Fixing Boolean networks asynchronously

Juilio Aracena and Lilian Salinas

Universidad de Concepción, Chile

Maximilien Gadouleau

Durham University, UK

Adrien Richard

CNRS, Université Côte d'Azur, France

Séminaire "Dynamique, Arithmétique, Combinatoire"

Équipe I2M de l'IML

Marseille, le 13 mars 2018

Aracena, Gadouleau, Richard, Salinas

Fixing monotone Boolean networks asynchronously

A Boolean network (BN) with n components is a function $f: \{0,1\}^n \to \{0,1\}^n$ $x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x)).$

The **dynamics** is usually described by the successive iterations of f

$$x \to f(x) \to f^2(x) \to f^3(x) \to \cdots$$

Fixed points correspond to stable states.

Example with n = 3

WI	th $n = 1$	3	x	f(x)
			000	000
,			001	110
ſ	$f_1(x)$	$= x_2 \vee x_3$	010	101
ł	$f_2(x)$	$=\overline{x_1}\wedge\overline{x_3}$	011	110
	$f_3(x)$	$=\overline{x_3}\wedge(x_1\vee x_2)$	100	001
`		,	101	100
			110	101
			111	100

The interaction graph of f is the digraph G(f) on $[n] := \{1, \ldots, n\}$ s.t.

 $j \rightarrow i$ is an arc $\iff f_i$ depends on x_j .

Example

			000	000
1	f(m)	$-m \rangle / m$	001	110
	$J_1(x)$	$= x_2 \lor x_3$	010	101
Ł	$f_2(x)$	$=\overline{x_1}\wedge\overline{x_3}$	011	110
	$f_{-}(x)$	$-\overline{m_{n}} \wedge (m_{n}) / m_{n}$	100	001
U	J3(x)	$-x_3 \wedge (x_1 \vee x_2)$	101	100
			110	101
			111	100

Interaction graph

f(x)

x

Many applications, in particular:

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]
- Network Coding [Riis 2007]

Synchronous dynamics: all components are updated at each step:

$$x \to f(x) \to f^2(x) \to f^3(x) \to \cdots$$

Asynchronous: one component is updated at each step.

 \hookrightarrow Update component i at state x means reach the state

$$x \xrightarrow{i} f^i(x) := (x_1, \dots, x_{i-1}, f_i(x), x_{i+1}, \dots, x_n).$$

Synchronous dynamics: all components are updated at each step:

$$x \to f(x) \to f^2(x) \to f^3(x) \to \cdots$$

Asynchronous: one component is updated at each step.

 \hookrightarrow Update component i at state x means reach the state

$$x \xrightarrow{i} f^i(x) := (x_1, \dots, x_{i-1}, f_i(x), x_{i+1}, \dots, x_n).$$

The asynchronous graph $\Gamma(f)$ describes all the possible trajectories: the vertex set is $\{0,1\}^n$ and $x \to f^i(x)$ for all $x \in \{0,1\}^n$ and $i \in [n]$. Synchronous dynamics: all components are updated at each step:

$$x \to f(x) \to f^2(x) \to f^3(x) \to \cdots$$

Asynchronous: one component is updated at each step.

 \hookrightarrow Update component *i* at state *x* means reach the state

$$x \stackrel{i}{\longrightarrow} f^i(x) := (x_1, \dots, x_{i-1}, f_i(x), x_{i+1}, \dots, x_n).$$

The asynchronous graph $\Gamma(f)$ describes all the possible trajectories: the vertex set is $\{0,1\}^n$ and $x \to f^i(x)$ for all $x \in \{0,1\}^n$ and $i \in [n]$.

It can be regarded as a Finite Deterministic Automta where

- 1. the alphabet is $\Sigma := [n]$;
- 2. the set of states is $Q := \{0, 1\}^n$;
- 3. the transition function $\delta: Q \times \Sigma \to Q$ is $\delta(x,i) := f^i(x)$.

