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A Boolean network (BN) with n components is a function

f : {0, 1}n → {0, 1}n

x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x)).

The dynamics is usually described by the successive iterations of f

x→ f(x)→ f2(x)→ f3(x)→ · · ·

Fixed points correspond to stable states.
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Example with n = 3

 f1(x) = x2 ∨ x3

f2(x) = x1 ∧ x3

f3(x) = x3 ∧ (x1 ∨ x2)

x f(x)

000 000
001 110
010 101
011 110
100 001
101 100
110 101
111 100

Dynamics

000 110

101

100

001

011

010

111
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The interaction graph of f is the digraph G(f) on [n] := {1, . . . , n} s.t.

j → i is an arc ⇐⇒ fi depends on xj .
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Example

 f1(x) = x2 ∨ x3

f2(x) = x1 ∧ x3

f3(x) = x3 ∧ (x1 ∨ x2)

x f(x)
000 000
001 110
010 101
011 110
100 001
101 100
110 101
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Dynamics
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Interaction graph

1 2
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Many applications, in particular:

- Neural networks [McCulloch & Pitts 1943]

- Gene networks [Kauffman 1969, Thomas 1973]

- Network Coding [Riis 2007]
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Synchronous dynamics: all components are updated at each step:

x→ f(x)→ f2(x)→ f3(x)→ · · ·

Asynchronous: one component is updated at each step.
↪→ Update component i at state x means reach the state

x
i−→ f i(x) := (x1, . . . , xi−1, fi(x), xi+1, . . . , xn).

The asynchronous graph Γ(f) describes all the possible trajectories:
the vertex set is {0, 1}n and x→ f i(x) for all x ∈ {0, 1}n and i ∈ [n].

It can be regarded as a Finite Deterministic Automta where

1. the alphabet is Σ := [n];

2. the set of states is Q := {0, 1}n;

3. the transition function δ : Q× Σ→ Q is δ(x, i) := f i(x).
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Example

x f(x)
000 000
001 000
010 001
011 001
100 010
101 000
110 010
111 100

000

1, 2, 3

001

1, 2

010

1

011

1, 3

100

3

101

2

110

2, 3

111

1

3
2

3

2

1

2

1

3

1

3
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Notation: If w = i1i2 . . . ik ∈ [n]∗ then fw(x) is the state obtained
from x by updating successively the components i1, i2, . . . , ik, that is,

fw(x) := (f ik ◦ f ik−1 ◦ · · · ◦ f i1)(x).

Definition 1. A word w ∈ [n]∗ fixes f if

∀x ∈ {0, 1}n, fw(x) is a fixed point of f.

The fixing length λ(f) is the min length of a word fixing f .

Definition 2. A word w fixes a family F of BNs if it fixes each f ∈ F .
The fixing length λ(F) is the min length of a word fixing F .
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Example: 1231 is fixing (and no shorter word is fixing, thus λ(f) = 4).

x f(x)
000 000
001 000
010 001
011 001
100 010
101 000
110 010
111 100
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Remarks

1. f is fixable only if f has a fixed point.

2. If f has a unique fixed point then:

w fixes f ⇐⇒ w is synchronizing.

3. A family F is fixable if and only if each f ∈ F is fixable.

Theorem 1 [Bollobás, Gotsman and Shamir 1993]

There is a positive fraction φ(n) of fixable BNs with n components:

lim
n→∞

φ(n) = 1− 1

e
≥ 0.64.
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Example of fixable families

1. FM(n): Monotone BNs (2Θ(
√
n2n)):

∀x, y ∈ {0, 1}n, x ≤ y ⇒ f(x) ≤ f(y).

2. FA(n): BNs with an Acyclic interaction graph (2Θ(2n)).

3. FI(n): Increasing BNs (2n2n−1

):

∀x ∈ {0, 1}n, x ≤ f(x).

4. FP (n): Monotone BNs whose interaction graph is a Path (2n!).

Aracena, Gadouleau, Richard, Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 12/37



Example of fixable families

1. FM(n): Monotone BNs (2Θ(
√
n2n)):

∀x, y ∈ {0, 1}n, x ≤ y ⇒ f(x) ≤ f(y).

2. FA(n): BNs with an Acyclic interaction graph (2Θ(2n)).

3. FI(n): Increasing BNs (2n2n−1

):

∀x ∈ {0, 1}n, x ≤ f(x).

