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Abstract: Given a Boolean function F : {0, 1}n → {0, 1}n, and a point x in {0, 1}n,
we represent the discrete Jacobian matrix of F at point x by a signed directed graph
GF (x). We then focus on the following open problem: Is the absence of a negative
circuit in GF (x) for every x in {0, 1}n a sufficient condition for F to have at least one
fixed point? As result, we give a positive answer to this question under the additional
condition that F is non-expansive with respect to the Hamming distance.
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1 Introduction

We are interested in the relationships between the fixed points and the discrete Jacobian
matrix of a Boolean function F : {0, 1}n → {0, 1}n,

x = (x1, . . . , xn) 7→ F (x) = (f1(x), . . . , fn(x)).

The discrete Jacobian matrix of F is here defined to be the map F ′ associating to each
point x in {0, 1}n the n× n matrix F ′(x) = (fij(x)) over {−1, 0, 1} defined by

fij(x) = fi(x1, . . . , 1, . . . , xn
↑

jth component

)− fi(x1, . . . , 0, . . . , xn
↑

jth component

) (i, j = 1, . . . , n).

In order to use graph theoretic notions (instead of matrix theoretic notions), we repre-
sent F ′(x) under the form of directed graph with signed arcs, called the local interaction
graph of F evaluated at point x, and denoted by GF (x): the vertex-set is {1, . . . , n}, and
there exists a positive (resp. negative) arc from j to i if fij(x) is positive (resp. negative)
(i, j = 1, . . . , n). The global interaction graph of F , denoted by G(F ), is then defined to be
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the union of all the local interaction graphs: the vertex-set is {1, . . . , n}, and there exists
a positive (resp. negative) arc from j to i if fij is somewhere positive (resp. negative) (the
presence of both a positive and a negative arc from one vertex to another is allowed). A
positive (resp. negative) circuit in such signed directed graphs is an elementary directed
cycle containing an even (resp. odd) number of negative arcs.

Our starting point is the following fixed point theorem of Robert [5, 6, 7]:

Theorem 1 [5] If G(F ) has no circuit, then F has a unique fixed point.

What interests us here is the fact that, by considering the signs of the circuits of G(F ), both
the uniqueness and the existence part of this theorem can be obtained under conditions
weaker than the absence of circuit. Indeed, on one side, the uniqueness part has been
proved by Remy, Ruet and Thieffry under the absence of positive circuit:

Theorem 2 [1] If G(F ) has no positive circuit, then F has at most one fixed point.

And on the other side, the existence part has been proved under the absence of negative
circuit:

Theorem 3 [4] If G(F ) has no negative circuit, then F has at least one fixed point.

[Theorems 2 and 3 can be seen as discrete versions of two general rules on dynamical
systems stated by the biologist René Thomas, see [1, 4].]

Now, consider the following local version of Theorem 1, stated by Shih and Ho in [8]
as a Boolean analog of the Jacobian conjecture in algebraic geometry, and proved by Shih
and Dong:

Theorem 4 [9] If GF (x) has no circuit for all x in {0, 1}n, then F has a unique fixed point.

This theorem is a sensible generalization of the theorem of Robert: since each local inter-
action graph GF (x) is a subgraph of the global interaction graph G(F ), it is clear that if
G(F ) has no circuit, then GF (x) has no circuit for all x in {0, 1}n.

Seeing the proof by dichotomy (positive/negative case) of the global theorem of Robert,
it is natural to think about a proof by dichotomy of the local theorem of Shih and Dong.
In this direction, the uniqueness part has been obtained by Remy, Ruet and Thieffry, who
proved the following local version of Theorem 2:

Theorem 5 [1] If GF (x) has no positive circuit for all x in {0, 1}n, then F has at most
one fixed point.

However, the existence part is an open problem: there is no proof or counter example to
the local version of Theorem 3. We have thus the following question:

Question 1 Is the absence of a negative circuit in GF (x) for all x in {0, 1}n a sufficient
condition for F to have at least one fixed point?
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Theorems 1-5 remain valid in the general discrete case, that is, when F sends into itself
a product of n finite interval of integers (see [5, 2, 3, 4]), but the previous question has a
negative answer in the non-Boolean discrete case [4] (the counter example is a map from
{0, 1, 2, 3}2 to itself). Therefore, the situation is clear in the non-Boolean discrete case,
and to have a clear situation in the general discrete case, it remains to answer to Question
1 in the Boolean case.

