On the convergence of Boolean automata networks without negative cycles

Tarek Melliti and Damien Regnault IBISC - Université d'Évry Val d'Essonne, France

Adrien Richard

I3S - Université de Nice-Sophia Antipolis, France
Sylvain Sené
LIF - Université d'Aix-Marseille, France

Gießen, September 19, 2013

Boolean networks

Finite and heterogeneous CAs on $\{0,1\}$

Boolean networks

Finite and heterogeneous CAs on $\{0,1\}$

Classical models for
Neural networks [McCulloch \& Pitts 1943]
Gene regulatory networks [Kauffman 1969, Tomas 1973]

Focus on interaction graphs

Focus on interaction graphs

Question

What can be said on the dynamics of a Boolean network according to its interaction graph ?

Focus on interaction graphs

[Arabidopsis Thaliana]

Question

What can be said on the dynamics of a Boolean network according to its interaction graph ?

Application to gene networks: reliable information on the interaction graph only.

Definitions

Setting

There are \boldsymbol{n} components (cells) denoted from 1 to n
The set of possible states (configurations) is $\{0,1\}^{n}$
The local transition function of component $i \in[n]$ is any map

$$
f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}
$$

The resulting global transition function is

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}, \quad f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

Setting

There are \boldsymbol{n} components (cells) denoted from 1 to n
The set of possible states (configurations) is $\{0,1\}^{n}$
The local transition function of component $i \in[n]$ is any map

$$
f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}
$$

The resulting global transition function is

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}, \quad f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

We consider the fully-asynchronous updating \hookrightarrow very usual in the context of gene networks [Thomas 73]

Given a map $v: \mathbb{N} \rightarrow[n]$, the fully-asynchronous dynamics is

$$
x_{v(t)}^{t+1}=f_{v(t)}\left(x^{t}\right), \quad x_{i}^{t+1}=x_{i}^{t} \quad \forall i \neq v(t)
$$

Given a map $v: \mathbb{N} \rightarrow[n]$, the fully-asynchronous dynamics is

$$
x_{v(t)}^{t+1}=f_{v(t)}\left(x^{t}\right), \quad x_{i}^{t+1}=x_{i}^{t} \quad \forall i \neq v(t)
$$

In practice, non information on $v \ldots \quad \rightarrow$ we regroup all the possible asynchronous dynamics under the form of a directed graph

Given a map $v: \mathbb{N} \rightarrow[n]$, the fully-asynchronous dynamics is

$$
x_{v(t)}^{t+1}=f_{v(t)}\left(x^{t}\right), \quad x_{i}^{t+1}=x_{i}^{t} \quad \forall i \neq v(t)
$$

In practice, non information on $v \ldots \quad \rightarrow$ we regroup all the possible asynchronous dynamics under the form of a directed graph

Definition

The asynchronous state graph of f, denoted by $A S G(f)$, is the directed graph on $\{0,1\}^{n}$ with the following set of arcs:

$$
\left\{x \rightarrow \bar{x}^{i} \mid x \in\{0,1\}^{n}, i \in[n], x_{i} \neq f_{i}(x)\right\}
$$

Example

x	$f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

Example

x	$f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

Example

x	$f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

Example

x	$f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

Example

x	$f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

Example

x	$f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

The attractors of $A S G(f)$ are its terminal strong components

- Attractor of size one $=$ fixed point
- Attractor of size at least two = cyclic attractor

Example

x	$f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

The attractors of $A S G(f)$ are its terminal strong components

- Attractor of size one $=$ fixed point
- Attractor of size at least two = cyclic attractor

A path from a state x to a state y is a direct path if its length ℓ is equal to the Hamming distance between x and y (so $\ell \leq n$).

