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Abstract: The biologist René Thomas conjectured, twenty years ago, that the pres-

ence of a negative feedback circuit in the interaction graph of a dynamical system is

a necessary condition for this system to produce sustained oscillations. In this paper,

we state and prove this conjecture for asynchronous automata networks, a class of dis-

crete dynamical systems extensively used to model the behaviors of gene networks. As

a corollary, we obtain the following fixed point theorem: given a product X of n finite

intervals of integers, and a map F from X to itself, if the interaction graph associated

with F has no negative circuit, then F has at least one fixed point.
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1 Introduction

We are interested in a class of discrete dynamical systems used to model gene networks.

The biological context is the following. Gene networks are often described by Biologists

under the form of interaction graphs. These are directed graphs where vertices corre-

spond to genes and where arcs are labelled with a sign: a positive (negative) arc from

a gene j to a gene i means that the protein encoded by the gene j activates (represses)

the synthesis of the protein encoded by the gene i. These very coarse descriptions of

gene networks are then taken as a basis to design much more complex dynamical mod-

els that describe the temporal evolution of the concentration of the encoded proteins

[7]. Unfortunately, these models require, in most cases, unavailable informations on the

strength of the interactions. In this context, a difficult and interesting question is: which

dynamical properties of a gene network can be deduced from its interaction graph?

The biologist René Thomas stated two well known conjectures that partially answer

this question. These conjectures can be informally stated as follows [25, 9]:

1. The presence of a positive circuit in the interaction graph of a network (i.e. a

circuit with an even number of negative arcs) is a necessary condition for the

presence of multiple stable states in the dynamics of the network.

2. The presence of a negative circuit in the interaction graph of a network (i.e. a cir-

cuit with an odd number of negative arcs) is a necessary condition for the presence

of sustained oscillations in the dynamics of the network.

It is worth noting that multistationarity and sustained oscillations are, from a biological

point of view, important dynamical properties often related to differentiation processes

and homeostasis phenomena respectively [25, 26, 28].

The first conjecture has been formally stated and proved by several authors in contin-
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uous frameworks [10, 6, 21, 4, 22, 23], in which the concentration of each protein evolves

continuously, generally following an ordinary differential equation system. The first con-

jecture has been more recently stated and proved in discrete frameworks [1, 2, 13, 11, 15],

in which the concentration level of each protein evolves inside a finite interval of inte-

gers, which is {0, 1} in the Boolean case. Studies of the second conjecture are fewer:

a Boolean version of the second conjecture has been stated and proved by Remy, Ruet

and Thieffry [11], and there are only partial results in the continuous case [6, 21].

In this paper, we state and prove the second Thomas’ conjecture for asynchronous au-

tomata networks (Theorem 1). Our interest for these discrete dynamical systems comes

from the fact that they have been proposed by Thomas as model for the dynamics of

gene networks more than thirty years ago [24, 26, 27, 28]. They are still extensively

used because of the qualitative nature of most reliable experimental data, and the fact

that the sigmoidal shape of genetic regulations leads to a natural discretization of con-

centrations [5, 19, 26, 20, 8].

The discrete version of Thomas’ conjecture we establish generalizes in several ways

the one established by Remy, Ruet and Thieffry [11] in the Boolean case: both the dis-

crete dynamical framework and the considered class of sustained oscillations are more

general. Furthermore, the class of sustained oscillations we consider allows us to ob-

tain, as an immediate consequence, the fixed point theorem mentioned in the abstract

(Corollary 1).

The paper is organized as follows. Section 2 presents definitions related to asyn-

chronous automata networks. In Section 3, the second Thomas’ conjecture is stated and

proved for these networks. In Section 4, we establish a variant of the second Thomas’

conjecture more suited to the modeling of gene networks. Counter examples to natural

extension of the established results are given in Section 5.
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2 Definitions

We consider a network of n interacting automata, denoted from 1 to n. The set of

possible states for automaton i is a finite intervals of integers Xi of cardinality at least

two. The set of possible states for the network is the Cartesian product X =
∏n

i=1 Xi.

The dynamics of the network is then described by a map F : X → X,

x = (x1, . . . , xn) ∈ X 7→ F (x) = (f1(x), . . . , fn(x)) ∈ X,

with which we associate the maps Fi : X → X defined by

Fi(x) = (x1, . . . , xi−1, fi(x), xi+1, . . . , xn) (i = 1, . . . , n).

More precisely, given an initial point x0 ∈ X and a map ϕ from N to {1, . . . , n}, the

dynamics of the network is described by the following recurrence, that we call the asyn-

chronous iteration of F induced by the strategy ϕ from initial point x0:

xt+1 = Fϕ(t)(x
t) (t = 0, 1, 2 . . . ). (1)

Generally, one only considers the asynchronous iterations induced by pseudo-periodic

strategies, i.e. strategies ϕ such that |ϕ−1(i)| = ∞ for i = 1, . . . , n [17, 3].