4. FP (n): Monotone BNs whose interaction graph is a Path (2n!).

Aracena, Gadouleau, Richard, Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 12/37



Example of fixable families

1. FM(n): Monotone BNs (2Θ(
√
n2n)):

∀x, y ∈ {0, 1}n, x ≤ y ⇒ f(x) ≤ f(y).

2. FA(n): BNs with an Acyclic interaction graph (2Θ(2n)).

3. FI(n): Increasing BNs (2n2n−1

):

∀x ∈ {0, 1}n, x ≤ f(x).

4. FP (n): Monotone BNs whose interaction graph is a Path (2n!).

Aracena, Gadouleau, Richard, Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 12/37



Example of fixable families

1. FM(n): Monotone BNs (2Θ(
√
n2n)):

∀x, y ∈ {0, 1}n, x ≤ y ⇒ f(x) ≤ f(y).

2. FA(n): BNs with an Acyclic interaction graph (2Θ(2n)).

3. FI(n): Increasing BNs (2n2n−1

):

∀x ∈ {0, 1}n, x ≤ f(x).

4. FP (n): Monotone BNs whose interaction graph is a Path (2n!).

Aracena, Gadouleau, Richard, Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 12/37



Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks F maxf∈F λ(f) λ(F)

Acyclic FA(n) n Θ(n2)

Path FP (n) n Θ(n2)

Increasing FI(n) Θ(n2) Θ(n2)

Monotone FM(n) Ω(n2) O(n3)
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Acyclic networks
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G(f)

1 2 3

4 5

6 7 8

9 10

stabilization

w := 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is a fixing word

Proposition. Let f ∈ FA(n) and w ∈ [n]∗.

1. If w is a topological sort of G(f), then w fixes f , thus λ(f) = n.

2. If w contains a topological sort of G(f) then w fixes f .

3. If w contains all the permutations of [n], then it fixes FA(n).
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An n-complete word is a word w ∈ [n]∗ that contains (as subsequences)
all the permutations of [n].

λ(n) := minimum length of an n-complete word.

Corollary. Every n-complete word fixes FA(n), thus

λ(FA(n)) ≤ λ(n).
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What is the magnitude order of λ(n)?

For an upper-bound, let

w := 123 . . . n︸ ︷︷ ︸
1

123 . . . n︸ ︷︷ ︸
2

· · · 123 . . . n︸ ︷︷ ︸
n

Let π = i1i2 . . . in be a permutation of [n]. Then

w := 123 . . . n︸ ︷︷ ︸
contains i1

123 . . . n︸ ︷︷ ︸
contains i2

· · · 123 . . . n︸ ︷︷ ︸
contains in

Hence w contains π. Thus w is n-complete: λ(n) ≤ |w| = n2.
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What is the magnitude order of λ(n)?

For a better upper-bound, let

w := 123 . . . n︸ ︷︷ ︸
1

n(n− 1) . . . 321︸ ︷︷ ︸
2

123 . . . n︸ ︷︷ ︸
3

· · · 123 . . . n︸ ︷︷ ︸
n

Then w is n-complete, and

w′ := 123 . . . n︸ ︷︷ ︸
1

(n− 1) . . . 321︸ ︷︷ ︸
2

23 . . . n︸ ︷︷ ︸
3

· · · 23 . . . n︸ ︷︷ ︸
n

is also n-complete, thus λ(n) ≤ |w′| = n2 − n+ 1.

Theorem

λ(n) ≤ n2 − 2n+ 4 for all n ≥ 1 [Adleman 1974]

λ(n) ≤ n2 − 2n+ 3 for all n ≥ 10 [Zlinescu 2011]

λ(n) ≤
⌈
n2 − 7

3n+ 19
3

⌉
for all n ≥ 7 [Radomirovic 2012]
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What is the magnitude order of λ(n)?

For a lower-bound, note that if w is n-complete then

n! ≤ |{subsequences of length n contained in w}| ≤
(
|w|
n

)
≤ |w|

n

n!

Hence,

|w|n ≥ (n!)2 ≥
(n
e

)2n

thus |w| ≥
(n
e

)2

.

We deduce that
λ(n) = Θ(n2).

Theorem [Kleitman, Kwiatkowski 1976]

λ(n) = n2 − o(n2).
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Corollary. λ(FA(n)) ≤ λ(n) = n2 − o(n2).