Example

x	f(x)
000	000
001	000
010	001
011	001
100	010
101	000
110	010
111	100

Notation: If $w = i_1 i_2 \dots i_k \in [n]^*$ then $f^w(x)$ is the state obtained from x by updating successively the components i_1, i_2, \dots, i_k , that is,

$$f^w(x) := (f^{i_k} \circ f^{i_{k-1}} \circ \cdots \circ f^{i_1})(x).$$

Notation: If $w = i_1 i_2 \dots i_k \in [n]^*$ then $f^w(x)$ is the state obtained from x by updating successively the components i_1, i_2, \dots, i_k , that is,

$$f^w(x) := (f^{i_k} \circ f^{i_{k-1}} \circ \cdots \circ f^{i_1})(x).$$

Definition 1. A word $w \in [n]^*$ fixes f if

 $\forall x \in \{0,1\}^n$, $f^w(x)$ is a fixed point of f.

The fixing length $\lambda(f)$ is the min length of a word fixing f.

Notation: If $w = i_1 i_2 \dots i_k \in [n]^*$ then $f^w(x)$ is the state obtained from x by updating successively the components i_1, i_2, \dots, i_k , that is,

$$f^w(x) := (f^{i_k} \circ f^{i_{k-1}} \circ \cdots \circ f^{i_1})(x).$$

Definition 1. A word $w \in [n]^*$ fixes f if

 $\forall x \in \{0,1\}^n$, $f^w(x)$ is a fixed point of f.

The fixing length $\lambda(f)$ is the min length of a word fixing f.

Definition 2. A word w fixes a family \mathcal{F} of BNs if it fixes each $f \in \mathcal{F}$. The fixing length $\lambda(\mathcal{F})$ is the min length of a word fixing \mathcal{F} . **Example:** 1231 is fixing (and no shorter word is fixing, thus $\lambda(f) = 4$).

Remarks

- 1. f is fixable only if f has a fixed point.
- 2. If f has a unique fixed point then:

w fixes $f \iff w$ is synchronizing.

3. A family \mathcal{F} is fixable if and only if each $f \in \mathcal{F}$ is fixable.

11/37

Remarks

- 1. f is fixable only if f has a fixed point.
- 2. If f has a unique fixed point then:

w fixes $f \iff w$ is synchronizing.

3. A family \mathcal{F} is fixable if and only if each $f \in \mathcal{F}$ is fixable.

Theorem 1 [Bollobás, Gotsman and Shamir 1993]

There is a positive fraction $\phi(n)$ of fixable BNs with n components:

$$\lim_{n \to \infty} \phi(n) = 1 - \frac{1}{e} \ge 0.64.$$

1. $F_M(n)$: Monotone BNs $(2^{\Theta(\sqrt{n}2^n)})$:

$$\forall x,y \in \{0,1\}^n, \qquad x \leq y \Rightarrow f(x) \leq f(y).$$

1. $F_M(n)$: Monotone BNs $(2^{\Theta(\sqrt{n}2^n)})$:

$$\forall x,y \in \{0,1\}^n, \qquad x \leq y \Rightarrow f(x) \leq f(y).$$

2. $F_A(n)$: BNs with an Acyclic interaction graph $(2^{\Theta(2^n)})$.

1. $F_M(n)$: Monotone BNs $(2^{\Theta(\sqrt{n}2^n)})$:

$$\forall x,y \in \{0,1\}^n, \qquad x \leq y \Rightarrow f(x) \leq f(y).$$

- 2. $F_A(n)$: BNs with an Acyclic interaction graph $(2^{\Theta(2^n)})$.
- 3. $F_I(n)$: Increasing BNs $(2^{n2^{n-1}})$:

$$\forall x \in \{0,1\}^n, \qquad x \le f(x).$$

1. $F_M(n)$: Monotone BNs $(2^{\Theta(\sqrt{n}2^n)})$:

$$\forall x,y \in \{0,1\}^n, \qquad x \leq y \Rightarrow f(x) \leq f(y).$$

- 2. $F_A(n)$: BNs with an Acyclic interaction graph $(2^{\Theta(2^n)})$.
- 3. $F_I(n)$: Increasing BNs $(2^{n2^{n-1}})$:

$$\forall x \in \{0,1\}^n, \qquad x \le f(x).$$

4. $F_P(n)$: Monotone BNs whose interaction graph is a Path (2n!).