In this paper, we will study the asynchronous iterations of F through a directed

graph on X called the asynchronous state transition graph of F . Before defining this

graph, let us set, for all x ∈ X,

IF (x) = {i ∈ {1, . . . , n} | fi(x) 6= xi}.
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Definition 1 The asynchronous state transition graph of F , denoted Γ(F ), is the di-

rected graph whose set of vertices is X and whose set of arcs is

{(x, Fi(x)) |x ∈ X, i ∈ IF (x)}.

Remark 1 |IF (x)| is the number of successors of x in Γ(F ), and |IF (x)| = 0 if and

only if x is a fixed point of F . Also, Γ(F ) has no arc from a vertex to itself, and in

the following, we assume, by convention, that Γ(F ) has a path of length zero from each

vertex to itself.

The relation between Γ(F ) and the asynchronous iterations of F is clear: there is a path

from x to y in Γ(F ) if and only if there exists a strategy ϕ such that the asynchronous

iteration of F induced by ϕ from x reaches y.

In this context, the fixed points of F are of particular interest: they correspond

to the stable states of the system. More precisely, if ϕ is a pseudo-periodic strategy,

then the asynchronous iteration (1) stabilizes on a point ξ (i.e. there exists t such that

xt = xt+1 = ξ) if and only if ξ is a fixed point of F . In the following definition, we

introduce a notion of an attractor, which extends in a natural way the one of a stable

state.

Definition 2 A trap domain of Γ(F ) is a non-empty subset D ⊆ X such that for every

arc (x, y) of Γ(F ), if x ∈ D then y ∈ D. An attractor of Γ(F ) is a smallest trap domain

with respect to the inclusion. A cyclic attractor is an attractor of cardinality at least two.

Remark 2 One has the three following basic properties: (1) x is a fixed point of F if

and only if {x} is an attractor of Γ(F ); (2) attractors perform an attraction in the weak

sense that, from any state, there always exists a path leading to one of them; (3) if x

and y belong to the same attractor, then there exists a path from x to y.
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The third point highlights the fact that inside a cyclic attractor, each state has at least

one successor. So, when the network is inside a cyclic attractor, it cannot reach a fixed

point, and thus, it describes sustained oscillations. More precisely, if x0 belongs to a

cyclic attractor A, then for all pseudo-periodic strategy ϕ, the asynchronous iteration of

F induced by ϕ from x0 never leaves A and never stabilizes, and since A is finite, it

necessarily describes sustained oscillations. In the following, we are interested in the

relationship between sustained oscillations produced by cyclic attractors and negative

circuits of the interaction graph of the network.

An interaction graph is here defined to be a directed graph whose set of vertices is

{1, . . . , n} and where each arc is provided with a sign. Formally, each arc is characterized

by a triple (j, s, i) where j (i) is the initial (final) vertex, and where s ∈ {−1, 1} is the

sign of the arc. An interaction graph can then have both a positive and a negative arc

from one vertex to another.

In the following definition, we attach to F an interaction graph G(F ) that is nothing

but the interaction graph of the network whose dynamics is described by the asyn-

chronous iterations of F .

Definition 3 The interaction graph of F , denoted G(F ), is the interaction graph that

contains a positive (negative) arc from j to i if there exists x ∈ X with xj + 1 ∈

Xj such that

fi(x1, . . . , xj + 1, . . . , xn) − fi(x1, . . . , xj , . . . , xn)

is positive (negative); the vertices i, j being not necessarily distinct.

Remark 3 G(F ) has at least one arc from j to i if and only if the value of fi depends

on the value of xj .

Definition 4 A path of G(F ) of length r ≥ 1 is a sequence of r arcs of G(F ), say
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(j1, s1, i1), (j2, s2, i2), . . . , (jr, sr, ir), such that iq = jq+1 for all 1 ≤ q < r. Such a path is

a path from j1 to ir of sign s =
∏r

q=1 sq. It is a circuit if ir = j1 and it is an elementary

circuit if, in addition, the vertices iq are mutually distinct.

Remark 4 If G(F ) has a negative circuit, then it has an elementary negative circuit

(this is false for positive circuits). So, in order to prove that G(F ) has an elementary

negative circuit, it is sufficient to prove that G(F ) has a negative circuit.

Example 1 n = 2, X = {0, 1, 2}2 and F is defined by the following table:

x (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

F (x) (2, 0) (1, 0) (0, 2) (2, 0) (0, 0) (0, 1) (2, 1) (0, 1) (0, 1)

The asynchronous state transition graph and the interaction graph of F are as follows:

Γ(F )

(0,0)

(0,1) (1,1)

(1,0) (2,0)

(0,2) (1,2) (2,2)

(2,1)

G(F )

1 2 1

−1

−1

1

−1

We see that Γ(F ) has two attractors: the stable state (0, 2) and the cyclic attractor

{0, 1, 2} × {0, 1}. We also see that G(F ) has two elementary positive circuits, and two

elementary negative circuits.
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3 Main result

In this section, we prove the following discrete version of the second Thomas’ conjecture:

Theorem 1 If Γ(F ) has a cyclic attractor, then G(F ) has a negative circuit.

