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Abstract : We introduce the notion of a topological fixed point in Boolean Networks : a
fixed point of Boolean network F is said topologic if it is a fixed point of every Boolean
network with the same interaction graph as the one of F . Then, we characterize the
number of topological fixed points of a Boolean network according to the structure of
its interaction graph.

1 Introduction

We are interested by the relationships between the stable states and the topology of
Boolean networks. On one side, the dynamics of a Boolean network with n components is
usually described by the successive iterations of a map F from {0, 1}n to itself. The stable
states of the network then correspond to the fixed points of F . On the other side, the
topology of the network is often described by an interaction graph G that can be deduced
from F . The vertices correspond to the network components, and the edges, which are
directed and signed, describe causal relationships in terms of activations and inhibitions
between components.

Boolean networks have been applied in many area, especially for modeling gene networks
(see, for instance, the work of Kauffman [4, 5] and Thomas [7, 8]). The relationships between
G and the fixed points of F are of particular interest in this context : fixed points have often
biological meanings (e.g. stable patterns of gene expressions corresponding to particular
cellular functions) [5, 8, 6], and the first reliable informations obtained when biologists
study gene networks are often represented in terms of interaction graphs [3].

In this note, we focus on the fixed points of F that only depend on G, and we says
that these are the topological fixed points of F . Topological fixed points of F can be seen
as “robust” fixed points in the sense that they remain fixed points after any perturbation
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of F that does affect the interaction graph G of the network. As main result, we charac-
terize the number of topological fixed points of F according to the structure of G. This
characterization uses and generalizes a theorem of Aracena, Demongeot and Goles [1, 2].

2 Definitions

Interaction graph. An n-interaction graph G is a directed graph on {1, . . . , n} in which
each arc ji (from j to i) is either positive, negative or unsigned . The set of positive,
negative and unsigned arcs of G is denoted by G +, G −, and G 0, respectively. The set of
positive (resp. negative, unsigned) predecessors of a vertex i is G

+

i = {j | ji ∈ G +} (resp.
G

−
i = {j | ji ∈ G −}, G 0

i = {j | ji ∈ G 0}). The set of signed predecessors of i is G
+

i ∪G
−
i . An

undirected path of G is a sequence of p ≥ 1 vertices i0i1 . . . ip such that ikik+1 or ik+1ik is
an arc of G , 0 ≤ k < p. Such a path joins i0 and ip, and is a cycle if i0 = ip. An undirected
path without unsigned arc is signed . A signed undirected path is positive if it contains
an even number of negative arcs, and negative otherwise. G is connected if there exists
an undirected path joining each pair of distinct vertices. A connected component of G is
a maximal subset C of vertices with the property that G has an undirected path joining
each pair of distinct vertices taken in C. We denote by G̃ the n-interaction graph that we
obtain by removing the unsigned arcs of G . Formally, G̃ is the n-interaction graph such
that G̃ + = G +, G̃ − = G − and G̃ 0 = ∅.

Topological fixed point. Consider a Boolean map

F = (f1, . . . , fn) : {0, 1}
n → {0, 1}n, x = (x1, . . . , xn) 7→ F (x) = (f1(x), . . . , fn(x)).

The discrete derivative of fi with respect to the variable xj is the map fij : {0, 1}n →
{−1, 0, 1} defined by :

fij(x) = fi(x1, . . . , xj−1, 1, xj+1, . . . , xn)−fi(x1, . . . , xj−1, 0, xj+1, . . . , xn) (i, j = 1, . . . , n).

The interaction graph of F is the n-interaction graph G(F ) defined by : for i, j = 1, . . . , n,
there exists an arc ji if fij 6= 0, and this arc is positive if fij ≥ 0, negative if fij ≤ 0, and
unsigned otherwise (that is, if fij is somewhere positive and somewhere negative). Note
that fij 6= 0 if and only if the value of fi depends on the value of xj . A point x ∈ {0, 1}n is
a fixed point of F if F (x) = x, and x is a topological fixed point of F if it is a fixed point
of every map H : {0, 1}n → {0, 1}n such that G(H) = G(F ).

