Asynchronous simulation of Boolean networks by monotone Boolean networks

Tarek Melliti and Damien Regnault IBISC - Université d'Évry Val d'Essonne, France

Adrien Richard

13S - Université Nice Sophia Antipolis, France

Sylvain Sené

LIF - Université d'Aix-Marseille, France

ACRI-ACA, Fez, Marocco

September 7, 2016

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

(finite and heterogeneous CA on the binary alphabet)

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

(finite and heterogeneous CA on the binary alphabet)

Synchronous dynamics:

$$x^{t+1} = f(x^t)$$

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

(finite and heterogeneous CA on the binary alphabet)

Synchronous dynamics:

$$x^{t+1} = f(x^t)$$

Interaction graph: digraph on $\{1, \ldots, n\}$ such that

 $j \rightarrow i \iff f_i$ depends on x_j

3-component net f

$$f_1(x) = \overline{x_1} + x_3 f_2(x) = x_1 + x_3 f_3(x) = x_1 x_2 x_3$$

x	f(x)
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

3-component net f Synchronous dynamics

$f_1(x)$	=	$\overline{x_1} + x_3$
		$x_1 + x_3$
$f_3(x)$	=	$x_1 x_2 x_3$

	001 011 101	L
	$\downarrow\downarrow\checkmark$	
000	110	
Ļ	Ļ	
100	⊆ 010	111
		と

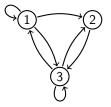
$\int f(x)$
100
110
100
110
010
110
010
111

3-component net f Synchronous dynamics

$f_1(x) = \overline{x_1} + x_3$ $f_2(x) = x_1 + x_3$ $f_3(x) = x_1 x_2 x_3$

001 011 101	
$\downarrow\downarrow\checkmark$	
000 110	
\downarrow \downarrow	
100 🔂 010	111
•	7)

Interaction	graph



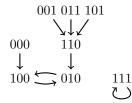
x	$\int f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

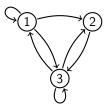
3-component net f

$f_1(x) = \overline{x_1} + x_3$ $f_2(x) = x_1 + x_3$ $f_3(x) = x_1 x_2 x_3$

Synchronous dynamics

Interaction graph





x	$\int f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

Many applications

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

Here, we consider the (fully) asynchronous updating.

 \hookrightarrow the most relevant in the context of **gene networks** [Thomas 73].

Here, we consider the (fully) asynchronous updating.

 \hookrightarrow the most relevant in the context of gene networks [Thomas 73].

Given a configuration x^0 and an infinite sequence i_0, i_1, i_2, \ldots of components to update, the resulting **asynchronous trajectory** is

$$x^{t+1} = (x_1^t, \dots, f_{i_t}(x^t), \dots, x_n^t)$$

$$\uparrow$$

update of i_t only

Here, we consider the (fully) asynchronous updating.

 \hookrightarrow the most relevant in the context of **gene networks** [Thomas 73].

Given a configuration x^0 and an infinite sequence i_0, i_1, i_2, \ldots of components to update, the resulting **asynchronous trajectory** is

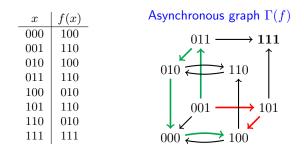
$$x^{t+1} = (x_1^t, \dots, f_{i_t}(x^t), \dots, x_n^t)$$

update of i_t only

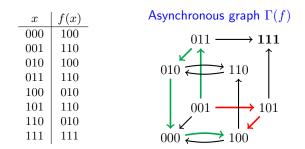
Asynchronous graph: digraph on $\{0,1\}^n$ such that, for all x and i,

$$x \rightarrow (x_1, \ldots, f_i(x), \ldots, x_n)$$

x	f(x)	Asynchronous graph $\Gamma(f)$
000	100	$011 \longrightarrow 111$
001	110	
010	100	
011	110	
100	010	
101	110	$001 \longrightarrow 101$
110	010	
111	111	$000 \rightleftharpoons 100$

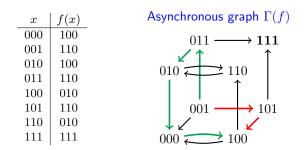


shortest path = path of minimal length between two given states



shortest path = path of minimal length between two given states

geodesic = path whose length is the Hamming distance between the initial and final state



shortest path = path of minimal length between two given states

geodesic = path whose length is the Hamming distance between the initial and final state

Remark: Every geodesic is a shortest path of length at most n.

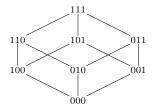
A network $f: \{0,1\}^n \to \{0,1\}^n$ is monotone if, for all $x, y \in \{0,1\}^n$,

 $x \leq y \quad \Rightarrow \quad f(x) \leq f(y)$

A network $f: \{0,1\}^n \to \{0,1\}^n$ is monotone if, for all $x, y \in \{0,1\}^n$,

$$x \le y \quad \Rightarrow \quad f(x) \le f(y)$$

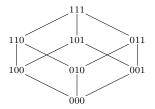
 $\{0,1\}^n$ with the componentwise natural order \leq is the **Boolean lattice**.