Definition

The interaction graph of f, denoted $G(f)$, is the signed directed graph on $\{1, \ldots, n\}$ with the following arcs:

- There is a positive arc $j \rightarrow i$ iff there is a state x such that

$$
\begin{array}{r}
f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{0}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{0} \\
f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{1}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{1}
\end{array}
$$

- There is a negative arc $j \rightarrow i$ iff there is a state x such that

$$
\begin{aligned}
& f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{0}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{1} \\
& f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{1}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{0}
\end{aligned}
$$

Definition

The interaction graph of f, denoted $G(f)$, is the signed directed graph on $\{1, \ldots, n\}$ with the following arcs:

- There is a positive arc $j \rightarrow i$ iff there is a state x such that

$$
\begin{array}{r}
f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{0}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{0} \\
f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{1}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{1}
\end{array}
$$

- There is a negative arc $j \rightarrow i$ iff there is a state x such that

$$
\begin{aligned}
& f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{0}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{1} \\
& f_{i}\left(x_{1}, \ldots, x_{j-1}, \mathbf{1}, x_{j+1}, \ldots, x_{n}\right)=\mathbf{0}
\end{aligned}
$$

$$
j \rightarrow i \in G(f) \Longleftrightarrow f_{i}(x) \text { depends on } x_{j}
$$

Example

x	$f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

Asynchronous State Graph

Interaction Graph
$G(f)$

Example

x	$f(x)$
000	100
001	110
010	100
011	110
100	010
101	110
110	010
111	111

Asynchronous State Graph

Interaction Graph
$G(f)$

Question

What can be said on $A S G(f)$ according to $G(f)$?

Results

Theorem [Robert 1980]

If $G(f)$ has no cycles then

1. f has a unique fixed point
2. $A S G(f)$ has no cycles

Theorem [Robert 1980]
If $G(f)$ has no cycles then

1. f has a unique fixed point
2. $A S G(f)$ has no cycles
3. $A S G(f)$ has a direct path from every state to the fixed point

Theorem [Robert 1980]
If $G(f)$ has no cycles then

1. f has a unique fixed point
2. $A S G(f)$ has no cycles
3. $A S G(f)$ has a direct path from every state to the fixed point
\Rightarrow complexity comes from cycles of the interaction graph

Two kinds of cycles have to be considered:

- Positive cycles: even number of negative arcs
- Negative cycles: odd number of negative arcs

Theorem on positive cycles [Aracena 2004]

If all the positive cycles of $G(f)$ can be destroyed by removing k vertices, then $A S G(f)$ has at most 2^{k} attractors.

Theorem on positive cycles [Aracena 2004]

If all the positive cycles of $G(f)$ can be destroyed by removing k vertices, then $A S G(f)$ has at most 2^{k} attractors.
Corollary If $G(f)$ has no positive cycles then $A S G(f)$ has a unique attractor

Theorem on positive cycles [Aracena 2004]

If all the positive cycles of $G(f)$ can be destroyed by removing k vertices, then $A S G(f)$ has at most 2^{k} attractors.
Corollary If $G(f)$ has no positive cycles then $A S G(f)$ has a unique attractor

Theorem on negative cycles [Richard 2010]
If $G(f)$ has no negative cycles then $A S G(f)$ has a path from every state x to a fixed point

Theorem on positive cycles [Aracena 2004]

If all the positive cycles of $G(f)$ can be destroyed by removing k vertices, then $A S G(f)$ has at most 2^{k} attractors.

Corollary If $G(f)$ has no positive cycles then $A S G(f)$ has a unique attractor

Theorem on negative cycles [Richard 2010] If $G(f)$ has no negative cycles then $A S G(f)$ has a path from every state x to a fixed point

Our contribution

If $G(f)$ has no negative cycles then $A S G(f)$ has a direct path from every state x to a fixed point

Sketch of proof

Theorem If $G(f)$ has no negative cycles then $A S G(f)$ has a direct path from any state x to a fixed point

Theorem If $G(f)$ has no negative cycles then $A S G(f)$ has a direct path from any state x to a fixed point

It is sufficient to prove the theorem in the case where $G(f)$ strongly connected (the general case follows by decomposition) So we suppose that $G(f)$ is strong and has no negative cycles

Theorem If $G(f)$ has no negative cycles then $A S G(f)$ has a direct path from any state x to a fixed point

It is sufficient to prove the theorem in the case where $G(f)$ strongly connected (the general case follows by decomposition) So we suppose that $G(f)$ is strong and has no negative cycles