Admissible interaction graph. We say that an n-interaction graph G is admissible if
there exists F : {0, 1}n → {0, 1}n such that G(F ) = G . If G is admissible, we say that
x ∈ {0, 1}n is a topological fixed point of G if x is a fixed point of every map F : {0, 1}n →
{0, 1}n such that G(F ) = G . So x is a topological fixed point of F if and only if x is a
topological fixed point of G(F ).
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Boolean operations. We set 0 = σ−(0) = σ+(1) = 1 ; 1 = σ−(1) = σ+(0) = 0 ; and
x = (x1, x2, . . . , xn). A sum of Boolean variables is always a Boolean sum (1 + 1 = 1), and
the sum modulo 2 is denoted by ⊕. By convention, the empty product is 1 and the empty
sum is 0.

3 Results

Let F be a map from {0, 1}n to itself such that G(F ) has no unsigned arc. We say that
G(F ) has the property P if G(F ) is connected, if each vertex of G(F ) has a predecessor,
and if G(F ) has no undirected negative cycle. Aracena, Demongeot and Goles [2, 1] proved
a theorem that can be stated as follows with our notations :

If G(F ) has the property P, then there exists x ∈ {0, 1}n such that x and x are fixed
points of F .

An easy unmentioned consequence of their constructive proof (that we use and extend here)
is that x and x are actually topological fixed points of F , and that no other topological
fixed point exists. So, given an n-interaction graph G without unsigned arcs (such a graph
is always admissible, cf. Remark 4.2 below), we have the following :

If G has the property P, then G has exactly two topological fixed points, and these are
of the form x, x.

In the following, we show that the converse of this slightly stronger version of the theorem
of Aracena et al is true :

If G has exactly two topological fixed points, then these are of the form x, x, and G has
the property P.

The two above statements are in fact contained in the following theorem, which provides
a characterization of the number of topological fixed points of any admissible interaction
graph :

Theorem 3.1 Let G be an admissible n-interaction graph.

(1) Let p be the number of connected components of G̃ . If each vertex of G has a
predecessor and at most one unsigned predecessor, and if G has no undirected negative
cycle, then G has exactly 2p topological fixed points. Otherwise, G has 0 topological fixed
point.

(2) If x is a topological fixed point of G , then x is also a topological fixed point of G .

Remark 3.2 If G has m arcs, then the number of connected components of G̃ can be com-
puted in O(n +m), and the presence of an undirected negative cycle in G can be checked
with the same complexity. So following Theorem 3.1, the number of topological fixed points
of G can be computed in O(n+m).
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4 Proof of Theorem 3.1

We begin with a basic lemma on unsigned arcs.

Lemma 4.1 Let G be an n-interaction graph. If G is admissible, then every vertex of G

with a unique unsigned predecessor has at least two signed predecessors.

Proof – Suppose that G is admissible, and that G has a vertex i with a unique unsigned
predecessor, say k. Then, for each F : {0, 1}n → {0, 1}n such that G(F ) = G , there exists
x, y ∈ {0, 1}n such that :

0 = fi(x1, . . . , xk−1, 0, xk+1, . . . , xn) < fi(x1, . . . , xk−1, 1, xk+1, . . . , xn) = 1,
1 = fi(y1, . . . , yk−1, 0, yk+1, . . . , yn) > fi(y1, . . . , yk−1, 1, yk+1, . . . , yn) = 0.

So the value of fi depends on the value of at least one variable xj, j 6= k, and it is easy
to see that if fi only depends on xk and xj, then j is another unsigned predecessor of i, a
contradiction. �

Remark 4.2 This necessary condition for admissibility is also sufficient. (Indeed, if each
vertex of G with a unique unsigned predecessor has at least two signed predecessors, then
it is easy to see that G is the interaction graph of the map F defined by : (1) for each i

without unsigned predecessor, fi(x) =
∑

j∈G
+

i
xj +

∑
j∈G

−
i
xj ; (2) for each i with a unique

unsigned predecessor k, fi(x) = xk σ
s1(xl1)+xk σ

s2(xl2)+
∑

j∈G
+

i
\{l1,l2}

+
∑

j∈G
−
i
\{l1,l2}

xj,

where l1 ∈ G
s1
i and l2 ∈ G

s2
i are two signed predecessors of i ; (3) for each i with p ≥ 2

unsigned predecessors k1, . . . , kp, fi(x) =
∑

1≤q<p(xkq ⊕ xkq+1
) +

∑
j∈G

+

i
xj +

∑
j∈G

−
i
xj.)

