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Boolean networks

=

Finite and heterogeneous CAs on {0, 1}

Classical models for

Neural networks [McCulloch & Pitts 1943]

Gene regulatory networks [Kauffman 1969, Tomas 1973]
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Focus on interaction graphs
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[Arabidopsis Thaliana]

Question

What can be said on the dynamics of a Boolean network according
to its interaction graph ?

Application to gene networks: reliable information on the
interaction graph only.
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Definitions
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Setting

There are n components (cells) denoted from 1 to n

The set of possible states (configurations) is {0, 1}n

The local transition function of component i ∈ [n] is any map

fi : {0, 1}n → {0, 1}

The resulting global transition function is

f : {0, 1}n → {0, 1}n, f(x) = (f1(x), . . . , fn(x))

We consider the fully-asynchronous updating
↪→ very usual in the context of gene networks [Thomas 73]
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Given a map v : N→ [n], the fully-asynchronous dynamics is

xt+1
v(t) = fv(t)(x

t), xt+1
i = xti ∀i 6= v(t)

In practice, non information on v... → we regroup all the possible
asynchronous dynamics under the form of a directed graph

Definition

The asynchronous state graph of f , denoted by ASG(f), is the
directed graph on {0, 1}n with the following set of arcs:{

x→ x̄i | x ∈ {0, 1}n, i ∈ [n], xi 6= fi(x)
}
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Example
x f(x)

000 100
001 110
010 100
011 110
100 010
101 110
110 010
111 111

ASG(f)

000

001

010

011

100

101

110

111

The attractors of ASG(f) are its terminal strong components

- Attractor of size one = fixed point

- Attractor of size at least two = cyclic attractor

A path from a state x to a state y is a direct path if its length `
is equal to the Hamming distance between x and y (so ` ≤ n).
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Definition

The interaction graph of f , denoted G(f), is the signed directed
graph on {1, . . . , n} with the following arcs:

- There is a positive arc j → i iff there is a state x such that

fi(x1, . . . , xj−1,0, xj+1, . . . , xn) = 0

fi(x1, . . . , xj−1,1, xj+1, . . . , xn) = 1

- There is a negative arc j → i iff there is a state x such that

fi(x1, . . . , xj−1,0, xj+1, . . . , xn) = 1

fi(x1, . . . , xj−1,1, xj+1, . . . , xn) = 0

j → i ∈ G(f) ⇐⇒ fi(x) depends on xj
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Results
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Theorem [Robert 1980]

If G(f) has no cycles then

1. f has a unique fixed point

2. ASG(f) has no cycles

3. ASG(f) has a direct path from every state to the fixed point

⇒ complexity comes from cycles of the interaction graph

Two kinds of cycles have to be considered:

- Positive cycles: even number of negative arcs

- Negative cycles: odd number of negative arcs
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Theorem on positive cycles [Aracena 2004]

If all the positive cycles of G(f) can be destroyed by removing k
vertices, then ASG(f) has at most 2k attractors.

Corollary If G(f) has no positive cycles then ASG(f) has a
unique attractor

Theorem on negative cycles [Richard 2010]

If G(f) has no negative cycles then ASG(f) has a path
from every state x to a fixed point

Our contribution

If G(f) has no negative cycles then ASG(f) has a direct path
from every state x to a fixed point
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Sketch of proof
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Theorem If G(f) has no negative cycles then ASG(f) has
Theorem a direct path from any state x to a fixed point

It is sufficient to prove the theorem in the case where G(f)
strongly connected (the general case follows by decomposition)
So we suppose that G(f) is strong and has no negative cycles

It is well known [Harary 1953] that G(f) has a set of vertices I such
that an arc of G(f) is negative iff this arc leaves I or enters in I

I

•

•

•

•

•
•

•
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Theorem If G(f) has no negative cycles then ASG(f) has
Theorem a direct path from any state x to a fixed point

Let h be the network defined by h(x) = f(x̄I)
I

for all x ∈ {0, 1}n

ASG(h) is isomorphic to ASG(f) and the isomorphism is x 7→ x̄I

The isomorphism preserves the Hamming distance

In addition, G(h) is obtained from G(f) by changing the sign of
every arc that leaves I or enters in I
Thus G(h) has only positive arcs

Conclusion: We can suppose that G(f) has only positive arcs
This is equivalent to say that f is monotonous:

∀x, y ∈ {0, 1}n x ≤ y ⇒ f(x) ≤ f(y)
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Theorem If G(f) is strong and f is monotonous then ASG(f)
Theorem has a direct path from any state x to a fixed point

Lemma 1 f(0) = 0 and f(1) = 1

Suppose f(0) 6= 0, that is, fi(0) = 1 for some i

Then since f is monotonous, fi(x) = 1 for all x ∈ {0, 1}n

Thus fi = cst, so i has no in-neighbor in G(f)

Thus G(f) is not strong, a contradiction

We prove similarly f(1) = 1.
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Theorem If G(f) is strong and f is monotonous then ASG(f)
Theorem has a direct path from any state x to a fixed point

Lemma 2 The set of states reachable from x, denoted by R(x),
has a unique maximal element, reachable from x by a direct path

Let P be an increasing path from x of maximal length. Let y the
last state of P , so that f(y) ≤ y. We prove that z ≤ y, ∀z ∈ R(x)

If not there is a path x z → z̄i with z ≤ y and z̄i 6≤ y.

Thus z̄ii = 1 and yi = 0, so z → z̄i increases component i.

Thus fi(z) = 1 and since z ≤ y and fi is monotonous, fi(y) = 1.
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Theorem If G(f) is strong and f is monotonous then ASG(f)
Theorem has a direct path from any state x to a fixed point

We prove the theorem by induction on the number of ones in x.
If x = 0 the theorem is true since f(0) = 0. Suppose that x > 0
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If x = 0 the theorem is true since f(0) = 0. Suppose that x > 0

R(x)

x

y
Maximal element of R(x)
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fi(x) = 0

yi = 1

Algorithm in O(n2)
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Theorem

Suppose that G(f) has no negative cycles.

The set of fixed points reachable from x has a unique maximal
element x+ and a unique minimal element x−, which are reachable
in at most 2n− 4 transitions (thigh bound).

Are all the fixed points of R(x) reachable in at most 2n− 4 steps ?

Can we obtain upper/lower bounds on the number of fixed points
reachable from x according to G(f) ?

We also plain to understand the connexions with works on

- Monotone maps on complete lattices [Tarski]

- Monotone differential systems [Hirsch & Smith]

Thank you!
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