A network $f:\{0,1\}^n \rightarrow \{0,1\}^n$ is monotone if, for all $x,y \in \{0,1\}^n$,

$$x \le y \quad \Rightarrow \quad f(x) \le f(y)$$

 $\{0,1\}^n$ with the componentwise natural order \leq is the **Boolean lattice**.



Monotone networks are interesting, both from the theoretical and practical point of view. Many results on **fixed points**.

If f is monotone, then the set of fixed points of f is a non-empty lattice.

If f is monotone, then the set of fixed points of f is a non-empty lattice.

What can be said on the asynchronous graph?

If f is monotone, then the set of fixed points of f is a non-empty lattice.

What can be said on the asynchronous graph?

Theorem [R. 2009]

If f is monotone then, for every state x, there exists at least one fixed point z that can be reached from x in the asynchronous graph.

If f is monotone, then the set of fixed points of f is a non-empty lattice.

What can be said on the asynchronous graph?

Theorem [R. 2009]

If f is monotone then, for every state x, there exists at least one fixed point z that can be reached from x in the asynchronous graph.

Theorem [Melliti-Regnault-R.-Sené 2013]

If f is monotone then, for every state x, there exists at least one fixed point z that can be reached from x by a **geodesic**.

If f is monotone, then the set of fixed points of f is a non-empty lattice.

What can be said on the asynchronous graph?

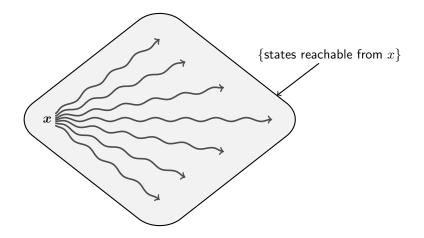
Theorem [R. 2009]

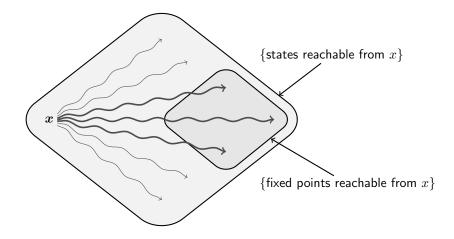
If f is monotone then, for every state x, there exists at least one fixed point z that can be reached from x in the asynchronous graph.

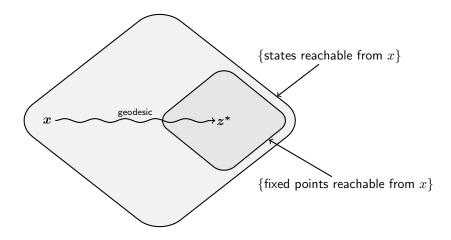
Theorem [Melliti-Regnault-R.-Sené 2013]

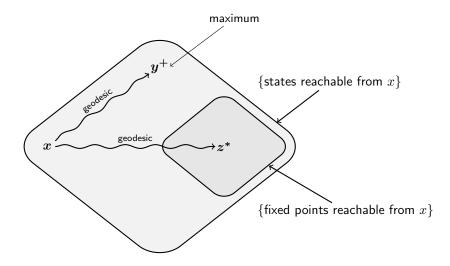
If f is monotone then, for every state x, there exists at least one fixed point z that can be reached from x by a **geodesic**.

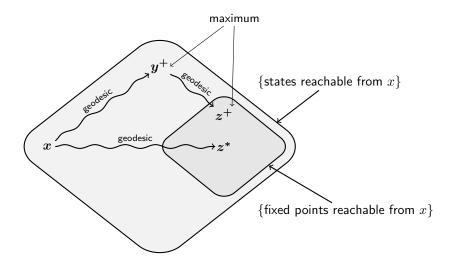
Remark: the fixed point z and the geodesic can be computed in $O(n^2)$.

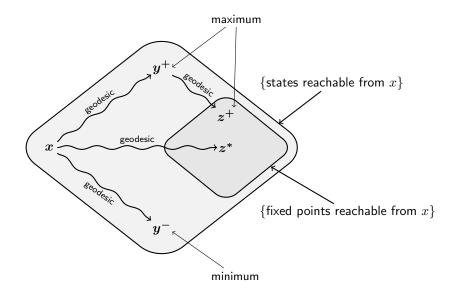


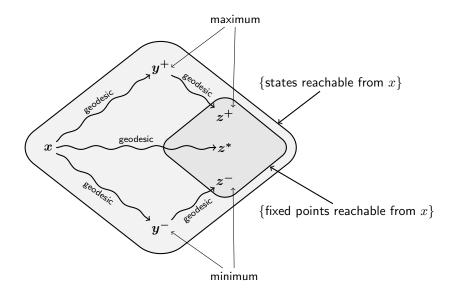


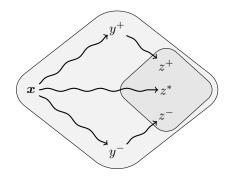


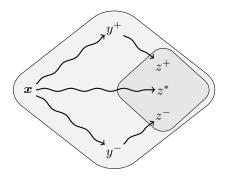




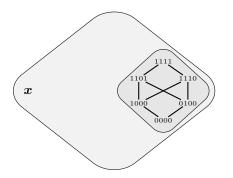




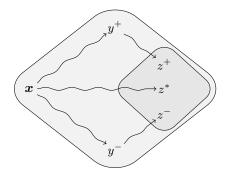




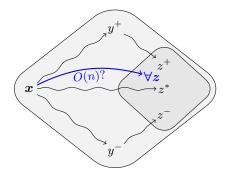
Question 1. The set of fixed points reachable from x is a lattice?