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	${\cal F}$	$\max_{f\in\mathcal{F}}\lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_A(n)$	n	$\Theta(n^2)$
Path	$F_P(n)$	n	$\Theta(n^2)$
Increasing	$F_I(n)$	$\Theta(n^2)$	$\Theta(n^2)$
Monotone	$F_M(n)$	$\Omega(n^2)$	$O(n^3)$

Acyclic networks

w := 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is a fixing word

w := 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is a fixing word

Proposition. Let $f \in F_A(n)$ and $w \in [n]^*$.

- 1. If w is a topological sort of G(f), then w fixes f, thus $\lambda(f) = n$.
- 2. If w contains a topological sort of G(f) then w fixes f.
- 3. If w contains all the permutations of [n], then it fixes $F_A(n)$.

An *n*-complete word is a word $w \in [n]^*$ that contains (as subsequences) all the permutations of [n].

 $\lambda(n):= \text{minimum}$ length of an n-complete word.

An *n*-complete word is a word $w \in [n]^*$ that contains (as subsequences) all the permutations of [n].

 $\lambda(n) :=$ minimum length of an *n*-complete word.

Corollary. Every *n*-complete word fixes $F_A(n)$, thus

 $\lambda(F_A(n)) \le \lambda(n).$

For an upper-bound, let

$$w := \underbrace{123\dots n}_{1} \underbrace{123\dots n}_{2} \cdots \underbrace{123\dots n}_{n}$$

Let $\pi = i_1 i_2 \dots i_n$ be a permutation of [n]. Then

$$w := \underbrace{123\ldots n}_{\text{contains } i_1 \text{ contains } i_2} \underbrace{123\ldots n}_{\text{contains } i_1 \text{ contains } i_2} \cdots \underbrace{123\ldots n}_{\text{contains } i_n}$$

Hence w contains π . Thus w is *n*-complete: $\lambda(n) \leq |w| = n^2$.

For a **better upper-bound**, let

$$w := \underbrace{123\dots n}_1 \underbrace{n(n-1)\dots 321}_2 \underbrace{123\dots n}_3 \cdots \underbrace{123\dots n}_n$$

Then w is n-complete, and

$$w' := \underbrace{123\dots n}_{1} \underbrace{(n-1)\dots 321}_{2} \underbrace{23\dots n}_{3} \cdots \underbrace{23\dots n}_{n}$$

is also *n*-complete, thus $\lambda(n) \leq |w'| = n^2 - n + 1$.

For a **better upper-bound**, let

$$w := \underbrace{123\dots n}_1 \underbrace{n(n-1)\dots 321}_2 \underbrace{123\dots n}_3 \cdots \underbrace{123\dots n}_n$$

Then w is n-complete, and

$$w' := \underbrace{123\dots n}_{1} \underbrace{(n-1)\dots 321}_{2} \underbrace{23\dots n}_{3} \cdots \underbrace{23\dots n}_{n}$$

is also *n*-complete, thus $\lambda(n) \leq |w'| = n^2 - n + 1$.