In this note, we positively answer to Question 1 under the additional condition that F
is non-expansive with respect to the Hamming distance d, that is, under the condition that

∀x, y ∈ {0, 1}n, d(F (x), F (y)) ≤ d(x, y).

[In the following, the mention “with respect to the Hamming distance” is omitted.]

Theorem 6 Let F be a non-expansive map from {0, 1}n to itself. If GF (x) has no negative
circuit for all x in {0, 1}n, then F has at least one fixed point.

The non-expansive condition is rather strong (among the (2n)2
n

maps from {0, 1}n to itself,
at most (n+1)2

n+n are non expansive (rough upper bound)). However, this partial answer
is a first result about Question 1, and more generally, a first result about negative circuits
in local interaction graphs. [And it is not, a priori, an obvious exercise. To see this, one
can refer to the technical arguments used by Shih and Ho [8, pages 75-88] to prove that a
non-expansive map F has a fixed point if GF (x) has no circuit for all x in {0, 1}n.]

The proof of Theorem 6 is given in Section 3. In section 2, we state additional definitions
and preliminary results.

2 Additional definitions and preliminary results

As usual, we set 0 = 1 and 1 = 0. For all x ∈ {0, 1}n and I ⊆ {1, . . . , n}, we denote by
xI the point y of {0, 1}n defined by: yi = xi if i ∈ I, and yi = xi otherwise (i = 1, . . . , n).
We write x instead of x{1,...,n}, and xi instead of x{i}. So, for instance, d(x, y) = n if and
only if y = x, and d(x, y) = 1 if and only if there exists an index i such that y = xi.

Let F : {0, 1}n → {0, 1}n. With the previous notations, for all x ∈ {0, 1}n, we have

fij(x) =
fi(x

j)− fi(x)

xj − xj
(i, j = 1, . . . , n).

In the following, we write j → i ∈ GF (x) to mean that GF (x) has a positive or a
negative arc from j to i, i.e. to mean that fij(x) 6= 0.

Proposition 1 If F is non-expansive then, for all x ∈ {0, 1}n,

j → i ∈ GF (x) ⇐⇒ F (xj) = F (x)
i
.
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Proof – It is sufficient to observe that j → i ∈ GF (x) if and only if fi(x
j) = fi(x) and to

use the non-expansiveness of F . �

Proposition 2 F is non-expansive if and only if, for all x ∈ {0, 1}n, the maximal out-
degree of GF (x) is at most one.

Proof – Indeed, by definition, d(F (x), F (xi)) is the out-degree of i in GF (x). So if F is
non-expansive, then d(F (x), F (xi)) ≤ d(x, xi) = 1, and one direction is proved. For the
converse, suppose that, for all x ∈ {0, 1}n, the out-degree of each vertex of GF (x) is at
most one. Then d(F (x), F (y)) ≤ 1 if d(x, y) = 1, and from this it is easy to show, by
induction on d(x, y), that d(F (x), F (y)) ≤ d(x, y) for all x, y ∈ {0, 1}n. �

So, if the maximal out-degree of G(F ) is one, then F is non expansive.
Now, we associate with F two maps F 0, F 1 : {0, 1}n−1 → {0, 1}n−1, which will be used

as inductive tools in the proof of Theorems 6. Let b ∈ {0, 1}. If x ∈ {0, 1}n−1, we denote
by (x, b) the point (x1, . . . , xn−1, b) of {0, 1}

n. Then, we define F b by:

∀x ∈ {0, 1}n−1, f b
i (x) = fi(x, b) (i = 1, . . . , n− 1).

Proposition 3 For all x ∈ {0, 1}n−1, GF b(x) is a subgraph of GF (x, b). In other words, if
GF b(x) has a positive (resp. negative) arc from j to i, then GF (x, b) has a positive (resp.
negative) arc from j to i.

Proof – It is sufficient to observe that f b
ij(x) = fij(x, b) for i, j = 1, . . . , n− 1. �

As an immediate consequence of Propositions 2 and 3, we have the following proposition:

Proposition 4 If F is non-expansive, then F 0 and F 1 are non-expansive.

3 Proof of Theorem 6

Lemma 1 Let F : {0, 1}n → {0, 1}n, and let x ∈ {0, 1}n. If d(x, F (x)) = 1, then every
Hamiltonian circuit of GF (x) is negative.