It is well known [Harary 1953] that $G(f)$ has a set of vertices \boldsymbol{I} such that an arc of $G(f)$ is negative iff this arc leaves \boldsymbol{I} or enters in \boldsymbol{I}

Theorem If $G(f)$ has no negative cycles then $A S G(f)$ has a direct path from any state x to a fixed point

It is sufficient to prove the theorem in the case where $G(f)$ strongly connected (the general case follows by decomposition) So we suppose that $G(f)$ is strong and has no negative cycles

It is well known [Harary 1953] that $G(f)$ has a set of vertices \boldsymbol{I} such that an arc of $G(f)$ is negative iff this arc leaves \boldsymbol{I} or enters in \boldsymbol{I}

Theorem If $G(f)$ has no negative cycles then $A S G(f)$ has a direct path from any state x to a fixed point

Let h be the network defined by $h(x)={\overline{f\left(\bar{x}^{\boldsymbol{I}}\right)}}^{\boldsymbol{I}}$ for all $x \in\{0,1\}^{n}$

Theorem If $G(f)$ has no negative cycles then $A S G(f)$ has a direct path from any state x to a fixed point

Let h be the network defined by $h(x)={\overline{f\left(\bar{x}^{\boldsymbol{I}}\right)}}^{\boldsymbol{I}}$ for all $x \in\{0,1\}^{n}$
$A S G(h)$ is isomorphic to $A S G(f)$ and the isomorphism is $x \mapsto \bar{x}^{I}$ The isomorphism preserves the Hamming distance

Theorem If $G(f)$ has no negative cycles then $A S G(f)$ has a direct path from any state x to a fixed point

Let h be the network defined by $h(x)={\overline{f\left(\bar{x}^{\boldsymbol{I}}\right)}}^{\boldsymbol{I}}$ for all $x \in\{0,1\}^{n}$
$A S G(h)$ is isomorphic to $A S G(f)$ and the isomorphism is $x \mapsto \bar{x}^{\boldsymbol{I}}$ The isomorphism preserves the Hamming distance

In addition, $G(h)$ is obtained from $G(f)$ by changing the sign of every arc that leaves \boldsymbol{I} or enters in \boldsymbol{I}
Thus $G(h)$ has only positive arcs

Theorem If $G(f)$ has no negative cycles then $A S G(f)$ has a direct path from any state x to a fixed point

Let h be the network defined by $h(x)={\overline{f\left(\bar{x}^{\boldsymbol{I}}\right)}}^{\boldsymbol{I}}$ for all $x \in\{0,1\}^{n}$
$A S G(h)$ is isomorphic to $A S G(f)$ and the isomorphism is $x \mapsto \bar{x}^{\boldsymbol{I}}$ The isomorphism preserves the Hamming distance

In addition, $G(h)$ is obtained from $G(f)$ by changing the sign of every arc that leaves \boldsymbol{I} or enters in \boldsymbol{I}
Thus $G(h)$ has only positive arcs

Conclusion: We can suppose that $G(f)$ has only positive arcs This is equivalent to say that f is monotonous:

$$
\forall x, y \in\{0,1\}^{n} \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

Lemma $1 \quad f(\mathbf{0})=\mathbf{0}$ and $f(\mathbf{1})=\mathbf{1}$

Suppose $f(\mathbf{0}) \neq \mathbf{0}$, that is, $f_{i}(\mathbf{0})=1$ for some i
Then since f is monotonous, $f_{i}(x)=1$ for all $x \in\{0,1\}^{n}$
Thus $f_{i}=c s t$, so i has no in-neighbor in $G(f)$
Thus $G(f)$ is not strong, a contradiction
We prove similarly $f(\mathbf{1})=\mathbf{1}$.