Remark 5 This theorem has been proved by Remy, Ruet and Thieffry [11] in the

Boolean case (i.e. when X is the n-dimensional hypercube {0, 1}n) and under the rather

strong hypothesis that Γ(F ) contains a stable cycle, that is, a cyclic attractor A in which

each state has a unique successor (i.e. |IF (x)| = 1 for all x ∈ A).

Remark 6 For continuous models the second Thomas’ conjecture states that “The

presence of a negative circuit of length at least two (somewhere in phase space) is a

necessary condition for stable periodicity.” (see [9]). And this is the statement that

Gouzé and Snoussi have proved in some cases [6, 21]. Theorem 1 does not impose any

restriction on the length of the negative circuit, since it can be of legnth one. For

instance, if F is the map from {0, 1}n to itself defined by f1(x) = 1− x1 and fi(x) = x1

for i = 2, . . . , n, then {0, 1}n is a cyclic attractor of Γ(F ) and G(F ) has only a negative

circuit of legnth one.

Before proving Theorem 1, let us point out that it has, as immediate consequence,

the following fixed point theorem (which can not be deduced, in the Boolean case, from

the theorem of Remy, Ruet and Thieffry mentioned above):

Corollary 1 If G(F ) has no negative circuit, then F has at least one fixed point.

Proof – Indeed, if F has no fixed point, then Γ(F ) has clearly at least one cyclic

attractor, and following Theorem 1, G(F ) has a negative circuit. �

Remark 7 In [17, Chapter 13] (see also [3]), Robert proves the following convergence

result: if G(F ) has no circuit, then F has a unique fixed point ξ, and, for all initial point
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x0 and for all pseudo-periodic strategy ϕ, the asynchronous iteration of F induced by ϕ

from x0 reaches the fixed point ξ. From Theorem 1 and the second point of Remark 2,

one obtains a convergence result that has a weaker conclusion under a weaker condition:

if G(F ) has no negative circuit, then F has at least one fixed point, and for all initial

point x0, there exists a strategy ϕ for which the asynchronous iteration (1) reaches a

fixed point of F .

The proof of Theorem 1 needs few additional definitions and notations. Let G and

G′ be two interaction graphs with arc-set E and E′ respectively. We say that G is a

subgraph of G′ if E ⊆ E′. We denote by G ∪ G′ the interaction graph whose set of arcs

is E ∪ E′. Next, for all x ∈ X, we set

f ′

i(x) = sign(fi(x) − xi) (i = 1, . . . , n),

where sign is the usual sign function (sign(a) = a/|a| for all a 6= 0, and sign(0) = 0).

The main tool used in the proof of Theorem 1 is the following notion of local interaction

graph:

Definition 5 For all x ∈ X, we denote by GF (x) the interaction graph that contains an

arc from j to i of sign s ∈ {−1, 1} if

f ′

i(x) 6= f ′

i(Fj(x)) and s = f ′

j(x)f ′

i(Fj(x))

Lemma 1 For all x ∈ X, GF (x) is a subgraph of G(F ).

Proof – Let x ∈ X, and suppose that GF (x) has an arc from j to i of sign s. For every

integer p, we set

xp = (x1, . . . , xj−1, xj + p, xj+1, . . . , xn).
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Case j 6= i. By definition, f ′

j(x) 6= 0. We suppose f ′

j(x) > 0 the other case being

similar. Setting q = fj(x) − xj , we have q > 0 and xq = Fj(x). So s = f ′

i(x
q) and

f ′

i(x) = f ′

i(x
0) 6= f ′

i(x
q). Consider the smallest 0 ≤ p ≤ q such that f ′

i(x
p) = f ′

i(x
q).

Clearly, p > 0 and f ′

i(x
p−1) 6= f ′

i(x
p) = s. So if s = 1 then fi(x

p−1) ≤ xi < fi(x
p)

and we deduce that G(F ) has a positive arc from j to i. Similarly, if s = −1 then

fi(x
p−1) ≥ xi > fi(x

p) and we deduce that G(F ) has a negative arc from j to i.