The main lemma follows.

Lemma 4.3 Let G be an admissible n-interaction graph. A point α ∈ {0, 1}n is a topolo-
gical fixed point of G if and only if (1) every vertex of G has a predecessor and at most
one unsigned predecessor, and (2) αj = αi for all ji ∈ G +, and αj 6= αi for all ji ∈ G −.

Proof – (Sufficient condition) Let F : {0, 1}n → {0, 1}n be such that G(F ) = G , and let
us show that α is a fixed point of F . Suppose, by contradiction, that there exists a vertex
i such that fi(α) 6= αi. If i has no unsigned predecessor, we set X = {x | fi(x) = αi} ;
since i has a predecessor, fi is not constant, so X is not empty. If i has a unique unsigned
predecessor, say k, we set X = {x | fi(x) = αi, xk = αk} ; since k is an unsigned predecessor
of i, for all a, b ∈ {0, 1}, there exists x such that fi(x) = a and xk = b, so X is not empty.
Let x be a point of X minimizing the Hamming distance d(x, α), that is, the number of
j ∈ {1, . . . , n} such that xj 6= αj . Since fi(x) 6= fi(α), there exists j such that xj 6= αj ,
and, by construction, j is not an unsigned predecessor of i. Consider the point y such
that yj = xj = αj and yl = xl for every vertex l 6= j. We have d(y, α) = d(x, α) − 1. So
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y 6∈ X, and we deduce that fi(y) 6= fi(x) = αi. So fij(x) > 0 if αi = xj, and fij(x) < 0
if αi 6= xj. Since j is not an unsigned predecessor of i, and since xj 6= αj , we deduce that
either ji ∈ G + and αi 6= aj, or ji ∈ G − and αi = αj, a contradiction. So fi(α) = αi for all
vertex i.

(Necessary condition) Suppose that α is a topological fixed point of G . We will show that
conditions (1) and (2) hold for an arbitrary given vertex i. Let us say that hi : {0, 1}

n →
{0, 1} is admissible if there exists F : {0, 1}n → {0, 1}n such that fi = hi and G(F ) = G .
So if hi is admissible, then hi(α) = αi.

Suppose that i has p ≥ 2 unsigned predecessors k1, . . . , kp. Consider the four following
maps from {0, 1}n to {0, 1} :

h1i (x) =
∏

1≤q<p(xkq ⊕ xkq+1
) ·

∏
j∈G

+

i
xj ·

∏
j∈G

−
i
xj ,

h2i (x) =
∏

1≤q<p(xkq ⊕ xkq+1
) ·

∏
j∈G

+

i
xj ·

∏
j∈G

−
i
xj ,

h3i (x) =
∑

1≤q<p(xkq ⊕ xkq+1
) +

∑
j∈G

+

i
xj +

∑
j∈G

−
i
xj ,

h4i (x) =
∑

1≤q<p(xkq ⊕ xkq+1
) +

∑
j∈G

+

i
xj +

∑
j∈G

−
i
xj .

It is easy to see that hr
i is admissible for r = 1, 2, 3, 4. So hr

i (α) = αi for r = 1, 2, 3, 4. But if
h1i (α) = 1 then h2i (α) = 0, and if h3

i (α) = 0 then h4i (α) = 1. We deduce that h1
i (α) 6= h2i (α)

or h3i (α) 6= h4i (α), a contradiction. So i has at most one unsigned predecessor. So we have
the two following cases.

Case 1 : the vertex i has no unsigned predecessor. Consider the two following maps
from {0, 1}n to {0, 1} :

h1i (x) =
∏

j∈G
+

i
xj ·

∏
j∈G

−
i
xj, h2i (x) =

∑
j∈G

+

i
xj +

∑
j∈G

−
i
xj.

It is easy to see that h1
i and h2i are admissible, so h1

i (α) = h2i (α) = αi. If i has no predecessor,
then h1i (α) = 1 and h2i (α) = 0, a contradiction. So i has a predecessor, and condition (1)
holds for i. We now prove that the condition (2) holds too. Suppose that ji ∈ G +. If αi = 1
then h1i (α) = 1 thus αj = 1, and if αi = 0 then h2i (α) = 0 thus αj = 0. So in both cases,
αj = αi. We prove similarly that αj 6= αi for every ji ∈ G −.

