Erratum to: Stable periodicity and negative circuits in differential systems

Adrien Richard and Jean-Paul Comet

December 2, 2014

In a private communication, Frederic Beck (University of Mainz) pointed out that, in [1], when proving that Ω contains a stable periodic solution we use a wrong argument, the following: $(\partial f_i/\partial x_i)(x) < 0$ for all $x \in \Omega$, i = 1, 2. Indeed, for instance, if $x_1 \in [2 - \varepsilon, 2 + \varepsilon[$ and $x_2 \in \times [1 + \varepsilon, 3 - \varepsilon] \setminus [2 - \varepsilon, 2 + \varepsilon[$ then $(\partial f_i/\partial x_i)(x) = 4\varphi'_2(x_1) - 1$, and this term can not be less than zero for all $x_1 \in [2 - \varepsilon, 2 + \varepsilon[$ because φ'_2 has to be greater than $1/2\varepsilon > 1$ somewhere in this region. So there are $x \in \Omega$ with $(\partial f_i/\partial x_i)(x) > 0$.

However, using slightly more involved arguments, we proved here that the system is still a counter-example of Conjecture 2'. More precisely, we prove that if $\varepsilon \leq 1/8$ then there is a stable periodic solution in the domain $\Omega' = [0, 4]^2 \setminus \Gamma$, where Γ is the interior of the convex hull of the set containing the points $A = (1 - \varepsilon, 3 - \varepsilon)$, $B = (2 - \varepsilon, 3 + \varepsilon)$, $C = (3 - \varepsilon, 3 + \varepsilon)$, $D = (3 + \varepsilon, 2 + \varepsilon)$, $E = (3 + \varepsilon, 1 + \varepsilon)$, $F = (2 + \varepsilon, 1 - \varepsilon)$, $G = (1 + \varepsilon, 1 - \varepsilon)$, and $H = (1 - \varepsilon, 2 - \varepsilon)$; see Fig. 1 for an illustration.

First, since $\Omega' \subseteq \Omega$, there is no equilibrium point in Ω' . Suppose now that $\varepsilon \leq 1/8$, and let us prove that all the solutions starting in Ω' remain in Ω' . As showed in [1], no solution starting in $[0,4]^2$ leaves $[0,4]^2$, thus it is sufficient to prove that no solution starting in Ω' reaches the interior of the convex hull Γ . Consider first the line segment L with endpoints A and B. For all $x \in L$ we have

$$f_1(x) = 4\varphi_3(x_2) - x_1 \le 4 - x_1 \le 3 + \varepsilon$$

$$f_2(x) = 4 - x_2 \ge 1 - \varepsilon.$$

Thus for all $x \in L$ the scalar product between f(x) and the vector $v = (-2\varepsilon, 1)$ is at least $-2\varepsilon(3 + \varepsilon) + (1 - \varepsilon) = 1 - 7\varepsilon - 2\varepsilon^2$, and this term is positive since $\varepsilon \leq 1/8$. Since v is orthogonal to L and is pointing outside Γ , this means that if a solution starts in Ω' , then it cannot reach Γ by crossing the line segment L = AB. Also, for all x that lies in the line segment BC we have $f_2(x) = 1 - \varepsilon > 0$. Thus if a solution starts in Ω' , then it cannot reach Γ by crossing similarly with the segments CD, DE, EF, FG, GH, and HA, we deduce that all the solutions starting in Ω' remains in Ω' . Thus, following the Poincaré-Bendixon theorem, there exists a periodic solution ψ of period T > 0 starting in Ω' .

Finally, let us prove that ψ is stable. For all $x \in \mathbb{R}^2$ we have $(\partial f_1(x)/\partial x_1)(x) = 4\varphi'_2(x_1)(\varphi_1(x_2) - \varphi_3(x_2)) - 1$. Thus $(\partial f_1(x)/\partial x_1)(x) \ge 0$ implies $4\varphi'_2(x_1)(\varphi_1(x_2) - \varphi_3(x_2)) > 0$ which implies that x belongs to the domain $[2 - \varepsilon, 2 + \varepsilon[\times]1 - \varepsilon, 3 + \varepsilon[$ which is disjoint from Ω' . Thus $(\partial f_1/\partial x_1)(x) < 0$

Figure 1: The gray region is an illustration of Ω' .

for all $x \in \Omega'$, and we prove with similar arguments that $(\partial f_2/\partial x_2)(x) < 0$ for all $x \in \Omega'$. Thus

$$\int_0^T \frac{\partial f_1}{\partial x_1}(\psi(t)) + \frac{\partial f_2}{\partial x_2}(\psi(t))dt < 0$$

and we deduce that ψ is stable.

References

[1] A. Richard and J.-P. Comet. Stable pariodicities and negative circuits in differential systems. Journal of Mathematical Biology, 63:593–600, 2011.