Case j = i. By definition, s = f ′

i(x)f ′

i(Fi(x)) and f ′

i(x) 6= f ′

i(Fi(x)) thus s = −1. Sup-

pose that f ′

i(x) > 0, the other case being similar. Then q = fi(x) − xi > 0 and

f ′

i(Fi(x)) < 0. Since x0 = x and xq = Fi(x), we deduce that x0
i < fi(x

0) = xq
i and

fi(x
q) < xq

i . Thus, there exists a smallest 0 ≤ p ≤ q such that fi(x
p) < xq

i . Clearly,

p > 0 and xq
i ≤ fi(x

p−1). Thus fi(x
p) < fi(x

p−1) and we deduce that G(F ) has a

negative arc from i to itself. �

Lemma 2 Let (x0, x1, . . . , xr) be an elementary path of Γ(F ) of length r ≥ 1, and let

i ∈ IF (xr). If f ′

i(x
p) 6= f ′

i(x
r) for all 0 ≤ p < r, then there exists j ∈ IF (x0) such that

⋃r−1
q=0 GF (xq) has a path from j to i of sign f ′

j(x
0)f ′

i(x
r).

Proof – We proceed by induction on the length r of the path.

Case r = 1. Since (x0, x1) is an arc of Γ(F ) there exists j ∈ IF (x0) such that x1 =

Fj(x
0). Following the conditions of the lemma f ′

i(x
0) 6= f ′

i(x
1), and thus, by definition,

GF (x0) has an arc from j to i of sign f ′

j(x
0)f ′

i(x
1).

Case r > 1. Since (xr−1, xr) is a path of Γ(F ) of length 1 satisfying the conditions of

the lemma for i ∈ IF (xr), following the base case, there exists k ∈ IF (xr−1) such that

GF (xr−1) has a path from k to i of sign

ski = f ′

k(x
r−1)f ′

i(x
r).
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Now, consider the smallest 0 ≤ p < r such that f ′

k(x
p) = f ′

k(x
r−1). First, suppose

that p = 0. Then k ∈ IF (x0) and f ′

k(x
0)f ′

i(x
r) is equals to sign ski of the path of

GF (xr−1) from k to i mentioned above, so that the lemma holds. Now, suppose that

p > 0. Then, by the choice of p, for all 0 ≤ l < p, we have f ′

k(x
l) 6= f ′

k(x
p). Thus, the

path (x0, . . . , xp) satisfies the conditions of the lemma for k ∈ IF (xp). Since p < r, by

induction hypothesis, there exists j ∈ IF (x0) such that
⋃p−1

q=0 GF (xq) has a path from j

to k of sign

sjk = f ′

j(x
0)f ′

k(x
p).

Since GF (xr−1) contains a path from k to i of sign ski, we deduce that
⋃r−1

q=0 GF (xq)

contains a path from j to i of sign

sji = sjkski = f ′

j(x
0)f ′

k(x
p)f ′

k(x
r−1)f ′

i(x
r),

and since f ′

k(x
p) = f ′

k(x
r−1), we deduce that sji = f ′

j(x
0)f ′

i(x
r). �

Lemma 3 Let A be a cyclic attractor of Γ(F ). If there exists x ∈ A such that |IF (x)| = 1

then
⋃

x∈A GF (x) has a negative circuit.

Proof – Suppose that there exists x0 ∈ A such that |IF (x0)| = 1, and let i be the

unique element of IF (x0). Suppose that f ′

i(x
0) > 0, the other case being similar. Let

x1 = Fi(x). Then Γ(F ) has an arc from x0 to x1 and we have x0
i < x1

i . Since x0 ∈ A,

we have x1 ∈ A, and we deduce that Γ(F ) has an elementary path (x1, x2, . . . , xr) from

x1 to xr = x0, all the vertices of which belong to A. If f ′

i(x
p) ≥ 0 for all 0 < p < r,

then xp
i ≤ xp+1

i for all 0 < p < r, and we deduce that x1
i ≤ xr

i = x0
i , a contradiction.

Thus, there exists a smallest 0 < p < r such that f ′

i(x
p) < 0. Then, (x0, x1, . . . , xp) is

an elementary path where i ∈ IF (xp) and by the choice of p, we have f ′

i(x
l) 6= f ′

i(x
p) for
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all 0 ≤ l < p. So, according to Lemma 2, there exists j ∈ IF (x0) such that
⋃p−1

q=0 GF (xq)

contains a path from j to i of sign f ′

j(x
0)f ′

i(x
p). Since IF (x0) = {i}, we have j = i and

consequently,
⋃p−1

q=0 GF (xq) contains a path from i to itself, and thus a circuit, of sign

f ′

i(x
0)f ′

i(x
p). By construction, f ′

i(x
0)f ′

i(x
p) < 0, thus this circuit is negative, and since

{x0, . . . , xp−1} ⊆ A, it is contained in
⋃

x∈A GF (x). �

Lemma 4 Let A be a cyclic attractor of Γ(F ). If |IF (x)| > 1 for all x ∈ A, then there

exists H : X → X such that Γ(H) contains a cyclic attractor strictly included in A, and

such that GH(x) is a subgraph of GF (x) for all x ∈ X.

Proof – Suppose A to be a cyclic attractor of Γ(F ) such that |IF (x)| > 1 for all x ∈ A.