Proof – Suppose that d(x, F (x)) = 1 and that i1 → i2 → · · · → in → i1 is an Hamiltonian
circuit of GF (x) (that is, an elementary directed cycle of length n). Since d(x, F (x)) = 1,
we can suppose, without loss of generality, that F (x) = xi1 . Then,

fi1in(x) =
fi1(x

in)− fi1(x)

xin − xin
=

fi1(x
in)− xi1

xin − xin
.

Since in → i1 ∈ GF (x), we have fi1in(x) 6= 0, and we deduce that

fi1in(x) =
xi1 − xi1
xin − xin

.
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Furthermore, for k = 1, . . . , n− 1 we have fik+1
(x) = xik+1

so

fik+1ik(x) =
fik+1

(xik)− fik+1
(x)

xik − xik
=

fik+1
(xik)− xik+1

xik − xik
.

Since ik → ik+1 ∈ GF (x), we have fik+1ik(x) 6= 0, and we deduce that

fik+1ik(x) =
xik+1

− xik+1

xik − xik
.

By definition, the sign of the circuit i1 → i2 → · · · → in → i1 is the sign of

s = fi2i1(x) · fi3i2(x) · fi4i3(x) · · · finin−1
(x) · fi1in(x).

With the preceding we have

s =
xi2 − xi2
xi1 − xi1

·
xi3 − xi3
xi2 − xi2

·
xi4 − xi4
xi3 − xi3

· · ·
xin − xin

xin−1
− xin−1

·
xi1 − xi1
xin − xin

= �
�
�
��xi2 − xi2

xi1 − xi1
· �

�
�
��xi3 − xi3

�
�
�
��xi2 − xi2

· �
�
�
��xi4 − xi4

�
�
�
��xi3 − xi3

· · · �
�
�
��xin − xin

(
(
(
(

(
((xin−1

− xin−1

·
xi1 − xi1

�
�
�
��xin − xin

=
xi1 − xi1
xi1 − xi1

= −1,

and the lemma is proved. �

Remark 1 One can prove the following more general property: every circuit of GF (x) is
positive (resp. negative) if it contains an even (resp. odd) number of vertices i such that
fi(x) 6= xi.

The rest of the proof is based on the following notion of opposition: given two points
x, y ∈ {0, 1}n, and an index i ∈ {1, . . . , n}, we say that x and y are in opposition (with
respect to i in F ) if

F (x) = xi, F (y) = yi and xi 6= yi.

Lemma 2 Let F be a non-expansive map from {0, 1}n to itself. If F has two points in
opposition, then F has no fixed point.

Proof – Suppose that α and β are two points in opposition with respect to i in F , and
suppose that x is a fixed point of F . If xi = αi, then d(F (x), F (α)) = d(x, αi) > d(x, α)
and this contradicts the non-expansiveness of F . Otherwise, xi = βi, thus d(F (x), F (β)) =

d(x, β
i
) > d(x, β) and we arrive to the same contradiction. �
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Lemma 3 Let F be a non-expansive map from {0, 1}n to itself. If F has two points in
opposition, then there exists two distinct points x and y in {0, 1}n such that GF (x) and
GF (y) have a common negative circuit.

Proof – We proceed by induction on n. The lemma being obvious for n = 1, we suppose
that n > 1 and that the lemma holds for the dimension n− 1. We also suppose that F is
non-expansive and has at least two points in opposition.

Suppose that α and β are two points in opposition with respect to i in F such that
α 6= β. Then there exists j 6= i such that αj = βj and, without loss of generality, we can
suppose that αn = βn = b. We set α̃ = (α1, . . . , αn−1) and β̃ = (β1, . . . , βn−1) so that
α = (α̃, b) and β = (β̃, b). Then, α̃i = αi 6= βi = β̃i, and since F (α) = αi, we have

F b(α̃) = (f1(α), . . . , fi(α), . . . , fn−1(α)) = (α1, . . . , αi, . . . , αn−1) = α̃
i
,

and we show similarly that F b(β̃) = β̃
i

. Consequently, α̃ and β̃ are in opposition with
respect to i in F b. Since F is non-expansive, F b is also non-expansive (Proposition 4), and
by induction hypothesis, there exists two distinct points x, y ∈ {0, 1}n−1 such that GF b(x)
and GF b(y) have a common negative circuit. Since GF b(x) and GF b(y) are subgraphs of
GF (x, b) and GF (y, b) respectively (Proposition 3), we deduce that GF (x, b) and GF (y, b)
have a common negative circuit and the lemma holds.

