence of a positive cycle in
its interaction graph [47]. In the context of gene networks, one can interpret this rule
as follow: positive cycles are necessary for differentiation processes [48]. This rule
was first formally stated and proved in continuous frameworks [27,41,17,6,43,44]. A
Boolean version of Thomas’ rule have then been stated and proved by Remy, Ruet
and Thieffry [28].

Theorem 3.3 If G(f) has no positive cycle, then f has at most one fixed point.

The following theorem, established in [33], shows that positive cycles are more
generally necessary for the presence of several asynchronous attractors.

Theorem 3.4 If G(f) has no positive cycle, then aig(f) has at most one attractor.

This theorem is not valid in the synchronous case. Also, since aig(f) has always
at least one attractor (cf. Proposition 2.4), the theorem remains valid if “at most
one” is replaced by “a unique”. Finally, using it as a base case, one can obtain an
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upper bound on the number of asynchronous attractors that only depends on the
structure of connections between positive cycles [3,2,30].

Theorem 3.5 Let I be a subset of [n]. If every positive cycle of G(f) has a vertex
in I, then aig(f) has at most 2|I| attractors.

If G(f) has no positive cycle, then I = ∅ satisfies the conditions of the statement,
and the resulting upper bound is one (hence, Theorem 3.5 generalizes Theorem 3.4).
The bound shows that it is not the number of positive cycles which is important
to obtain several fixed points (or asynchronous attractors), but much more the
structure of the connections between positive cycles. For instance, if G(f) has a
thousand of positive cycles, and if all these cycles share a same vertex i, then I = {i}
satisfies the conditions of the statement, and the resulting upper bound is only two.
In other words, in order for f to have a lot of fixed points, G(f) has to contains a
lot of “rather disconnected” positive cycles.

We have seen that if G(f) has no positive cycle, then f has at most one fixed
point. The following theorem of Aracena [3,2] shows that, under a very weak addi-
tional condition, f has actually no fixed point.

Theorem 3.6 If G(f) has a minimal in-degree at least one and has no positive
cycle, then f has no fixed point.

Aracena proved this theorem under the additional assumption that G(f) is
simple, but this condition can be easily removed. Now, observe that this theorem
implies quite directly Theorem 3.3. Indeed, suppose that G(f) has no positive cycle.
If G(f) has a minimal in-degree at least one and has no positive cycle, then by The-
orem 3.6, f has no fixed point. Otherwise, there exists a vertex, say n without loss
generality, of in-degree zero in G(f). So fn = cst = c. Let h : Bn−1 → Bn−1 defined
by hi(x) = fi(x, c) for all x ∈ Bn−1 and i ∈ [n− 1]. It is easy to see that G(h) is a
subgraph of G(f). So G(h) has no positive cycle, and proceeding by induction on
the number of components, one obtains that h has at most one fixed point. Since
it is clear that h and f have the same number of fixed points, we deduce that f has
at most one fixed point.

3.3 Absence of negative cycle and lower bound on the number of fixed points

Thomas also stated a general rule on negative cycles: a necessary condition for a
dynamical system to produce sustained oscillations is the presence of a negative cycle
in its interaction graph [47]. In the context of gene networks, one can interpret this
rule as follow: negative cycles are necessary for homoeostasis phenomena [48]. The
next theorem, proved in [31], may be seen as a Boolean version of second Thomas’
rule (and it is not valid in the synchronous case).

Theorem 3.7 If G(f) has no negative cycle, then aig(f) has no cyclic attractor.
Hence, if G(f) has no negative cycle, then f has at least one fixed point.

The second assertion is a consequence of the first one, since if G(f) has no
negative cycle, then aig(f) has no cyclic attractor, and since aig(f) has always
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at least one attractor, we deduce that aig(f) has an attractor of size one, which
is a fixed point of f (cf. Proposition 2.4). In [16], Goles and Salinas provide an
algorithm with running time O(n2) to compute, under the absence of negative cycle
in G(f), a fixed point of f (in the general case, the problem of finding a fixed point
is NP-complete).

Note that Theorems 3.3 and 3.7 provides a nice “proof by dichotomy” of (the
first assertion in) the theorem of Robert (Theorem 3.1): if G(f) has no cycle, then
following Theorem 3.3 (resp. 3.7), f has at most (resp. at least) one fixed point, so
f has indeed a unique fixed point.