Let y be any state of A. Then IF (y) contains at least two elements, and without loss of

generality, we can suppose that 1 ∈ IF (y). Consider the map H : X → X defined by:

∀x ∈ X, H(x) = (h1(x), h2(x), . . . , hn(x)) = (x1, f2(x), . . . , fn(x)).

We first prove that A is a trap domain of Γ(H). For that, it is sufficient to prove

that, given any x ∈ A and i ∈ IH(x), we have Hi(x) ∈ A. Since h1(x) = x1, 1 6∈ IH(x),

so i 6= 1. Thus Fi(x) = Hi(x), and since A is a trap domain of Γ(F ), we have Fi(x) ∈ A

and we deduce that Hi(x) ∈ A as expected. So A is a trap domain of Γ(H) and, by

definition, Γ(H) contains at least one attractor B ⊆ A.

We claim that B is a cyclic attractor of Γ(H). Let x ∈ B. Then x ∈ A so |IF (x)| > 1

and we deduce that IF (x) contains an index i 6= 1. Then, xi 6= fi(x) = hi(x) so

x 6= Hi(x). Since x ∈ B we have Hi(x) ∈ B. So |B| ≥ 2, i.e. B is a cyclic attractor of

Γ(H).

We now prove that B ⊂ A (strict inclusion). Suppose, by contradiction, that B = A.

Since 1 ∈ IF (y) and y ∈ A, we have y 6= F1(y) ∈ A = B. Since B is an attractor of
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Γ(H), we deduce that Γ(H) has a path (x0, x1, . . . , xr) from x0 = y to xr = F1(y). Since

h1(x) = x1 for all x ∈ X, we have x0
1 = x1

1 = · · · = xr
1. So y1 = f1(y), a contradiction.

It remains to prove that GH(x) is a subgraph of GF (x) for all x ∈ X. If (j, s, i) is

an arc of GH(x), then by definition, h′

j(x) 6= 0 and h′

i(Hj(x)) 6= 0. So j 6= 1 and i 6= 1.

Thus fj = hj and fi = hi. It is then clear that (i, s, j) is an arc of GF (x). �

Lemma 5 If A is a cyclic attractor of Γ(F ), then
⋃

x∈A GF (x) has a negative circuit.

Proof – Let U be the set of couples (F,A) such that F is a map from X to itself, and

such that A is a cyclic attractor of Γ(F ). Let ≺ be the well funded strict order on U

defined by (H,B) ≺ (F,A) if and only if B is strictly included in A. Proceeding by

induction on the set U ordered by ≺, we show that, for all (F,A) ∈ U ,
⋃

x∈A GF (x) has

a negative circuit.

Base case. Let (F,A) be a minimal element of (U,≺). If |IF (x)| > 1 for all x ∈ A,

then, following Lemma 4, there exists (H,B) ∈ U such that (H,B) ≺ (F,A), and this

contradict the minimality of (F,A). So there exists x ∈ A such that |IF (x)| = 1 and,

following Lemma 3,
⋃

x∈A GF (x) has a negative circuit.

Induction step. Let (F,A) be a non-minimal element of (U,≺). By induction hypoth-

esis, for all (H,B) ≺ (F,A),
⋃

x∈B GH(x) has a negative circuit. If, for all x ∈ A, we

have |IF (x)| > 1, then following Lemma 4, there exists (H,B) ≺ (F,A) such that GH(x)

is a subgraph of GF (x) for all x ∈ X. Since B ⊂ A, we deduce that
⋃

x∈B GH(x) is a

subgraph of
⋃

x∈A GF (x), and since, by induction hypothesis,
⋃

x∈B GH(x) has a nega-

tive circuit, we deduce that
⋃

x∈A GF (x) has a negative circuit. Otherwise, there exists

x ∈ A such that |IF (x)| = 1, and following Lemma 3,
⋃

x∈A GF (x) has again a negative

circuit. �
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Proof of Theorem 1 – If A is a cyclic attractor of Γ(F ), then by Lemma 5,
⋃

x∈A GF (x)

has a negative circuit. By Lemma 1,
⋃

x∈A GF (x) is a subgraph of G(F ) and we deduce

that G(F ) has a negative circuit. �

Remark 8 The key lemma is clearly Lemma 5, which shows that it is sufficient to

consider the restriction of F to a cyclic attractor A in order to obtain a negative circuit.

4 A variant for gene regulatory networks

In this section, we establish a variant of Theorem 1 that is more suited to the modeling

of gene networks. To model the behaviors of a network of n genes, Thomas [24, 26,

28] proposes to consider an “unitary” asynchronous state transition graph Γ[F ] that

is slightly different than Γ(F ). In Γ[F ], each transition starting from a given state x

involves, as in Γ(F ), the evolution of the state xi of at most one component i ∈ IF (x),

but in Γ[F ], this state xi is not updated to fi(x): it is increased or decreased by a unit

depending on whether xi < fi(x) or xi > fi(x). Thanks to this updating rule, unitary

asynchronous state transition graphs can be seen as discretizations of piece-wise linear

differential equation systems [19, 20].