So in the following, we suppose that:

If F has two points α and β in opposition, then α = β. (H)

We also use the following notation:

∀x ∈ {0, 1}n, x1 = x and xk+1 = F (xk) (k ∈ N).

Let us first prove that

If F (α) = αi, then there exists a permutation {i1, . . . , in} of {1, . . . , n}

with i = i1 such that F (αk) = αk
ik

for k = 1, . . . , n.
(A)

Taking i1 = i, we have F (α1) = α1
i1
. So there exists a sequence i1, i2, . . . , ip of p ≥ 1

distinct indices of {1, . . . , n} with i1 = i such that F (αk) = αk
ik

for k = 1, . . . , p. If
p = n then the property A is proved. Assume that p < n. It is then sufficient to show
that there exists a longer “good sequence”, that is, an index ip+1 6∈ {i1, . . . , ip} such that

F (αp+1) = αp+1
ip+1

. Since αp+1 = F (αp) = αpip , we have d(αp+1, αp) = 1. Since F is
non-expansive, we deduce that

d(F (αp+1), αp+1) = d(F (αp+1), F (αp)) ≤ d(αp+1, αp) = 1.
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Since F (αp+1) 6= αp+1 (Lemma 2), we deduce that d(F (αp+1), αp+1) = 1. So there exists
a unique index of {1, . . . , n}, that we denote by ip+1, such that

F (αp+1) = αp+1
ip+1

.

It remains to prove that ip+1 6∈ {i1, . . . , ip}. If not, there exists k ∈ {1, . . . , p} such that
ip+1 = ik. Then,

F (αp+1) = αp+1
ik

and F (αk) = αk
ik
.

Furthermore, since

αp+1 = αp{ip} = αp−1
{ip−1,ip}

= · · · = αk
{ik ,...,ip−1,ip}

,

and since the indices ik, . . . , ip−1, ip are pairwise distinct, we have α
p+1
ik

6= αk
ik
. Thus, αk

and αp+1 are in opposition with respect to ik in F , and since {ik, . . . , ip−1, ip} is strictly

included in {1, . . . , n}, we have αp+1 6= αk and this contradicts the hypothesis H. This
proves A.

Using H and A, we now prove that

If F (α) = αi, then the in-degree of i in GF (α) is at most one. (B)

Let {i1, . . . , in} be a permutation of {1, . . . , n} as in the property A (i1 = i). Suppose, by
contradiction, that i1 has at least two in-neighbours in GF (α). Then i1 has an in-neighbour
ik 6= in, and using Proposition 1 we deduce that

F (αik) = F (α)
i1
= αi1

i1
= α = αik

ik
and F (αk) = αk

ik
.

If k = 1, then αk = α and so

(αk)ik = αik 6= (αik)ik and αk
in

= (αik)in . (1)

Otherwise, αk = α{i1,...,ik−1} and so (1) holds again. So in both cases, αk and αik are in

opposition with respect to ik in F and αk 6= αik . This contradicts the hypothesis H. Thus
B is proved.

Using again H and A, we prove that

If α and β are in opposition in F , then there exists a permutation
{i1, . . . , in} of {1, . . . , n} such that αk and βk are in opposition with
respect to ik in F , for k = 1, . . . , n.

(C)

Suppose that α and β are in opposition in F . Then according to A, there exists a per-
mutation {i1, . . . , in} of {1, . . . , n}, and a permutation {j1, . . . , jn} of {1, . . . , n}, such that

7



F (αk) = αk
ik

and F (βk) = βk
jk

for k = 1, . . . , n. From this and the hypothesis H, we
deduce that

αn+1 = α{i1,...,in} = α = β and βn+1 = β
{j1,...,jn}

= β = α. (2)

Let us now prove, by recurrence on k decreasing from n to 1, that αk and βk are in
opposition with respect to ik in F . From (2) and the non-expansiveness of F , we have

d(αn, βn) ≥ d(F (αn), F (βn)) = d(αn+1, βn+1) = d(β, α) = n.