Theorem

$$\begin{split} \lambda(n) &\leq n^2 - 2n + 4 & \text{for all } n \geq 1 & \text{[Adleman 1974]} \\ \lambda(n) &\leq n^2 - 2n + 3 & \text{for all } n \geq 10 & \text{[Zlinescu 2011]} \\ \lambda(n) &\leq \left\lceil n^2 - \frac{7}{3}n + \frac{19}{3} \right\rceil & \text{for all } n \geq 7 & \text{[Radomirovic 2012]} \end{split}$$

For a **lower-bound**, note that if w is n-complete then

$$n! \leq |\{\text{subsequences of length } n \text{ contained in } w\}| \leq \binom{|w|}{n} \leq \frac{|w|^n}{n!}$$

Hence,

$$|w|^n \ge (n!)^2 \ge \left(rac{n}{e}
ight)^{2n}$$
 thus $|w| \ge \left(rac{n}{e}
ight)^2$.

We deduce that

$$\lambda(n) = \Theta(n^2).$$

For a **lower-bound**, note that if w is n-complete then

$$n! \leq |\{\text{subsequences of length } n \text{ contained in } w\}| \leq \binom{|w|}{n} \leq \frac{|w|^n}{n!}$$

Hence,

$$|w|^n \ge (n!)^2 \ge \left(rac{n}{e}
ight)^{2n}$$
 thus $|w| \ge \left(rac{n}{e}
ight)^2$.

We deduce that

$$\lambda(n) = \Theta(n^2).$$

Theorem [Kleitman, Kwiatkowski 1976]

$$\lambda(n) = n^2 - o(n^2)$$

Aracena, Gadouleau, Richard, Salinas

For a **lower-bound**, let $\pi = i_1 i_2 \dots i_n$ a permutation of [n], and consider the monotone BN f whose interaction graph is

$$\underbrace{(i_1) \longrightarrow (i_2) \longrightarrow (i_3)}_{(i_1)} \longrightarrow \cdots \longrightarrow \underbrace{(i_n)}_{(i_n)}$$

Then $w \in [n]^*$ fixes f if and only if w contains π .

For a **lower-bound**, let $\pi = i_1 i_2 \dots i_n$ a permutation of [n], and consider the monotone BN f whose interaction graph is

$$(i_1) \longrightarrow (i_2) \longrightarrow (i_3) \longrightarrow \cdots \longrightarrow (i_n)$$

Then $w \in [n]^*$ fixes f if and only if w contains π .

Proposition 2. A word fixes $F_P(n)$ if and only if it is *n*-complete, thus

 $\lambda(F_P(n)) = \lambda(n)$

For a **lower-bound**, let $\pi = i_1 i_2 \dots i_n$ a permutation of [n], and consider the monotone BN f whose interaction graph is

$$(i_1) \longrightarrow (i_2) \longrightarrow (i_3) \longrightarrow \cdots \longrightarrow (i_n)$$

Then $w \in [n]^*$ fixes f if and only if w contains π .

Proposition 2. A word fixes $F_P(n)$ if and only if it is *n*-complete, thus $\lambda(F_P(n)) = \lambda(n)$

Since $F_P(n) \subseteq F_A(n)$ we deduce that $\lambda(n) \leq \lambda(F_A(n))$ and thus

Theorem. $\lambda(F_P(n)) = \lambda(F_A(n)) = \lambda(n) = n^2 - o(n^2).$

Theorem [Aracena, Gadoudeau, R., Salinas 2018+]

Networks	${\cal F}$	$\max_{f\in\mathcal{F}}\lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_A(n)$	n	$\Theta(n^2)$
Path	$F_P(n)$	\boldsymbol{n}	$\Theta(n^2)$
Increasing	$F_I(n)$	$\Theta(n^2)$	$\Theta(n^2)$
Monotone	$F_M(n)$	$\Omega(n^2)$	$O(n^3)$
A monotone network hard to fixe

For each input x with $\lfloor \frac{b}{2} \rfloor$ ones, f behaves a path π_x (permut. of [a]).

For each input x with $\lfloor \frac{b}{2} \rfloor$ ones, f behaves a path π_x (permut. of [a]).