For a lower-bound, let π = i1i2 . . . in a permutation of [n], and consider
the monotone BN f whose interaction graph is

i1 i2 i3 i4 i5 in

Then w ∈ [n]∗ fixes f if and only if w contains π.

Proposition 2. A word fixes FP (n) if and only if it is n-complete, thus

λ(FP (n)) = λ(n)

Since FP (n) ⊆ FA(n) we deduce that λ(n) ≤ λ(FA(n)) and thus

Theorem. λ(FP (n)) = λ(FA(n)) = λ(n) = n2 − o(n2).
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Theorem [Aracena, Gadoudeau, R., Salinas 2018+]

Networks F maxf∈F λ(f) λ(F)

Acyclic FA(n) n Θ(n2)

Path FP (n) n Θ(n2)

Increasing FI(n) Θ(n2) Θ(n2)

Monotone FM(n) Ω(n2) O(n3)
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A monotone network hard to fixe

Aracena, Gadouleau, Richard, Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 22/37



A monotone BN f with n = a+ b, which is hard to fixe:

b

a

1 2 3 4 5 6 7 8 9

1

2

3

4

5

1

2

3

4

5

For each input x with b b2c ones, f behaves a path πx (permut. of [a]).

A word fixing f must contain all the permutations πx.

If
(
b
b b2 c
)
≥ a!, then w must contains the a! permutations of [a], and then

λ(f) ≥ λ(a) ∼ a2.

This works with b = O(a log a) and we get a = Ω( n
logn

).
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If
(
b
b b2 c
)
≥ a!, then w must contains the a! permutations of [a], and then

λ(f) ≥ λ(a) ∼ a2.

This works with b = O(a log a) and we get a = Ω( n
logn

).
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(
9
4

)
= 126 ≥ 120 = 5!

For each input x with b b2c ones, f behaves a path πx (permut. of [a]).

A word fixing f must contain all the permutations πx.

If
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b
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The construction is based on the fact that a word containing the n!
permutations of Sn must be of quadratic length.

But maybe there exists a small subset Πn ⊆ Sn such that any word
containing all the permutations in Πn is still of quadratic length.

Theorem. There exists Πn ⊆ Sn of size 2o(n) such that any word

Theorem. containing all the permutations in Πn is of length ≥ n2/3.

In the construction f , we encode Sa with b = O(a log a) inputs.

But we can encode Πa with b = o(a) only, and get

λ(f) ≥
a2

3
∼
n2

3
.
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Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks F maxf∈F λ(f) λ(F)

Acyclic FA(n) n Θ(n2)

Path FP (n) n Θ(n2)

Increasing FI(n) Ω(n2) O(n2)

Monotone FM(n) Ω(n2) O(n3)
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Theorem. There exists Πn ⊆ Sn of size 2o(n) such that any word

Theorem. containing all the permutations in Πn is of length ≥ n2/3.

Baranyai’ theorem [1975]

If n = ab, there exists a collection of 1
b

(
n
a

)
partitions of [n] into a-sets,

such that each a-subset of [n] appears in exactly one partition.

For a = 2 this this equivalent to that, for n even, there is a partition of
the edges of Kn into perfect matchings.

1

2

3

4

5

6
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For n = ab, there exists a collection Πn ⊆ Sn of size a!
(
n
a

)
≤ na with the

following properties:

π1
π2

π
a!

(
n
a

)

b blocks of size a

1 2 b
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For n = ab, there exists a collection Πn ⊆ Sn of size a!
(
n
a

)
≤ na with the

following properties:

π1
π2

π
a!

(
n
a

)

b blocks of size a

1 2 b

set of word of length a without repetition (a!
(
n
a

)
)
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For n = ab, there exists a collection Πn ⊆ Sn of size a!
(
n
a

)
≤ na with the

following properties:

π1
π2

π
a!

(
n
a

)

b blocks of size a

1 2 b

minimal complete word w (of length ≤ n2)

profile of the
permutation

at most n2b

possible profils
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For n = ab, there exists a collection Πn ⊆ Sn of size a!
(
n
a

)
≤ na with the

following properties:

π1
π2

π
a!