Definition 6 The unitary asynchronous state transition graph of F , denoted Γ[F ], is

the asynchronous state transition graph Γ(F̃ ) of the map F̃ : X → X defined by

F̃ (x) = (f̃1(x), . . . , f̃n(x)), f̃i(x) = xi + f ′

i(x) (i = 1, . . . , n).

Remark 9 In the Boolean case, Γ[F ] = Γ(F ).

We are now confronted to the following problem: G(F ) cannot be seen as the inter-

action graph of the network whose dynamics is described by Γ[F ], since maps H such
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that G(H) 6= G(F ) and Γ[H] = Γ[F ] may exist. In addition, it is not satisfactory to

see G(F̃ ) as the interaction graph of the network whose dynamics is described by Γ[F ],

since maps H such that G(H) is a strict subgraph of G(F̃ ) and such that Γ[H] = Γ[F ]

may also exist.

To solve this problem, Richard and Comet [13] define a subgraph G[F ] of G(F ) that

only depends on Γ[F ] and provide, in this way, a natural and non-ambiguous definition of

the interaction graph of the network whose dynamics is described by Γ[F ]. Furthermore,

one can show that G[F ] is, with respect to the subgraph relation, the smallest interaction

graph from which one can obtain Γ[F ] by following the logical method developed by

Thomas to model gene networks [12].

Definition 7 We denote by G[F ] the interaction graph that contains a positive arc from

j to i if there exists x ∈ X with xj + 1 ∈ Xj such that

fi(x1, . . . , xj , . . . , xn) ≤ xi < fi(x1, . . . , xj + 1, . . . , xn),

and that contains a negative arc from j to i if there exists x ∈ X with xj + 1 ∈ Xj

such that

fi(x1, . . . , xj , . . . , xn) > xi ≥ fi(x1, . . . , xj + 1, . . . , xn).

Remark 10 G[F ] is a subgraph of G(F ), and in the Boolean case, G[F ] = G(F ).

We now establish, in this setting, the following discrete version of the second Thomas’

conjecture (which is, as Theorem 1, an immediate consequence of Lemma 5):

Theorem 2 If Γ[F ] has a cyclic attractor, then G[F ] has a negative circuit.

Lemma 6 For all x ∈ X, GF̃ (x) is a subgraph of G[F ].
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Proof – First observe that f ′

i(x) = f̃ ′

i(x) for all x ∈ X and i ∈ {1, . . . , n}. Furthermore,

if f̃i(x) ≤ xi (resp. f̃i(x) ≥ xi) then fi(x) ≤ f̃i(x) (resp. fi(x) ≥ f̃i(x)).

Now, suppose that GF̃ (x) has an arc from j to i of sign s with j 6= i. Let

y = (x1, . . . , xj + f̃ ′

j(x), . . . , xn)

and observe that y = F̃j(x). Suppose that f̃ ′

i(y) > 0, the other case being similar. Then,

by definition, f̃ ′

j(x) = s and f̃ ′

i(x) ≤ 0. Thus f̃i(x) ≤ xi = yi < f̃i(y) and we deduce that

fi(x) ≤ f̃i(x) ≤ xi = yi < f̃i(y) ≤ fi(y).

So if f̃ ′

j(x) = s is positive then

fi(x) ≤ xi < fi(y) = fi(x1, . . . , xj + 1, . . . , xn)

and we deduce that G[F ] has a positive arc from j to i, and if f̃ ′

j(x) = s is negative then

fi(y1, . . . , yj + 1, . . . , yn) = fi(x) ≤ yi < fi(y)

and we deduce that G[F ] has a negative edge from j to i.

Suppose now that GF̃ (x) has an arc from i to itself of sign s. By definition, we have

s = f̃ ′

i(x)f̃ ′

i(F̃i(x)) and f̃ ′

i(x) 6= f̃ ′

i(F̃i(x)) so that s is negative. Suppose that f̃ ′

i(x) > 0,

the other case being similar. Then, F̃i(x) = (x1, . . . , xi + 1, . . . , xn) and f̃ ′

i(F̃i(x)) < 0.

Thus

f̃i(x1, . . . , xi + 1, . . . , xn) ≤ xi < f̃i(x)
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and we deduce that

fi(x1, . . . , xi + 1, . . . , xn) ≤ f̃i(x1, . . . , xi + 1, . . . , xn) ≤ xi < f̃i(x) ≤ fi(x).