For each input x with $\lfloor \frac{b}{2} \rfloor$ ones, f behaves a path π_x (permut. of [a]). A word fixing f must contain all the permutations π_x .

For each input x with $\lfloor \frac{b}{2} \rfloor$ ones, f behaves a path π_x (permut. of [a]). A word fixing f must contain all the permutations π_x .

If $\binom{b}{\lfloor \frac{b}{2} \rfloor} \ge a!$, then w must contains the a! permutations of [a], and then

$$\lambda(f) \ge \lambda(a) \sim a^2.$$

For each input x with $\lfloor \frac{b}{2} \rfloor$ ones, f behaves a path π_x (permut. of [a]). A word fixing f must contain all the permutations π_x .

If $\binom{b}{\lfloor \frac{b}{2} \rfloor} \ge a!$, then w must contains the a! permutations of [a], and then

$$\lambda(f) \ge \lambda(a) \sim a^2.$$

This works with $b = O(a \log a)$ and we get $a = \Omega(\frac{n}{\log n})$.

Aracena, Gadouleau, Richard, Salinas

For each input x with $\lfloor \frac{b}{2} \rfloor$ ones, f behaves a path π_x (permut. of [a]). A word fixing f must contain all the permutations π_x .

If $\binom{b}{\lfloor \frac{b}{2} \rfloor} \ge a!$, then w must contains the a! permutations of [a], and then

$$\lambda(f) \ge \lambda(a) \sim a^2.$$

This works with $b = O(a \log a)$ and we get $a = \Omega(\frac{n}{\log n})$.

Aracena, Gadouleau, Richard, Salinas

The construction is based on the fact that a word containing the n! permutations of S_n must be of quadratic length.

But maybe there exists a **small subset** $\Pi_n \subseteq S_n$ such that any word containing all the permutations in Π_n is still of quadratic length.

The construction is based on the fact that a word containing the n! permutations of S_n must be of quadratic length.

But maybe there exists a **small subset** $\Pi_n \subseteq S_n$ such that any word containing all the permutations in Π_n is still of quadratic length.

Theorem. There exists $\Pi_n \subseteq S_n$ of size $2^{o(n)}$ such that any word containing all the permutations in Π_n is of length $\ge n^2/3$.

The construction is based on the fact that a word containing the n! permutations of S_n must be of quadratic length.

But maybe there exists a **small subset** $\Pi_n \subseteq S_n$ such that any word containing all the permutations in Π_n is still of quadratic length.

Theorem. There exists $\Pi_n \subseteq S_n$ of size $2^{o(n)}$ such that any word containing all the permutations in Π_n is of length $\ge n^2/3$.

In the construction f, we encode S_a with $b = O(a \log a)$ inputs. But we can encode Π_a with b = o(a) only, and get

$$\lambda(f) \geq rac{a^2}{3} \sim rac{n^2}{3}$$
 .

24/37

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	${\cal F}$	$\max_{f\in\mathcal{F}}\lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_A(n)$	n	$\Theta(n^2)$
Path	$F_P(n)$	\boldsymbol{n}	$\Theta(n^2)$
Increasing	$F_I(n)$	$\Omega(n^2)$	$O(n^2)$
Monotone	$F_M(n)$	$\Omega(n^2)$	$O(n^3)$

Theorem. There exists $\Pi_n \subseteq S_n$ of size $2^{o(n)}$ such that any word containing all the permutations in Π_n is of length $\ge n^2/3$.

Baranyai' theorem [1975]

If n = ab, there exists a collection of $\frac{1}{b} \binom{n}{a}$ partitions of [n] into *a*-sets, such that each *a*-subset of [n] appears in exactly one partition.

For a = 2 this this equivalent to that, for n even, there is a partition of the edges of K_n into perfect matchings.

