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IBISC - Université d’Évry Val d’Essonne, France

Adrien Richard
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A Boolean network with n components is a function

f : {0, 1}n → {0, 1}n

x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x))

(finite and heterogeneous CA on the binary alphabet)

Synchronous dynamics:
xt+1 = f(xt)

Interaction graph: digraph on {1, . . . , n} such that

j → i ⇐⇒ fi depends on xj
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Example

3-component net f

Synchronous dynamics Interaction graph

f1(x) = x1 + x3

f2(x) = x1 + x3

f3(x) = x1x2x3

000

001

010

011

100

101

110

111

1 2

3

x f(x)
000 100
001 110
010 100
011 110
100 010
101 110
110 010
111 111

Many applications

− Neural networks [McCulloch & Pitts 1943]

− Gene networks [Kauffman 1969, Thomas 1973]
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Here, we consider the (fully) asynchronous updating.

↪→ the most relevant in the context of gene networks [Thomas 73].

Given a configuration x0 and an infinite sequence i0, i1, i2, . . . of
components to update, the resulting asynchronous trajectory is

xt+1 = (xt
1, . . . , fit(x

t), . . . , xt
n)

↑
update of it only

Asynchronous graph: digraph on {0, 1}n such that, for all x and i,

x → (x1, . . . , fi(x), . . . , xn)
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Example

x f(x)

000 100
001 110
010 100
011 110
100 010
101 110
110 010
111 111
000 000

Asynchronous graph Γ(f)

000

001

010

011

100

101

110

111

shortest path = path of minimal length between two given states

geodesic = path whose length is the Hamming distance
geodesic = between the initial and final state

Remark: Every geodesic is a shortest path of length at most n.

Melliti, Regnault, Richard, Sené Asynchronous Simulation of Boolean Networks Fez 2013 5/11



Example

x f(x)

000 100
001 110
010 100
011 110
100 010
101 110
110 010
111 111
000 000

Asynchronous graph Γ(f)

000

001

010

011

100

101

110

111

shortest path = path of minimal length between two given states

geodesic = path whose length is the Hamming distance
geodesic = between the initial and final state

Remark: Every geodesic is a shortest path of length at most n.
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A network f : {0, 1}n → {0, 1}n is monotone if, for all x, y ∈ {0, 1}n,

x ≤ y ⇒ f(x) ≤ f(y)

{0, 1}n with the componentwise natural order ≤ is the Boolean lattice.

000

100 010

110

001

101 011

111

Monotone networks are interesting, both from the theoretical and
practical point of view. Many results on fixed points.
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Theorem [Knaster-Tarski 1928]

If f is monotone, then the set of fixed points of f is a non-empty lattice.

What can be said on the asynchronous graph?

Theorem [R. 2009]

If f is monotone then, for every state x, there exists at least one
fixed point z that can be reached from x in the asynchronous graph.

Theorem [Melliti-Regnault-R.-Sené 2013]

If f is monotone then, for every state x, there exists at least one
fixed point z that can be reached from x by a geodesic.

Remark: the fixed point z and the geodesic can be computed in O(n2).
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If f is monotone then, for every state x, there exists at least one
fixed point z that can be reached from x by a geodesic.

Remark: the fixed point z and the geodesic can be computed in O(n2).
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If f is monotone then, for every state x, there exists at least one
fixed point z that can be reached from x by a geodesic.

Remark: the fixed point z and the geodesic can be computed in O(n2).
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Asynchronous reachability in monotone boolean networks

x

{states reachable from x}
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Asynchronous reachability in monotone boolean networks
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Asynchronous reachability in monotone boolean networks

x

y+

z∗

geodesic

geodesic

{states reachable from x}

{fixed points reachable from x}

maximum
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Asynchronous reachability in monotone boolean networks
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Asynchronous reachability in monotone boolean networks

x

y+

y−

z∗

z+

z−

geodesic

geodesic

geodesic

geo
des

ic

geodesic

{states reachable from x}

{fixed points reachable from x}

maximum

minimum
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x

y+

y−

z∗

z+

z−

Question 1. The set of fixed points reachable from x is a lattice?

NO!

Question 2. Is there, for every reachable fixed point z,
Question 2. a “short path” from x to z?

NO!

Theorem 1
For every n, there is a n-component monotone network f with a
shortest path of length at least

√
2n that ends with a fixed point.
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Melliti, Regnault, Richard, Sené Asynchronous Simulation of Boolean Networks Fez 2013 9/11



x z√
2n

Question 1. The set of fixed points reachable from x is a lattice?

NO!

Question 2. Is there, for every reachable fixed point z,
Question 2. a “short path” from x to z?

NO!

Theorem 1
For every n, there is a n-component monotone network f with a
shortest path of length at least

√
2n that ends with a fixed point.
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0000

1000 0100

1100

0010

1010 0110

1110

0001

1001 0101

1101

0011

1011 0111

1111

Since

|M | ≥ 2n−logn−1

we deduce that

An n-component monotone network f may simulate the synchronous
dynamics of every bn− log n− 1c-component network h.

Theorem 2
An n-component monotone network f may simulate the asynchronous
dynamics of every bn2 c-component network h s.t. Γ(h) has no 2-cycle.

If Γ(h) is an Hamiltonian path (length = 2
n
2 − 1) then f has an shortest

path of length at least 2
n
2 that ends with a fixed point (Theorem 1).
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Melliti, Regnault, Richard, Sené Asynchronous Simulation of Boolean Networks Fez 2013 10/11



0000

1000 0100

1100

0010

1010 0110

1110

0001

1001 0101

1101

0011

1011 0111

1111

M

f

0000

0000

Free!

1111

1111

Since

|M | ≥ 2n−logn−1

we deduce that

An n-component monotone network f may simulate the synchronous
dynamics of every bn− log n− 1c-component network h.

Theorem 2
An n-component monotone network f may simulate the asynchronous
dynamics of every bn2 c-component network h s.t. Γ(h) has no 2-cycle.

If Γ(h) is an Hamiltonian path (length = 2
n
2 − 1) then f has an shortest

path of length at least 2
n
2 that ends with a fixed point (Theorem 1).
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Open problems

1. Let diam(n) be the maximal diameter of the asynchronous graph of
a monotone network with n components.

√
2n ≤ diam(n) ≤ 2n − 2

Is there a close formula for diam(n)? Or at least better bounds?

2. Is it more easy to enumerate all fixed points reachable
from x when the diameter is small?

3. Does a large diameter force some structures in the interaction
graph? Such as long cycle or many disjoint cycles?
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