Consequently, G[F ] has a negative arc from i to itself. �

Proof of Theorem 2 – Since Γ[F ] = Γ(F̃ ), if Γ[F ] has a cyclic attractor A, then by

Lemma 5,
⋃

x∈X GF̃ (x) has a negative circuit. Following the previous lemma,
⋃

x∈X GF̃ (x)

is a subgraph of G[F ], and we deduce that G[F ] has a negative circuit. �

Corollary 2 If G[F ] has a no negative circuit, then F has at least one fixed point.

Proof – If F has no fixed point, then Γ[F ] has at least one cyclic attractor, and following

Theorem 2, G[F ] has a negative circuit. �

Remark 11 Since G[F ] is a subgraph of G(F ), Corollary 2 is stronger than Corollary 1

(the same conclusion is obtained under a weaker condition). In addition, from Theo-

rems 1 and 2, it is clear that: if Γ(F ) or Γ[F ] has a cyclic attractor, then G(F ) has a

negative circuit . This generalizes Theorem 1 (the same conclusion is obtained under a

weaker condition). Indeed, as showed by the following two examples, the presence of a

cyclic attractor in Γ(F ) (Γ[F ]) does not imply the presence of a cyclic attractor in Γ[F ]

(Γ(F )).

Example 2 n = 1, X = {0, 1, 2} and F defined by F (0) = 2, F (1) = 1 and F (2) = 0.

The state transitions graphs Γ(F ) and Γ[F ] are the following:

Γ(F ) Γ[F ]

0 1 2 0 1 2
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We see that Γ(F ) has a cyclic attractor and that Γ[F ] has no cyclic attractor. The

interaction graph G(F ) is the interaction graph with one vertex and a negative arc from

this vertex to itself: it has thus a negative circuit. The interaction graph G[F ] is the

interaction graph with one vertex and no arc (it is a strict subgraph of G(F )). This

shows that the presence of a cyclic attractor in Γ(F ) does not imply the presence of a

negative circuit in G[F ].

Example 3 n = 1, X = {0, 1, 2} and F defined by F (0) = 0, F (1) = 2 and F (2) = 0.

The state transitions graphs Γ(F ) and Γ(F ) are the following:

Γ(F ) Γ[F ]

0 1 2 0 1 2

We see that Γ[F ] has a cyclic attractor and that Γ(F ) has no cyclic attractor. The

interaction graphs G(F ) and G[F ] are equal to the interaction graph with one vertex and

both a positive and a negative arc from this vertex to itself (G(F ) and G[F ] have thus a

negative circuit).

5 Concluding remarks

The weakest condition allowing the asynchronous iterations of F to describe sustained

oscillations is the presence of a directed cycle in Γ(F ). However, as showed by the

following example, the presence of a directed cycle in Γ(F ) does not imply the presence

of a negative circuit in G(F ) (one can only show that it implies the presence of a circuit

in G(F )). This shows that structures in Γ(F ) stronger than directed cycles (such as

cyclic attractors) are needed to obtain a negative circuit.
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Example 4 n = 3, X = {0, 1}3 and F is defined by

f1(x) = x3

f2(x) = x1

f3(x) = x2.

The asynchronous state transition graph Γ(F ) (which is here equal to Γ[F ]) and the

interaction graph G(F ) (which is here equal to G[F ]) are the following:

Γ(F )

(0, 1, 1)

(0, 0, 1) (1, 0, 1)

(1, 1, 1)

(0, 0, 0)

(0, 1, 0) (1, 1, 0)

(1, 0, 0)

G(F )

1

23 1

11

We see that Γ(F ) has a directed cycle and that G(F ) has no negative circuit.

A second remark is that it is not easy to find other classes of iterations for which

Theorem 1 remains valid. Consider for instance the synchronous state transition graph

Λ(F ) that encodes the behaviors of the iteration xt+1 = F (xt): the set of vertices of

Λ(F ) is X and the set of its arcs is {(x, F (x)) | x ∈ X,x 6= F (x)}. The cyclic attractors

of such a (deterministic) state transition graph Λ(F ) are naturally defined to be the

directed cycles of Λ(F ). However, the following example shows that the presence of a

directed cycle in Λ(F ) does not imply the presence of a negative circuit in G(F ) (Robert
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[16, 17] proves only that it implies the presence of a circuit in G(F )).

Example 5 n = 2, X = {0, 1}2 and F is defined by

f1(x) = x2

f2(x) = x1.

The synchronous state transition graph Λ(F ) and the interaction graph G(F ) are as

follows:

Λ(F ) G(F )

(0,0)

(0,1) (1,1)

(1,0)

1 2

1

1

We see that Λ(F ) has a cyclic attractor and that G(F ) has no negative circuit.

Finally, we can ask if, under the condition that Γ(F ) has a cyclic attractor, a conclu-

sion stronger than “G(F ) has a negative circuit” could be obtained. Following Example

2, the presence of a cyclic attractor in Γ(F ) does not imply the presence of a negative

circuit in the subgraph G[F ] of G(F ). So, another direction has to be taken. As showed

below, previous results on the links between the interaction graph and the dynamical

properties of automata networks suggest to improve the conclusion of Theorem 1 by

studying if the presence of a cyclic attractor in Γ(F ) implies the presence of a negative

circuit in a local interaction graph associated with F .

