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Abstract: Shih and Dong have proved a boolean analogue of the Jacobian problem: if a

map from {0, 1}n to itself has the property that all the boolean eigenvalues of the discrete

Jacobian matrix of each element of {0, 1}n are zero, then it has a unique fixed point. In

this note, this result is extended to any map F from the product X of n finite intervals of

integers to itself. Our method of proof reveals an interesting property of the asynchronous

state graph of F used to model the qualitative behavior of genetic regulatory networks.
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1 Introduction

In the course of his analysis of discrete iterations, Robert introduced a discrete Jacobian

matrix for boolean maps and the notion of boolean eigenvalue [2, 3, 4, 5]. This material

allows Shih and Ho to state in 1999 a boolean analogue of the Jacobian conjecture [7]: if a

map from {0, 1}n to itself is such that all the boolean eigenvalues of the discrete Jacobian

matrix of each element of {0, 1}n are zero, then it has a unique fixed point. Thanks to the

work of Shih and Dong [6], this conjecture is now a theorem.

In order to extend this theorem from the boolean case to the finite discrete case, we

introduce here a discrete Jacobian matrix for maps from the product X of n finite intervals

of integers to itself which generalizes the Robert’s one. More precisely, given a map F from

X to itself, we define a discrete Jacobian matrix F ′(x, v) depending on an element x ∈ X

and a variation vector v ∈ {−1, 1}n such that x + v ∈ X. Then, we state and prove the

following extension of the Shih-Dong’s fixed point theorem: if F has the property that for

each x ∈ X and v ∈ {−1, 1}n such that x + v ∈ X, all the boolean eigenvalues of F ′(x, v)

are zero, then F has a unique fixed point.

Our method of proof reveals that this sufficient condition for F to have a unique fixed

point is also sufficient for the presence of a shortest path from any element of X to the

fixed point of F in the asynchronous state graph of F . This asynchronous state graph is

often used to model the behavior of genetic regulatory networks (see the work of Thomas;

[8, 9] for instance), and our motivation to extend the Shih-Dong’s fixed point theorem to

the discrete case comes from the fact that, in this biological context, X is generally not

reduced to the n-dimensional hypercube {0, 1}n.
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2 Discrete Jacobian matrix and boolean spectral radius

In this section, we state some definitions needed to formulate the main result.

2.1 Discrete Jacobian matrix

Let n be a positive integer and let X = X1 × . . . × Xn be the product of n finite intervals

of integers of cardinality ≥ 2. We denoted by V (X) the set of couples (x, v) such that

x ∈ X, v ∈ {−1, 1}n and x + v ∈ X. Furthermore, for all i ∈ {1, . . . , n}, we denote by ei

the n-tuple whose ith component is 1 and whose other components are 0.

We are now in position to introduce our notion of discrete Jacobian matrix. Given a

map F = (f1, . . . , fn) from X to itself and (x, v) ∈ V (X), we call discrete Jacobian matrix

of F evaluated at x with the variation vector v, and we denote by F ′(x, v) = (fij(x, v)),

the n × n matrix over {0, 1} defined by:

fij(x, v) =















1 if fi(x) and fi(x + vjej) are on both sides of xi + vi/2,

0 otherwise.

(1)

(Integers a and b are on both sides of a non-integer number c if a < c < b or b < c < a.)

Note that this discrete Jacobian matrix has been introduced by Robert [3, 4, 5] in the

boolean case, i.e. when X = {0, 1}n. (The Robert’s discrete Jacobian matrix is usually

simply denoted F ′(x) since for each x ∈ {0, 1}n there is a unique v ∈ {−1, 1}n such that

x + v ∈ {0, 1}n.) Note also that in the boolean case, the condition “fi(x) and fi(x + vjej)

are on both sides of xi + vi/2”, which is discussed below (cf. Remark 1), is equivalent to

the condition fi(x) 6= fi(x + vjej).
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2.2 Boolean spectral radius

Let B = (bij) be an n×n matrix over {0, 1}. The boolean eigenvalues of B have been defined

by Robert [2, 4, 5], and the boolean spectral radius of B, denoted ρ(B), is then defined as

the largest boolean eigenvalue of B [2, 4, 5]. Following [6], ρ(B) can be characterized

with elementary graph-theoretic notions. Let Γ(B) denotes the directed graph whose set

of nodes is {1, . . . , n} and such that there is an edge from j to i if bij = 1, i.e the directed

graph whose adjacency matrix is the transposite of B. Then, ρ(B) = 1 if Γ(B) has an

oriented cycle and ρ(B) = 0 otherwise.

2.3 Main result

The aim of this note is to prove the following theorem.

Theorem 1 (Combinatorial Fixed Point Theorem)

Let X be the product of n finite intervals of integers of cardinality ≥ 2. If a map F from X

to itself is such that ρ(F ′(x, v)) = 0 for all (x, v) ∈ V (X), then it has a unique fixed point.