Case 2 : the vertex i has a unique unsigned predecessor k. It is sufficient to prove that
condition (2) holds. By Lemma 4.1, i has at least two signed predecessors, say l1 ∈ G

s1
i

and l2 ∈ G
s2
i . Consider the four following maps :

h1i (x) = xk σ
s1(xl1) + xk σ

s2(xl2) +
∑

j∈G
+

i
\{l1 ,l2}

xj +
∑

j∈G
−
i
\{l1,l2}

xj,

h2i (x) = xk σ
s2(xl2) + xk σ

s1(xl1) +
∑

j∈G
+

i
\{l1 ,l2}

xj +
∑

j∈G
−
i
\{l1,l2}

xj,

h3i (x) = (xk + σs1(xl1))(xk + σs2(xl2))
∏

j∈G
+

i
\{l1 ,l2}

xj
∏

j∈G
−
i
\{l1,l2}

xj,

h4i (x) = (xk + σs2(xl2))(xk + σs1(xl1))
∏

j∈G
+

i
\{l1 ,l2}

xj
∏

j∈G
−
i
\{l1,l2}

xj.
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It is easy to see that hr
i is admissible for r = 1, 2, 3, 4. So hr

i (α) = αi for r = 1, 2, 3, 4.
For all j ∈ (G +

i ∪ G
−
i ) \ {l1, l2}, we prove, as in the first case, that αj = αi if ji ∈ G +

and αj 6= αi if ji ∈ G −. Then, if αi = 0 we have h1i (α) = h2i (α) = 0, and we deduce
that σs1(αl1) = σs2(αl2) = 0. If αi = 1 then h3i (α) = h4i (α) = 1, and we deduce that
σs1(αl1) = σs2(αl2) = 1. So σs1(αl1) = σs2(αl2) = αi in both cases, and so the condition
(2) holds for all the signed predecessors of i. �

Remark 4.4 The condition (2) is equivalent to the condition “every undirected path of G̃

joining j and i is positive if αj = αi, and negative if αj 6= αi”. As a consequence, if G has
a topological fixed point, then G̃ and G have no undirected negative cycle.

Remark 4.5 We deduce from Lemma 4.3 that if each vertex of G has at most one unsigned
predecessor, then α is a topological fixed point of G if and only if α is a topological fixed
point of G̃ .

The second part of Theorem 3.1 is an immediate consequence of Lemma 4.3. To prove
the first part, we need a last lemma.

Lemma 4.6 Let G be an admissible n-interaction graph. If G̃ is connected, if each vertex
of G has a predecessor and at most one unsigned predecessor, and if G has no undirected
negative cycle, then G has exactly 2 topological fixed points.

Proof – For each vertex i 6= 1, let P1i be an undirected path of G̃ joining 1 and i (G̃ is
connected). Let α ∈ {0, 1}n be defined by : α1 = 0, αi = 0 if P1i is positive, and αi = 1
otherwise (2 ≤ i ≤ n). If ji ∈ G + and αj 6= αi, then, by definition, P1j and P1i have opposite
signs. So these paths, together with the positive arc ji, form an undirected negative cycle,
a contradiction. We prove similarly that if ji ∈ G − then αj 6= αi. Consequently, according
to Lemma 4.3, α and α are topological fixed points of G . Consider a point β 6= α, α. Then
there exists i, j such that βi = αi and βj 6= αj . Let P be an undirected path of G̃ joining j

and i (G̃ is connected). According to Remark 4.4, P is positive if and only if αj = αi. So P

is positive if and only if βj 6= βi, and according to the same remark, β is not a topological
fixed point of G . �

Suppose that G̃ has p connected components, and suppose that G has the following
property P ′ : each vertex of G has a predecessor and at most one unsigned predecessor,
and G has no undirected negative cycle. Then, each connected component of G̃ induces an
interaction graph that satisfies the conditions of the previous lemma, and that has thus
exactly two topological fixed points. It is then clear that G̃ has exactly 2p topological fixed
points, and we deduce from Remark 4.5 that G has also 2p topological fixed points. If G

does not satisfy the property P ′, following Lemma 4.3 and Remark 4.4, G has 0 topological
fixed point. This completes the proof of Theorem 3.1.
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