Thus
d(αn, βn) = n = d(αn+1, βn+1) = d(αnin , βnjn).

So in = jn and αn
in

6= βn
in
, and it follows that αn and βn are in opposition with respect to in

in F . Now, suppose that αk and βk are in opposition with respect to ik in F (2 ≤ k ≤ n).

Then, following the hypothesis H, αk = βk, and since F is non-expansive, we deduce that

d(αk−1, βk−1) ≥ d(F (αk−1), F (βk−1)) = d(αk, βk) = n.

Thus
d(αk−1, βk−1) = n = d(αk, βk) = d(αk−1

ik−1

, βk−1
jk−1

).

So ik−1 = jk−1 and αk−1
ik−1

6= αk−1
ik−1

and we deduce that αk−1 and βk−1 are in opposition
with respect to ik−1 in F . This completes the recurrence and the proof of C.

Using H, B and C, we prove that

If α et β are in opposition in F , thenGF (α
n) andGF (β

n) have a common
Hamiltonian circuit.

(D)

Let {i1, . . . , in} be a permutation of {1, . . . , n} as in the property C. We will show that
i1 → i2 → · · · → in → i1 is a circuit of GF (α

n). For k = 2, . . . , n, we have

F
(

αk
ik−1

)

= F

(

αk−1
ik−1

ik−1
)

= F (αk−1) = αk = αk
ik
ik

= F (αk)
ik
.

Thus
ik−1 → ik ∈ GF (α

k) (k = 2, . . . , n). (3)

In addition, for k = 1, . . . , n− 1, we have

F
(

αk
ik)

= F (αk+1) = αk+1
ik+1

= F (αk)
ik+1

.

Thus
ik → ik+1 ∈ GF (α

k) (k = 1, . . . , n− 1).
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Let k ∈ {1, . . . , n− 1}, and suppose, by contradiction, that

ik → ik+1 6∈ GF (α
n).

Since ik → ik+1 ∈ GF (α
k), there exists p ∈ {k + 1, . . . , n} such that

ik → ik+1 ∈ GF (α
p−1) and ik → ik+1 6∈ GF (α

p).

From (3) we deduce that k + 1 < p, and from ik → ik+1 ∈ GF (α
p−1) we deduce that

fik+1
(αp−1) 6= fik+1

(

αp−1
ik)

. (4)

Furthermore, from ik → ik+1 6∈ GF (α
p) and αp = αp−1

ip−1

we deduce that

fik+1

(

αp−1
ip−1

)

= fik+1

(

αp−1
ip−1

ik
)

= fik+1

(

αp−1
ik
ip−1

)

. (5)

If
fik+1

(αp−1) 6= fik+1

(

αp−1
ip−1

)

then ik+1 and ip are distinct out-neighbours of ip−1 in GF (α
p−1). So the out-degree of ip−1

is at least two, and this contradicts Proposition 2. Thus

fik+1
(αp−1) = fik+1

(

αp−1
ip−1

)

and from (4) and (5) we deduce that

fik+1
(αp−1

ik
) 6= fik+1

(

αp−1
ik
ip−1

)

.

Thus ip−1 → ik+1 ∈ GF

(

αp−1
ik)

, and following Proposition 1, we have

F
(

αpik
)

= F

(

αp−1
ip−1

ik
)

= F

(

αp−1
ik
ip−1

)

= F
(

αp−1
ik)

ik+1

Since ik → ik+1 ∈ GF (α
p−1), we have F

(

αp−1
ik)

= F (αp−1)
ik+1

and we deduce that

F
(

αpik
)

= F (αp−1)
ik+1

ik+1

= F (αp−1) = αp = αpip
ip

= F (αp)
ip
.

So ik and ip−1 are in-neighbours of ip in GF (α
p), and ik 6= ip−1 since k + 1 < p. So the

in-degree of ip in GF (α
p) is at least two, and since F (αp) = αpip , this contradicts the

property B. We have thus prove that

ik → ik+1 ∈ GF (α
n) (k = 1, . . . , n− 1).
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So to prove that i1 → i2 → · · · → in → i1 is a circuit of GF (α
n), it is thus sufficient to

prove that in → i1 ∈ GF (α
n). Following the hypothesis H, we have α = β, thus

F (αn) = αn+1 = α{i1,...,in} = α = β

and we deduce that

F
(

αnin
)

= F (αn+1) = F (β) = β
i1
= F (αn)

i1
.