For X = {0, 1}n, this theorem is equivalent to the boolean analogue of the Jacobian

conjecture stated by Shih and Ho [7] and proved by Shih and Dong [6]. Theorem 1 can

thus be viewed as a discrete version of the Jacobian conjecture.

Remark 1 In the definition of the discrete Jacobian matrix, the condition “fi(x) and

fi(x+vjej) are on both sides of xi+vi/2” may seem not natural. A more natural condition

leads to the usual discrete Jacobian matrix F ′[x, v] = (fij[x, v]) defined by:

fij [x, v] =















1 if fi(x) 6= fi(x + vjej),

0 otherwise.
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However, if fij(x, v) = 1 then fij[x, v] = 1 and thus, Γ(F ′(x, v)) is a subgraph of Γ(F ′[x, v]).

Therefore, if Γ(F ′[x, v]) has no oriented cycle then Γ(F ′(x, v)) has no oriented cycle and it

follows that the condition “ρ(F ′[x, v]) = 0 for all (x, v) ∈ V (X)” implies the condition of

Theorem 1. So, if we use the usual discrete Jacobian matrix instead of the discrete Jacobian

matrix defined in (1), then Theorem 1 remains valid but becomes less strong . For instance,

if n = 1 and X = {0, 1, . . . , 9}, then there are only 10 maps F from X to itself such that

ρ(F ′[x, v]) = 0 for all (x, v) ∈ V (X) (they correspond to the 10 constant maps from X to

itself which have obviously a unique fixed point) whereas there are more than 186 millions

of maps F such that ρ(F ′(x, v)) = 0 for all (x, v) ∈ V (X). Another example showing that

Theorem 1 is less strong if we use the usual discrete Jacobian matrix is given at the end

of this note.

3 Asynchronous state graph and path lemma

Let X be the product of n finite intervals of integers of cardinality ≥ 2, and let F be a

map from X to itself. In this section, we prove the key lemma which is both used to prove,

under the conditions of Theorem 1, the existence and the uniqueness of a fixed point for F .

To state and prove this lemma, we use a supplementary definition: the asynchronous

state graph of F , denoted A(F ), is the directed graph whose set of nodes is X and such

that there is an edge from x to y if there exists i ∈ {1, . . . , n} such that:

fi(x) 6= xi and y = x + sign(fi(x) − xi) · ei,

where sign(a) = a/|a| for all integers a 6= 0. Note that x ∈ X is a fixed point of F if and

only if x has no successor in A(F ). In the sequel, by convention, we suppose that there is
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a path of length zero from each node to itself in A(F ).

Lemma 1 (Path lemma)

Let F be a map from X to itself such that ρ(F ′(x, v)) = 0 for all (x, v) ∈ V (X), and let

x, y ∈ X. If fi(x) ≤ xi ≤ yi or yi ≤ xi ≤ fi(x) for all i ∈ {1, . . . , n}, then there is a path

from y to x in the asynchronous state graph of F .

Proof − We reason by induction on the Manhattan distance

d(x, y) =
n

∑

i=1

|xi − yi|

between x and y. The base case is trivial: if d(x, y) = 0 then x = y thus there is a path (of

length zero) from y to x. For the induction step, we suppose that d(x, y) > 0 and that the

lemma holds for each couple (x′, y′) ∈ X ×X such that d(x′, y′) < d(x, y). Let I be the set

of indices i ∈ {1, . . . , n} such that xi 6= yi, and let v ∈ {−1, 1}n be such that (x, v) ∈ V (X)

and:

∀i ∈ I, vi = sign(yi − xi). (2)

(Such a v necessarily exists.) Then, (x, v) ∈ V (X). Moreover, there exists j ∈ I such that

fij(x, v) = 0 for all i ∈ I. Indeed, if for all j ∈ I there exists i ∈ I such that fij(x, v) = 1,

then Γ(F ′(x, v)) has an oriented cycle involving only nodes of I, thus ρ(F ′(x, v)) = 1, a

contradiction. So let j ∈ I be such that fij(x, v) = 0 for all i ∈ I, and let z = x + vjej .

Then, there is an edge from z to x in the asynchronous state graph of F . Indeed, following
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the conditions of the lemma and (2), we have:















fj(x) ≤ xj < zj ≤ yj if vj = +1,

yj ≤ zj < xj ≤ fj(x) if vj = −1.

Since fjj(x, v) = 0, we deduce that:















fj(z) ≤ xj < zj ≤ yj if vj = +1,

yj ≤ zj < xj ≤ fj(z) if vj = −1.