 \boldsymbol{b} blocks of size \boldsymbol{a}

set of word of length a without repetition $(a!\binom{n}{a})$

b blocks of size a

b blocks of size a

By a counting argument

$$|w| \ge \left(n^{-\frac{2b}{a}}\right) \frac{n(n-a)}{e}$$

Taking $a=n^{\frac{1}{2}+\epsilon}$ and $b=n^{\frac{1}{2}-\epsilon}$ we get

$$|w| \sim \frac{n^2}{e}$$
 and $|\Pi_n| \le n^{n^{\frac{1}{2}+\epsilon}} = 2^{o(n)}.$

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	${\cal F}$	$\max_{f\in\mathcal{F}}\lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_A(n)$	n	$\Theta(n^2)$
Path	$F_P(n)$	\boldsymbol{n}	$\Theta(n^2)$
Increasing	$F_I(n)$	$\Omega(n^2)$	$O(n^2)$
Monotone	$F_M(n)$	$\Omega(n^2)$	$O(n^3)$

Fixing all increasing networks

- 1. f is increasing from x if $f^u(x) \leq f^{uv}(x)$ for all $u, v \in [n]^*$.
- 2. f is decreasing from x if $f^u(x) \ge f^{uv}(x)$ for all $u, v \in [n]^*$.

- 1. f is increasing from x if $f^u(x) \leq f^{uv}(x)$ for all $u, v \in [n]^*$.
- 2. f is decreasing from x if $f^u(x) \ge f^{uv}(x)$ for all $u, v \in [n]^*$.

Thus f is increasing $\iff f$ is increasing from every state.

- 1. f is increasing from x if $f^{u}(x) \leq f^{uv}(x)$ for all $u, v \in [n]^*$.
- 2. f is decreasing from x if $f^u(x) \ge f^{uv}(x)$ for all $u, v \in [n]^*$.

Thus f is increasing $\iff f$ is increasing from every state.

Lemma. If f is increasing or decreasing from x, and w is n-complete, then $f^w(x)$ is a fixed point of f.

So any *n*-complete fixes every increasing f, thus $\lambda(F_I(n)) \leq \lambda(n)$.

- 1. f is increasing from x if $f^{u}(x) \leq f^{uv}(x)$ for all $u, v \in [n]^*$.
- 2. f is decreasing from x if $f^u(x) \ge f^{uv}(x)$ for all $u, v \in [n]^*$.

Thus f is increasing $\iff f$ is increasing from every state.

Lemma. If f is increasing or decreasing from x, and w is n-complete, then $f^w(x)$ is a fixed point of f.

So any *n*-complete fixes every increasing f, thus $\lambda(F_I(n)) \leq \lambda(n)$.

Conversely, by considering a variation of path networks, we show that if w fixes every increasing f, then w is n-complete.

31/37

- 1. f is increasing from x if $f^{u}(x) \leq f^{uv}(x)$ for all $u, v \in [n]^*$.
- 2. f is decreasing from x if $f^u(x) \ge f^{uv}(x)$ for all $u, v \in [n]^*$.

Thus f is increasing $\iff f$ is increasing from every state.

Lemma. If f is increasing or decreasing from x, and w is n-complete, then $f^w(x)$ is a fixed point of f.

So any *n*-complete fixes every increasing f, thus $\lambda(F_I(n)) \leq \lambda(n)$.

Conversely, by considering a variation of path networks, we show that if w fixes every increasing f, then w is n-complete.

Proposition. $\lambda(F_I(n)) = \lambda(n) = n^2 - o(n^2).$

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	${\cal F}$	$\max_{f\in\mathcal{F}}\lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_A(n)$	n	$\Theta(n^2)$
Path	$F_P(n)$	\boldsymbol{n}	$\Theta(n^2)$
Increasing	$F_I(n)$	$\Omega(n^2)$	$\Theta(n^2)$
Monotone	$F_M(n)$	$\Omega(n^2)$	$O(n^3)$