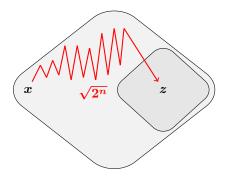
Question 1. The set of fixed points reachable from x is a lattice? **NO!**



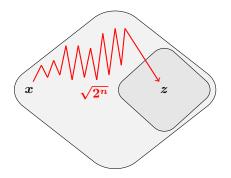
Question 2. Is there, for every reachable fixed point z, a "short path" from x to z?



Question 2. Is there, for every reachable fixed point z, a "short path" from x to z?



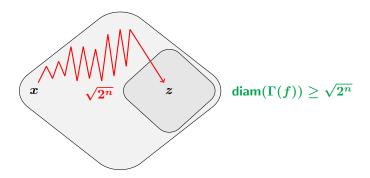
Question 2. Is there, for every reachable fixed point z, a "short path" from x to z? **NO**!



Question 2. Is there, for every reachable fixed point z, a "short path" from x to z?

Theorem 1

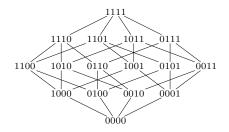
For every n, there is a n-component monotone network f with a shortest path of length at least $\sqrt{2^n}$ that ends with a fixed point.

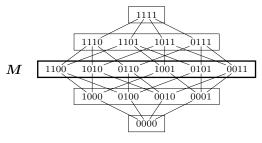


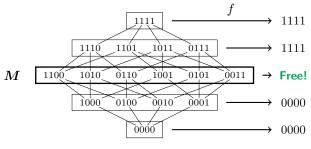
Question 2. Is there, for every reachable fixed point z, a "short path" from x to z?

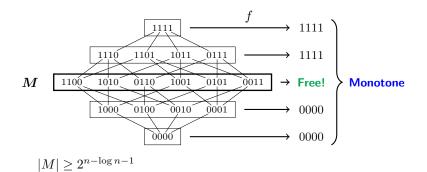
Theorem 1

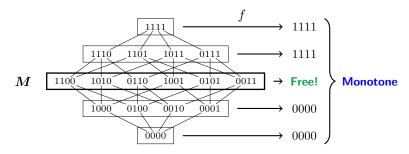
For every n, there is a n-component monotone network f with a shortest path of length at least $\sqrt{2^n}$ that ends with a fixed point.





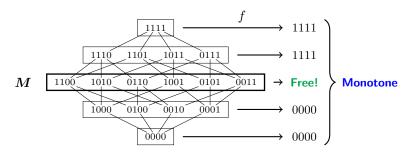






Since $|M| \ge 2^{n-\log n-1}$ we deduce that

An *n*-component monotone network f may simulate the synchronous dynamics of every $\lfloor n - \log n - 1 \rfloor$ -component network h.

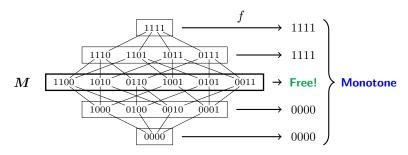


Since $|M| \ge 2^{n - \log n - 1}$ we deduce that

An *n*-component monotone network f may simulate the synchronous dynamics of every $\lfloor n - \log n - 1 \rfloor$ -component network h.

Theorem 2

An *n*-component monotone network f may simulate the asynchronous dynamics of every $\lfloor \frac{n}{2} \rfloor$ -component network h s.t. $\Gamma(h)$ has no 2-cycle.



Since $|M| \ge 2^{n - \log n - 1}$ we deduce that

An *n*-component monotone network f may simulate the synchronous dynamics of every $\lfloor n - \log n - 1 \rfloor$ -component network h.

Theorem 2

An *n*-component monotone network f may simulate the asynchronous dynamics of every $\lfloor \frac{n}{2} \rfloor$ -component network h s.t. $\Gamma(h)$ has no 2-cycle.

If $\Gamma(h)$ is an Hamiltonian path (length $= 2^{\frac{n}{2}} - 1$) then f has an shortest path of length at least $2^{\frac{n}{2}}$ that ends with a fixed point (Theorem 1).

Open problems

1. Let diam(n) be the maximal diameter of the asynchronous graph of a monotone network with n components.

$$\sqrt{2^n} \le \operatorname{diam}(n) \le 2^n - 2$$

Is there a close formula for diam(n)? Or at least better bounds?

- 2. Is it more easy to enumerate all fixed points reachable from *x* when the diameter is small?
- 3. Does a large diameter force some structures in the interaction graph? Such as long cycle or many disjoint cycles?