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

Lemma 2 The set of states reachable from x, denoted by $R(x)$, has a unique maximal element, reachable from x by a direct path

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

Lemma 2 The set of states reachable from x, denoted by $R(x)$, has a unique maximal element, reachable from x by a direct path

Let P be an increasing path from x of maximal length. Let y the last state of P, so that $f(y) \leq y$. We prove that $z \leq y, \forall z \in R(x)$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

Lemma 2 The set of states reachable from x, denoted by $R(x)$, has a unique maximal element, reachable from x by a direct path

Let P be an increasing path from x of maximal length. Let y the last state of P, so that $f(y) \leq y$. We prove that $z \leq y, \forall z \in R(x)$

If not there is a path $x \rightsquigarrow z \rightarrow \bar{z}^{i}$ with $z \leq y$ and $\bar{z}^{i} \not \leq y$.
Thus $\bar{z}_{i}^{i}=1$ and $y_{i}=0$, so $z \rightarrow \bar{z}^{i}$ increases component i.
Thus $f_{i}(z)=1$ and since $z \leq y$ and f_{i} is monotonous, $f_{i}(y)=1$.

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

Lemma 2 The set of states reachable from x, denoted by $R(x)$, has a unique maximal element, reachable from x by a direct path

Let P be an increasing path from x of maximal length. Let y the last state of P, so that $f(y) \leq y$. We prove that $z \leq y, \forall z \in R(x)$

If not there is a path $x \rightsquigarrow z \rightarrow \bar{z}^{i}$ with $z \leq y$ and $\bar{z}^{i} \not \leq y$.
Thus $\bar{z}_{i}^{i}=1$ and $y_{i}=0$, so $z \rightarrow \bar{z}^{i}$ increases component i.
Thus $f_{i}(z)=1$ and since $z \leq y$ and f_{i} is monotonous, $f_{i}(y)=1$.

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

$f(z) \leq f(y) \leq y, \forall z \in R(x)$
If $f(y)=y$ nothing to prove
Suppose $f_{i}(y)<y_{i}$ for some i

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

$f(z) \leq f(y) \leq y, \forall z \in R(x)$
If $f(y)=y$ nothing to prove Suppose $f_{i}(y)<y_{i}$ for some i

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

$f(z) \leq f(y) \leq y, \forall z \in R(x)$
If $f(y)=y$ nothing to prove Suppose $f_{i}(y)<y_{i}$ for some i

Then $f_{i}(z)=0$ for all $z \in R(x)$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Theorem If $G(f)$ is strong and f is monotonous then $A S G(f)$ has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x. If $x=\mathbf{0}$ the theorem is true since $f(\mathbf{0})=\mathbf{0}$. Suppose that $x>\mathbf{0}$

Further results \& perspectives

Theorem

Suppose that $G(f)$ has no negative cycles.
The set of fixed points reachable from x has a unique maximal element x^{+}and a unique minimal element x^{-}, which are reachable in at most $2 n-4$ transitions (thigh bound).

Theorem

Suppose that $G(f)$ has no negative cycles.
The set of fixed points reachable from x has a unique maximal element x^{+}and a unique minimal element x^{-}, which are reachable in at most $2 n-4$ transitions (thigh bound).

Are all the fixed points of $R(x)$ reachable in at most $2 n-4$ steps ?
Can we obtain upper/lower bounds on the number of fixed points reachable from x according to $G(f)$?

Theorem

Suppose that $G(f)$ has no negative cycles.
The set of fixed points reachable from x has a unique maximal element x^{+}and a unique minimal element x^{-}, which are reachable in at most $2 n-4$ transitions (thigh bound).

Are all the fixed points of $R(x)$ reachable in at most $2 n-4$ steps ?
Can we obtain upper/lower bounds on the number of fixed points reachable from x according to $G(f)$?

We also plain to understand the connexions with works on

- Monotone maps on complete lattices [Tarski]
- Monotone differential systems [Hirsch \& Smith]

Theorem

Suppose that $G(f)$ has no negative cycles.
The set of fixed points reachable from x has a unique maximal element x^{+}and a unique minimal element x^{-}, which are reachable in at most $2 n-4$ transitions (thigh bound).

Are all the fixed points of $R(x)$ reachable in at most $2 n-4$ steps ?
Can we obtain upper/lower bounds on the number of fixed points reachable from x according to $G(f)$?

We also plain to understand the connexions with works on

- Monotone maps on complete lattices [Tarski]
- Monotone differential systems [Hirsch \& Smith]

Thank you!