(3)

Consequently, sign(fj(z) − zj) = −vj and since x = z − vjej there is an edge from z to x

in A(F ). To complete the proof, it is thus sufficient to show that there is a path from y to

z in A(F ). Following the conditions of the lemma and (2), we have:

∀i ∈ I \ {j},















fi(x) ≤ xi = zi < yi if vi = +1,

yi < zi = xi ≤ fi(x) if vi = −1.

Since fij(x, v) = 0 for all i ∈ I, we deduce that:

∀i ∈ I \ {j},















fi(z) ≤ xi = zi < yi if vi = +1,

yi < zi = xi ≤ fi(z) if vi = −1.

From this and (3), we deduce that, for all i ∈ {1, . . . , n}, fi(z) ≤ zi ≤ yi or yi ≤ zi ≤ fi(z).

Moreover, we deduce from (2) that d(z, y) = d(x, y) − 1. Thus, by induction hypothesis,

there is a path from y to z in A(F ). �

Remark 2

1. From this proof, it is easy to show that, under the conditions of the lemma, there is a

8



path from y to x of length d(x, y). Indeed, this holds trivially if x = y, and otherwise,

if we suppose that the path from y to z resulting from the induction hypothesis is of

length d(z, y) then, since d(z, y) = d(x, y)− 1 and since there is an edge from z to x,

there is a path from y to x of length d(x, y). Note that such a path is a shortest path

in the sense that any path from y to x in A(F ) is of length ≥ d(x, y).

2. Richard and Comet [1] proved the presence of a path from y to x of length d(x, y)

under quite less strong conditions with additional technical arguments. We give here

the short proof of the previous lemma in order to present all the arguments needed

to extend the theorem of Shih and Dong [6] to Theorem 1, and to make this note as

self-contained as possible.

3. The asynchronous state graph of F is often used to model the qualitative behavior

of gene regulatory networks (see the work of Thomas; [8, 9] for instance). In this

context, X = X1 × . . . ×Xn corresponds to the set of possible states of the network,

each interval Xi corresponds to the set of possible expression levels of the gene i, and

each path of A(F ) corresponds to a possible evolution of the network. Generally,

if the protein encoded by a gene i regulates the expression of m > 0 genes, then

the interval Xi used to model the activity of gene i is {0, 1, . . . ,m} [8, 9]. Since

it is very frequent that m > 1, X is generally not reduced to the n-dimensional

hypercube {0, 1}n.

4. It is easy to show that the Jacobian matrix of F only depends on its asynchronous

state graph, i.e. that if A(F ) = A(G) then F ′(x, v) = G′(x, v) for all (x, v) ∈ V (X).
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4 Proof of Theorem 1

Let X be the set of all the products of n finite intervals of integers of cardinality ≥ 2. We

said that an element X of X has the property (J) if Theorem 1 holds for all maps F from

X to itself. So Theorem 1 is true if and only if any element of X has the property (J). We

prove this by induction on the set X ordered by the inclusion relation ⊂.

4.1 Base case

An element X = X1 × · · · × Xn of X is minimal with respect to ⊂ if and only if |Xi| = 2

for all i ∈ {1, . . . , n}. So, any minimal element of (X,⊂) can be identified to {0, 1}n and,

following the Shih-Dong’s fixed point theorem [6], has the property (J).

4.2 Induction step

Let X = X1 × · · · × Xn be a non minimal element of (X,⊂), and suppose that any Y ∈ X

strictly included in X has the property (J). Let F = (f1, . . . , fn) be a map from X to itself

such that ρ(F ′(x, v)) = 0 for all (x, v) ∈ V (X). We want to prove that F has a unique

fixed point.

We first prove, by contradiction, that F has at least one fixed point. We thus suppose

that F has no fixed point. Since X is not a minimal element of (X,⊂), there exists

i ∈ {1, . . . , n} such that |Xi| > 2. Without loss of generality, suppose that |X1| > 2. Let

a = min(X1) and b = max(X1).

In order to use the induction hypothesis, consider the map F̃ = (f̃1, f̃2, . . . , f̃n) from X̃ =
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X1 \ {a} × X2 × · · · × Xn to itself defined by:

∀x ∈ X̃, F̃ (x) = (max(f1(x), a + 1), f2(x), . . . , fn(x)).

Let x, y ∈ X̃ . It is clear that f1(x) ≤ f̃1(x). Moreover, if f̃1(x) < f̃1(y) then a + 1 < f̃1(y)

thus f̃1(y) = f1(y). Because, for all i ∈ {2, . . . , n}, f̃i(x) = fi(x) and f̃i(y) = fi(y), we

deduce that, for all i ∈ {1, . . . , n}:

f̃i(x) < f̃i(y) ⇒ fi(x) ≤ f̃i(x) < f̃i(y) ≤ fi(y). (4)

It follows that, for all (x, v) ∈ V (X̃) and i, j ∈ {1, . . . , n}:

f̃ij(x, v) = 1 ⇒ fij(x, v) = 1.