(
n
a

)

b blocks of size a

1 2 b

minimal complete word w (of length ≤ n2)

profile of the
permutation

at most n2b

possible profils

at least
a!(na)
n2b

permutations with

the same profil
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By a counting argument

|w| ≥
(
n−

2b
a

) n(n− a)

e

Taking a = n
1
2 +ε and b = n

1
2−ε we get

|w| ∼ n2

e
and |Πn| ≤ nn

1
2
+ε

= 2o(n).
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Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks F maxf∈F λ(f) λ(F)

Acyclic FA(n) n Θ(n2)

Path FP (n) n Θ(n2)

Increasing FI(n) Ω(n2) O(n2)

Monotone FM(n) Ω(n2) O(n3)
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Fixing all increasing networks
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Let f be any BN with n components and x ∈ {0, 1}n.

1. f is increasing from x if fu(x) ≤ fuv(x) for all u, v ∈ [n]∗.

2. f is decreasing from x if fu(x) ≥ fuv(x) for all u, v ∈ [n]∗.

Thus f is increasing ⇐⇒ f is increasing from every state.

Lemma. If f is increasing or decreasing from x, and w is n-complete,
Lemma. then fw(x) is a fixed point of f .

So any n-complete fixes every increasing f , thus λ(FI(n)) ≤ λ(n).

Conversely, by considering a variation of path networks, we show that if
w fixes every increasing f , then w is n-complete.

Proposition. λ(FI(n)) = λ(n) = n2 − o(n2).
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A cubic word fixing all the monotone networks
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Lemma. If f is monotone and w is n-complete, then

x ≤ f(x) ⇒ f is increasing from x ⇒ fw(x) if a fixed point of f

x ≥ f(x) ⇒ f is decreasing from x ⇒ fw(x) if a fixed point of f

Aracena, Gadouleau, Richard, Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 34/37



Let ωn be an n-complete word of length λ(n) for each n ≥ 1

Theorem. The word Wn := ω1ω2 . . . ωn fixes FM (n) and |Wn| ≤ n3.
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Let ωn be an n-complete word of length λ(n) for each n ≥ 1

Theorem. The word Wn := ω1ω2 . . . ωn fixes FM (n) and |Wn| ≤ n3.

We have Wn = Wn−1ωn.

Suppose that Wn−1 fixes FM (n− 1) and let f ∈ FM (n).
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Let ωn be an n-complete word of length λ(n) for each n ≥ 1

Theorem. The word Wn := ω1ω2 . . . ωn fixes FM (n) and |Wn| ≤ n3.

We have Wn = Wn−1ωn.

Suppose that Wn−1 fixes FM (n− 1) and let f ∈ FM (n).

“xn = 1”

“xn = 0”

reading Wn−1

x

y := fW
n−1

(x)
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Let ωn be an n-complete word of length λ(n) for each n ≥ 1

Theorem. The word Wn := ω1ω2 . . . ωn fixes FM (n) and |Wn| ≤ n3.

We have Wn = Wn−1ωn.

Suppose that Wn−1 fixes FM (n− 1) and let f ∈ FM (n).

“xn = 1”

“xn = 0”

reading Wn−1

x

y := fW
n−1

(x)

1. If y is a FP then fω
n

(y) is a FP.
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Suppose that Wn−1 fixes FM (n− 1) and let f ∈ FM (n).

“xn = 1”

“xn = 0”

reading Wn−1

x

y := fW
n−1

(x)

f(y)

1. If y is a FP then fω
n

(y) is a FP.

2. If not f(y) = y + en thus y ≤ f(y) or y ≥ f(y), thus fω
n

(y) is FP.
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Theorem [Aracena, Gadouleau, R., Salinas 2018+]
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Conclusion

It is interesting to regard the asynchronous dynamics as a DFA.

Emphasis on the notion of fixing words.

↪→ Some results in the monotone case, with various technics

↪→ n-complete words, Baranyai’s theorem etc.

Question. Is it as hard to fixe one f ∈ FM (n) as FM (n)?

What about classical notions in DFA?

A word w is a synchronizing word of a BN f if fw is constant.

Černý’s conjecture for Boolean networks

If a BN f has a synchronizing word, then it has one of length ≤ 22n.
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Černý’s conjecture for Boolean networks

If a BN f has a synchronizing word, then it has one of length ≤ 22n.

Aracena, Gadouleau, Richard, Salinas Fixing monotone Boolean networks asynchronously Marseille 2018-02-22 37/37