We prove similarly that i1 → i2 → · · · → in → i1 is a circuit of GF (β
n), and D is proved.

We are now in position to prove the lemma. Let α and β be two points in opposition in
F . Following D, GF (α

n) and GF (β
n) have a common Hamiltonian circuit, and following

C, αn and βn are in opposition in F , so that d(α, F (α)) = d(β, F (β)) = 1 and α 6= β.
Consequently, by Lemma 1, the Hamiltonian circuit, present both in GF (α

n) and GF (β
n),

is negative. This completes the proof of Lemma 3. �

Lemma 4 Let F be a non-expansive map from {0, 1}n to itself. If there is no distinct
points x, y ∈ {0, 1}n such that GF (x) and GF (y) have a common negative circuit, then F

has at least one fixed point.

Proof – We proceed by induction on n. The lemma being obvious for n = 1, we suppose
that n > 1 and that the lemma holds for the dimension n−1. Let F be as in the statement,
and let b ∈ {0, 1}. Since GF b(x) is a subgraph of GF (x, b) for all x ∈ {0, 1}n−1, and since
F b is non-expansive, there is no distinct points x, y ∈ {0, 1}n−1 such that GF b(x) and
GF b(y) have a common negative circuit. So, by induction hypothesis, F b has at least one
fixed point, that we denote by ξb. Then, for b ∈ {0, 1}, we have

F (ξb, b) = (f1(ξ
b, b), . . . , fn−1(ξ

b, b), fn(ξ
b, b))

= (f b
1(ξ

b), . . . , f b
n−1(ξ

b), fn(ξ
b, b))

= (ξb1, . . . , ξ
b
n−1, fn(ξ

b, b))

= (ξb, fn(ξ
b, b)) ∈ {(ξb, b), (ξb, b)}

So if neither (ξ0, 0) nor (ξ1, 1) is a fixed point of F , then F (ξ0, 0) = (ξ0, 1), and F (ξ1, 1) =
(ξ1, 0). Therefore, (ξ0, 0) and (ξ1, 1) are in opposition with respect to n in F , and so, by
Lemma 3, there exists two distinct points x, y ∈ {0, 1}n such that GF (x) and GF (y) have
a common negative circuit, a contradiction. �

Theorem 6 is an obvious consequence of Lemma 4.

Example 1 n = 4 and F is defined by:

f1(x) = x1 x2 x3 x4
f2(x) = x2 x3 x4 x1
f3(x) = x3 x4 x1 x2
f4(x) = x4 x1 x2 x3
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Equivalently, F can be defined by the following table:

x F (x)

0000 0000
0001 0000
0010 0000
0011 0010
0100 0000
0101 0000
0110 0100
0111 0000
1000 0000
1001 0001
1010 0000
1011 0000
1100 1000
1101 0000
1110 0000
1111 0000

F has a unique fixed point (0000). The global interaction graph G(F ) is the following
(T-end arrows correspond to negative arcs, the other arrows correspond to positive arcs):

G(F )

2

34

1

G(F ) has 8 positive circuits (4 of length 1, 2 of length 2, and 2 of length 4), and it has 16
negative circuits (4 of length 2, 8 of length 3, and 4 of length 4). So Theorems 1 and 3
cannot be applied to deduce that F has a fixed point. The local interaction graphs are the
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following:
GF (0000)

1 2

34

(no arc)

GF (0001)

2

34

1

GF (0010)

2

34

1

GF (0011)

2

34

1

GF (0100)

2

34

1

GF (0101)

1 2

34

(no arc)

GF (0110)

2

34

1

GF (0111)

2

34

1
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GF (1000)

2

34

1

GF (1001)

2

34

1

GF (1010)

1 2

34

(no arc)

GF (1011)

2

34

1

GF (1100)

2

34

1

GF (1101)

2

34

1

GF (1110)

2

34

1

GF (1111)

1 2

34

(no arc)

The maximal out-degree of each local interaction graph is at most one, so F is non-
expansive, and all the local interaction graphs are without negative circuit. So F satisfies
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the conditions of Theorem 6 (and F has indeed a fixed point). Since some local interaction
graphs contain a positive circuit (of length one), Theorem 4 cannot be applied to deduce
that F has a fixed point.
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