Definition 8 For all x ∈ X, the local interaction graph of F evaluated at state x

is the interaction graph GF (x) that contains a positive (negative) arc from j to i if
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xj + 1 ∈ Xj and

fi(x1, . . . , xj + 1, . . . , xn) − fi(x1, . . . , xj , . . . , xn)

is positive (negative), or if xj − 1 ∈ Xj and

fi(x1, . . . , xj , . . . , xn) − fi(x1, . . . , xj − 1, . . . , xn)

is positive (negative).

Remark 12 GF (x) is a subgraph of G(F ). More precisely, G(F ) =
⋃

x∈X GF (x).

With this material, Richard and Comet [13] prove the following local version of first

Thomas’ conjecture:

Theorem 3 [13] If Γ[F ] has several attractors, and in particular if F has several fixed

points, then there exists x ∈ X such that GF (x) has a positive circuit.

Let us also mention the following fixed point theorem proved by Richard [14] (and

previously proved by Shih and Dong [18] in the Boolean case):

Theorem 4 [14] If GF (x) has no circuit for all x ∈ X, then F has a unique fixed

point.

The proof of Theorem 4 done in [14] reveals that if GF (x) has no circuit for all x ∈ X,

then F has a unique fixed point ξ, and, in addition, for all x ∈ X, Γ[F ] has a path from

x to ξ. It is then clear that the presence of a cyclic attractor in Γ[F ] implies the presence

of a circuit in GF (x) for at least one x ∈ X. We then arrive to the following natural

question:
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Question 1 Does the presence of a cyclic attractor in Γ[F ] or Γ(F ) implies the presence

of a negative circuit in GF (x) for at least one x ∈ X?

Clearly, a positive answer would improve significantly Theorem 1 or 2 by providing a

local version of the second Thomas’ conjecture. However, the following example shows

that the answer is negative. This highlights the fact that it is necessary to take a union

of local interaction graphs in order to obtain, from a cyclic attractor, a negative circuit.

Example 6 n = 2, X = {0, 1, 2, 3}2 and F is defined by:

f1(x) =















3 if x2 = 3 or if x2 > 0 and x1 ≥ 2

0 otherwise

f2(x) =















3 if x1 = 0 or if x1 < 3 and x2 ≥ 2

0 otherwise

The asynchronous state transition graph Γ(F ) is the following:

(0,0)

(0,1) (1,1)

(1,0) (2,0) (3,0)

(3,1)

(3,2)

(3,3)(2,3)(1,3)(0,3)

(0,2) (1,2) (2,2)

(2,1)
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The unitary asynchronous state transition graph Γ[F ] is the following:

(0,0)

(0,1) (1,1)

(1,0) (2,0) (3,0)

(3,1)

(3,2)

(3,3)(2,3)(1,3)(0,3)

(0,2) (1,2) (2,2)

(2,1)

The interaction graph G(F ), which is here equal to G[F ], is the following:

1 21 1

1

−1

We see that {(0, 0), (0, 3), (3, 3), (3, 0)} is a cyclic attractor of Γ(F ) and that G(F ) has a

negative circuit. We see also that {(0, 0), (0, 1), (0, 2), (0, 3), (1, 3), (2, 3), (3, 3), (3, 2), (3, 1)(3, 0)}

is a cyclic attractor of Γ[F ] and that G[F ] has a negative circuit. However, for all

x ∈ X, the local interaction graph GF (x) has no negative circuit. Indeed, for x ∈

{(1, 0), (0, 0), (0, 1)} and x ∈ {(2, 3), (3, 3), (3, 2)}, GF (x) is as follows:

1 2

−1

1

1

1

for x ∈ {(3, 1), (3, 0), (2, 0)} and x ∈ {(0, 2), (0, 3), (1, 3)}, GF (x) is as follows:

1 21

1

1

−1

24



for x = (1, 1) and x = (2, 2), GF (x) is as follows:

1 2

−1

1

11

and for x = (1, 2) and x = (2, 1), GF (x) is as follows:

1 2 11

1

The fact that Theorem 3 establishes the uniqueness of a fixed point for F under the

condition that GF (x) has no positive circuit suggests the following weaker version of

Question 1:

Question 2 Does the absence of a negative circuit in GF (x) for all x ∈ X implies the

presence of at least one fixed point for F?

A positive answer would improve significantly Corollary 1, and would give, together

with Theorem 3, a very nice proof by dichotomy of Theorem 4. However, the previous

example shows that Question 2 has also a negative answer. Nevertheless,

Questions 1 and 2 remain open in the Boolean case .
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