While Theorem 3.6 provides a sufficient condition for the absence of fixed point in
term of absence of positive cycle, the following theorem, also established by Aracena
[3,2], provides a sufficient condition for the presence of multiple fixed points in term
of absence of negative cycle.

Theorem 3.8 Let G(f)∗ be the signed directed graph on [n] that contains an arc
from j to i of sign s if G(f) has an arc of sign s from j to i or from i to j. If G(f)
is simple, has a minimal in-degree at least one, and if G(f)∗ has no negative cycle,
then there exists x ∈ Bn such that x and x are fixed points of f .

It is easy to see that if G(f) is strongly connected and has no negative cycle,
then G(f) is simple, has a minimal in-degree at least one, and G(f)∗ has no negative
cycle. Hence, the next theorem is a consequence of the previous one.

Theorem 3.9 If G(f) is strongly connected and has no negative cycle, then f has
at least two fixed points.

The following theorem, established in [26], generalizes Theorem 3.8 by charac-
terizing the number of topological fixed points of f , i.e. the number of fixed points
of f that only depend on G(f).

Theorem 3.10 Let G(f)# be the signed directed graph on [n] that contains an arc
from j to i of sign s if and only if G(f) has an arc from j to i of sign s and no
arc from j to i of sign −s. Let G(f)∗ be as in Theorem 3.8. Let us say that x is a
topological fixed point of f if it is a fixed point of every function h : Bn → Bn such
that G(h) = G(f). We have the following two properties:

• Let p be the number of connected components in G(f)#. If the following three
conditions are satisfied then f has exactly 2p topological fixed points, and other-
wise, f has 0 topological fixed point: (i) the minimal in-degree of G(f)# is at least
one; (ii) G(f)∗ has no negative cycle; (iii) for every i ∈ [n], there exists at most
one j ∈ [n] such that G(f) has both a positive and a negative arc from j to i.

• If x is a topological fixed point of f , then x is a topological fixed point of f .

Note that if G(f) is simple, then G(f)# = G(f) and the third condition is
trivially satisfied. We then recover Theorem 3.8.
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3.4 Comparison of iteration graphs

As said above, there are two principal iteration graphs used to model BNs dynam-
ics, the synchronous and asynchronous ones. It is then of great interest to try to
compare them. There are very few results in this topics. However, Noual [23] re-
cently established the following fundamental theorem, which shows that under some
conditions on the cycles of G(f), every path of the generalized iteration graph, and
in particular every path of the synchronous iteration graph, can be “imitated” by
at least one path of the asynchronous iteration graph. Other results concerning
comparison of iteration schemes are provided in [45,36,15,4]

Theorem 3.11 Assume that G(f) is simple, has no positive cycle of even length,
and has no negative cycle of odd length. If gig(f) has an arc x → y, then aig(f)
has a path from x to y of length |∆(x, y)|. Hence, the number of attractors in gig(f)
and sig(f) is at least the number of attractors in aig(f).

3.5 Network reduction

Since the number of possible states of a BN increases exponentially with the number
n of components, it is interesting to try to reduce the system, typically by removing
components, without losing too many dynamical properties. The following theorem,
stated with other notations in [21], shows that if the nth component does not inter-
act with itself, it can be suppressed in a natural way, without affecting the number
of fixed points, the reachability by asynchronous paths, and the main features of
the interaction graph. (For sake of simplicity, this theorem only deals with the sup-
pression of the nth component, but it can be very easily adapted to the suppression
of any component.)

Theorem 3.12 Let f̃ : Bn−1 → Bn−1 be defined from f : Bn → Bn by:

∀x ∈ B
n−1, ∀i ∈ [n− 1], f̃i(x) = fi(x̃), x̃ = (x, fn(x, 0)) ∈ B

n.

If G(f) has no arc from n to itself, then the following three properties hold:

• A point x is a fixed point of f̃ if and only if x̃ is a fixed point of f . As a
consequence, f̃ and f have the same number of fixed points.

• aig(f̃) has a path from x to y if and only if aig(f) has a path from x̃ to ỹ.
As a consequence, the number of attractors in aig(f̃) is at least the number of
attractors in aig(f).