Thus, Γ(F̃ ′(x, v)) is a subgraph of Γ(F ′(x, v)). By hypothesis, ρ(F ′(x, v)) = 0 thus

Γ(F ′(x, v)) has no oriented cycle and we deduce that its subgraph Γ(F̃ ′(x, v)) has no

oriented cycle. Thus ρ(F̃ ′(x, v)) = 0, and this holds for all (x, v) ∈ V (X̃). Since X̃ is

strictly included in X, by induction hypothesis, X̃ has the property (J), and we deduce

that F̃ has a (unique) fixed point. So let x̃ be a fixed point of F̃ . Clearly:

∀i ∈ {2, . . . , n}, x̃i = f̃i(x̃) = fi(x̃). (5)

Because x̃ is not a fixed point of F , we deduce that x̃1 = f̃1(x̃) 6= f1(x̃). Thus:

f1(x̃) = a < f̃1(x̃) = a + 1 = x̃1 < b. (6)

11



Now, consider the map F̄ = (f̄1, f̄2, . . . , f̄n) from X̄ = X1 \ {b} × X2 × · · · × Xn to itself

defined by:

∀x ∈ X̄, F̄ (x) = (min(f1(x), b − 1), f2(x), . . . , fn(x)).

With similar arguments, we prove that ρ(F̄ (x, v)) = 0 for all (x, v) ∈ V (X̄) and that F̄

has a (unique) fixed point x̄ such that:

x̄1 = b − 1 < f1(x̄) = b. (7)

According to (6), we have x̃ ∈ X̄ . From (5), we deduce that:

∀i ∈ {2, . . . , n}, f̄i(x̃) = fi(x̃) = x̃i, (8)

and from (6) and (7) we deduce that:

f1(x̃) = f̄1(x̃) < x̃1 ≤ x̄1.

From this and (8), it is clear that:

∀i ∈ {1, . . . , n}, f̄i(x̃) ≤ x̃i ≤ x̄i or x̄i ≤ x̃i ≤ f̄i(x̃).

Therefore, following the path lemma, there is a path from x̄ to x̃ in the asynchronous state

graph of F̄ . Following (6) and (7), we have f1(x̃) 6= f1(x̄) thus x̃ 6= x̄. So the existence of a

path from x̄ to x̃ implies that x̄ has a successor in A(F̄ ). Therefore, x̄ is not a fixed point

of F̄ , a contradiction. It means that F has at least one fixed point.

So let x be a fixed point of F and let y be an element of X different than x. According
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to the path lemma, there is a path from y to x in the asynchronous state graph of F so y

is not a fixed point of F . Thus x is the unique fixed point of F and consequently, X has

the property (J). This completes the proof of Theorem 1.

5 Concluding remarks

The spectral condition “ρ(F ′(x, v)) = 0 for all (x, v) ∈ V (X)” implies that F has a unique

fixed point, and it also implies the presence of a shortest path from any element of X to

this fixed point in the asynchronous state graph of F used to model the behavior of genetic

regulatory networks. So, under the spectral condition, there is, in the asynchronous state

graph of F , a kind of convergence toward a unique fixed point, but this convergence is

weak in the sense that any path does not lead necessarily to the fixed point, as shown by

the following example.
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Example n = 2 and X = {0, 1, 2} × {0, 1, 2}. The map F and its asynchronous state

graph are the following:

x F (x)

(0, 0) (0, 2)

(0, 1) (2, 2)

(0, 2) (2, 2)

(1, 0) (0, 2)

(1, 1) (1, 1)

(1, 2) (2, 0)

(2, 0) (0, 0)

(2, 1) (0, 0)

(2, 2) (2, 0)

A(F )

(0, 2) (1, 2) (2, 2)

(2, 1)(1, 1)(0, 1)

(0, 0) (1, 0) (2, 0)

It is straightforward to show that, for all (x, v) ∈ V (X):

F ′(x, v) =









0 1

0 0









or F ′(x, v) =









0 0

1 0









Thus, for all (x, v) ∈ V (X), ρ(F ′(x, v)) = 0. We can see that F has actually a unique fixed

point and that there is a shortest path from any point of X to this fixed point in A(F ).

However, A(F ) has an oriented cycle so there are paths which do not lead to the fixed

point of F .

Note also that, for this example, the condition “ρ(F ′[x, v]) = 0 for all (x, v) ∈ V (X)”,

where F ′[x, v] is the usual discrete Jacobian matrix introduced in the first remark, does
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not hold. Indeed, we have, whenever x = (1, 1) and v ∈ {−1, 1}2:

F ′[x, v] =









1 1

1 1









and thus ρ(F ′[x, v]) = 1 (since Γ(F ′[x, v]) contains three oriented cycles).
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