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	${\cal F}$	$\max_{f\in\mathcal{F}}\lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_A(n)$	n	$\Theta(n^2)$
Path	$F_P(n)$	\boldsymbol{n}	$\Theta(n^2)$
Increasing	$F_I(n)$	$\Theta(n^2)$	$\Theta(n^2)$
Monotone	$F_M(n)$	$\Omega(n^2)$	$O(n^3)$

A cubic word fixing all the monotone networks

Lemma. If f is monotone and w is n-complete, then $x \le f(x) \Rightarrow f$ is increasing from $x \Rightarrow f^w(x)$ if a fixed point of f $x \ge f(x) \Rightarrow f$ is decreasing from $x \Rightarrow f^w(x)$ if a fixed point of f

Theorem. The word $W^n := \omega^1 \omega^2 \dots \omega^n$ fixes $F_M(n)$ and $|W^n| \le n^3$.

Theorem. The word $W^n := \omega^1 \omega^2 \dots \omega^n$ fixes $F_M(n)$ and $|W^n| \le n^3$.

We have $W^n = W^{n-1}\omega^n$.

Theorem. The word $W^n := \omega^1 \omega^2 \dots \omega^n$ fixes $F_M(n)$ and $|W^n| \le n^3$.

We have $W^n = W^{n-1}\omega^n$.

Suppose that W^{n-1} fixes $F_M(n-1)$ and let $f \in F_M(n)$.

Theorem. The word $W^n := \omega^1 \omega^2 \dots \omega^n$ fixes $F_M(n)$ and $|W^n| \le n^3$.

We have $W^n = W^{n-1}\omega^n$.

Suppose that W^{n-1} fixes $F_M(n-1)$ and let $f \in F_M(n)$.

Theorem. The word $W^n := \omega^1 \omega^2 \dots \omega^n$ fixes $F_M(n)$ and $|W^n| \le n^3$.

We have $W^n = W^{n-1}\omega^n$.

Suppose that W^{n-1} fixes $F_M(n-1)$ and let $f \in F_M(n)$.

1. If y is a FP then $f^{\omega^n}(y)$ is a FP.

Theorem. The word $W^n := \omega^1 \omega^2 \dots \omega^n$ fixes $F_M(n)$ and $|W^n| \le n^3$.

We have $W^n = W^{n-1}\omega^n$.

Suppose that W^{n-1} fixes $F_M(n-1)$ and let $f \in F_M(n)$.

1. If y is a FP then $f^{\omega^n}(y)$ is a FP.

2. If not $f(y) = y + e_n$ thus $y \le f(y)$ or $y \ge f(y)$, thus $f^{\omega^n}(y)$ is FP.

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	${\cal F}$	$\max_{f\in\mathcal{F}}\lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_A(n)$	n	$\Theta(n^2)$
Path	$F_P(n)$	\boldsymbol{n}	$\Theta(n^2)$
Increasing	$F_I(n)$	$\Theta(n^2)$	$\Theta(n^2)$
Monotone	$F_M(n)$	$\Omega(n^2)$	$O(n^3)$
Conclusion

It is interesting to regard the asynchronous dynamics as a DFA. Emphasis on the notion of **fixing words**.

 \hookrightarrow Some results in the monotone case, with various technics \hookrightarrow *n*-complete words, Baranyai's theorem etc.

Question. Is it as hard to fixe one $f \in F_M(n)$ as $F_M(n)$?

Conclusion

It is interesting to regard the asynchronous dynamics as a DFA. Emphasis on the notion of **fixing words**.

 $\hookrightarrow \text{Some results in the monotone case, with various technics} \\ \hookrightarrow n\text{-complete words, Baranyai's theorem etc.}$

Question. Is it as hard to fixe one $f \in F_M(n)$ as $F_M(n)$?

What about classical notions in DFA?

A word w is a synchronizing word of a BN f if f^w is constant.

Černý's conjecture for Boolean networks

If a BN f has a synchronizing word, then it has one of length $\leq 2^{2n}$.