• If G(f̃) has a path from j to i with an even (resp. odd) number of negative arcs,
then G(f) has a path from j to i with an even (resp. odd) number of negative
arcs. As a consequence, if G(f) has no positive (resp. negative) cycle, then G(f̃ )
has no positive (resp. negative) cycle.

Note that this theorem gives another way to prove the (first assertion in the)
theorem of Robert (Theorem 3.1). Indeed, suppose that G(f) has no cycle. Then
it has no arc from n to itself, so f̃ and f have the same number of fixed points,
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and G(f̃ ) has no cycle (according to the third point). Using an induction on the
number of components, we deduce that f̃ has a unique fixed point, so that f has a
unique fixed point.

4 Discussion

We have presented several results related to the static analysis of BNs through the
topological analysis of their interaction graphs. First, we have seen that cycles
are necessary to obtain “complex behaviours” (Theorems 3.1 and 3.2). Then, by
focusing on positive and negative cycles, we have seen that necessary or sufficient
conditions for the presence of several attractors or the presence of cyclic attractors
can be obtained (Theorems 3.3-3.10). We have also seen that conditions on cycles
permit to obtain results about the comparison of iteration schemes or the model
reduction (Theorems 3.11 and 3.12).

For the sake of simplicity, we restricted ourself to the Boolean case and results
concerning the global interaction graph. However, Theorems 3.1-3.5, 3.7 and 3.12
have extensions to the non-Boolean discrete case and/or generalizations in terms of
local interaction graphs [34,36,5,38,37,28,33,29,30,31,32].

All the topics regarding the static analysis based on interaction graphs have not
been covered in this short survey. In particular, a lot of works have been dedicated
to the length of synchronous attractors [14,45,13,7,10,18,15].

With the aim at making tractable the computation of more precise dynam-
ical properties from BNs, recent work investigate the use of other static analysis
techniques. For instance, Naldi et al. [22] propose to represent each function gi
defined by gi(x) = 1 iff fi(x) = xi with a binary decision diagram; leading to
an efficient enumeration of all fixed points of f through algebraic operations on
the n resulting decision diagrams. Paulevé et al. developed the Process Hitting
framework into which over-approximations of asynchronous dynamics of BNs can
be encoded. By using abstract interpretation techniques, very efficient over- and
under-approximations of particular reachability properties within Process Hitting
models have been built [24,25], having hence applications to reachability (static)
analysis within BNs.

Overall, a large variety of properties can be statically derived from BNs. The
extension of the presented topological analysis of the interaction graph to other
modelling frameworks for biological regulatory networks is yet challenging. While,
as mention above, several important results have already been extended to discrete
networks, the new degree of freedom brought by discrete modelling prevents the
straightforward extension of many results on BNs without imposing constraints on
possible logical expressions (such as Theorems 3.6 and 3.8). Finally, the efficient
quantification of dynamical properties within hybrid models extending discrete net-
works with time or stochastic features [39,1,50] calls for innovative static analysis
techniques.
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[24] Paulevé, L., M. Magnin and O. Roux, Abstract Interpretation of Dynamics of Biological Regulatory
Networks, Electronic Notes in Theoretical Computer Science 272 (2011), pp. 43–56, proceedings of The
First International Workshop on Static Analysis and Systems Biology.
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[37] Shih, M.-H. and J.-L. Dong, A combinatorial analogue of the jacobian problem in automata networks,
Advances in Applied Mathematics 34 (2005), pp. 30–46.

[38] Shih, M.-H. and J.-L. Ho, Solution of the Boolean Markus-Yamabe problem, Advances in Applied
Mathematics 22 (1999), pp. 60–102.

[39] Siebert, H. and A. Bockmayr, Incorporating time delays into the logical analysis of gene regulatory
networks, in: C. Priami, editor, Computational Methods in Systems Biology, Lecture Notes in Computer
Science 4210, Springer Berlin / Heidelberg, 2006 pp. 169–183.

[40] Snoussi, E., Qualitative dynamics of a piecewise-linear differential equations : a discrete mapping
approach, Dynamics and stability of Systems 4 (1989), pp. 189–207.

[41] Snoussi, E., Necessary conditions for multistationarity and stable periodicity, Journal of Biological
Systems 6 (1998), pp. 3–9.

[42] Snoussi, E. and R. Thomas, Logical identification of all steady states : the concept of feedback loop
caracteristic states, Bull. Math. Biol. 55 (1993), pp. 973–991.
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