Fixing Boolean networks asynchronously

Juilio Aracena and Lilian Salinas
Universidad de Concepción, Chile

Maximilien Gadouleau
Durham University, UK

Adrien Richard
CNRS, Université Côte d'Azur, France

Séminaire "Dynamique, Arithmétique, Combinatoire"
Équipe I2M de I'IML
Marseille, le 13 mars 2018

A Boolean network (BN) with n components is a function

$$
\begin{gathered}
f:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) \mapsto f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) .
\end{gathered}
$$

The dynamics is usually described by the successive iterations of f

$$
x \rightarrow f(x) \rightarrow f^{2}(x) \rightarrow f^{3}(x) \rightarrow \cdots
$$

Fixed points correspond to stable states.

Example with $n=3$

$$
\left\{\begin{array}{l}
f_{1}(x)=x_{2} \vee x_{3} \\
f_{2}(x)=\overline{x_{1}} \wedge \overline{x_{3}} \\
f_{3}(x)=\overline{x_{3}} \wedge\left(x_{1} \vee x_{2}\right)
\end{array}\right.
$$

x	$f(x)$
000	000
001	110
010	101
011	110
100	001
101	100
110	101
111	100

Dynamics

The interaction graph of f is the digraph $G(f)$ on $[n]:=\{1, \ldots, n\}$ s.t. $j \rightarrow i$ is an arc $\Longleftrightarrow f_{i}$ depends on x_{j}.

Example

$$
\left\{\begin{array}{l}
f_{1}(x)=x_{2} \vee x_{3} \\
f_{2}(x)=\overline{x_{1}} \wedge \overline{x_{3}} \\
f_{3}(x)=\overline{x_{3}} \wedge\left(x_{1} \vee x_{2}\right)
\end{array}\right.
$$

Dynamics

Interaction graph

Many applications, in particular:

- Neural networks [McCulloch \& Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]
- Network Coding [Riis 2007]

Synchronous dynamics: all components are updated at each step:

$$
x \rightarrow f(x) \rightarrow f^{2}(x) \rightarrow f^{3}(x) \rightarrow \cdots
$$

Asynchronous: one component is updated at each step.
\hookrightarrow Update component i at state x means reach the state

$$
x \xrightarrow{i} f^{i}(x):=\left(x_{1}, \ldots, x_{i-1}, f_{i}(x), x_{i+1}, \ldots, x_{n}\right) .
$$

Synchronous dynamics: all components are updated at each step:

$$
x \rightarrow f(x) \rightarrow f^{2}(x) \rightarrow f^{3}(x) \rightarrow \cdots
$$

Asynchronous: one component is updated at each step.
\hookrightarrow Update component i at state x means reach the state

$$
x \xrightarrow{i} f^{i}(x):=\left(x_{1}, \ldots, x_{i-1}, f_{i}(x), x_{i+1}, \ldots, x_{n}\right) .
$$

The asynchronous graph $\Gamma(f)$ describes all the possible trajectories: the vertex set is $\{0,1\}^{n}$ and $x \rightarrow f^{i}(x)$ for all $x \in\{0,1\}^{n}$ and $i \in[n]$.

Synchronous dynamics: all components are updated at each step:

$$
x \rightarrow f(x) \rightarrow f^{2}(x) \rightarrow f^{3}(x) \rightarrow \cdots
$$

Asynchronous: one component is updated at each step.
\hookrightarrow Update component i at state x means reach the state

$$
x \xrightarrow{i} f^{i}(x):=\left(x_{1}, \ldots, x_{i-1}, f_{i}(x), x_{i+1}, \ldots, x_{n}\right) .
$$

The asynchronous graph $\Gamma(f)$ describes all the possible trajectories: the vertex set is $\{0,1\}^{n}$ and $x \rightarrow f^{i}(x)$ for all $x \in\{0,1\}^{n}$ and $i \in[n]$.

It can be regarded as a Finite Deterministic Automta where

1. the alphabet is $\Sigma:=[n]$;
2. the set of states is $Q:=\{0,1\}^{n}$;
3. the transition function $\delta: Q \times \Sigma \rightarrow Q$ is $\delta(x, i):=f^{i}(x)$.

Example

x	$f(x)$
000	000
001	000
010	001
011	001
100	010
101	000
110	010
111	100

Notation: If $w=i_{1} i_{2} \ldots i_{k} \in[n]^{*}$ then $\boldsymbol{f}^{\boldsymbol{w}}(\boldsymbol{x})$ is the state obtained from x by updating successively the components $i_{1}, i_{2}, \ldots, i_{k}$, that is,

$$
f^{w}(x):=\left(f^{i_{k}} \circ f^{i_{k-1}} \circ \cdots \circ f^{i_{1}}\right)(x) .
$$

Notation: If $w=i_{1} i_{2} \ldots i_{k} \in[n]^{*}$ then $\boldsymbol{f}^{\boldsymbol{w}}(\boldsymbol{x})$ is the state obtained from x by updating successively the components $i_{1}, i_{2}, \ldots, i_{k}$, that is,

$$
f^{w}(x):=\left(f^{i_{k}} \circ f^{i_{k-1}} \circ \cdots \circ f^{i_{1}}\right)(x) .
$$

Definition 1. A word $w \in[n]^{*}$ fixes f if

$$
\forall x \in\{0,1\}^{n}, \quad f^{w}(x) \text { is a fixed point of } f .
$$

The fixing length $\lambda(f)$ is the min length of a word fixing f.

Notation: If $w=i_{1} i_{2} \ldots i_{k} \in[n]^{*}$ then $\boldsymbol{f}^{\boldsymbol{w}}(\boldsymbol{x})$ is the state obtained from x by updating successively the components $i_{1}, i_{2}, \ldots, i_{k}$, that is,

$$
f^{w}(x):=\left(f^{i_{k}} \circ f^{i_{k-1}} \circ \cdots \circ f^{i_{1}}\right)(x) .
$$

Definition 1. A word $w \in[n]^{*}$ fixes f if

$$
\forall x \in\{0,1\}^{n}, \quad f^{w}(x) \text { is a fixed point of } f .
$$

The fixing length $\lambda(f)$ is the min length of a word fixing f.

Definition 2. A word w fixes a family \mathcal{F} of BNs if it fixes each $f \in \mathcal{F}$. The fixing length $\lambda(\mathcal{F})$ is the min length of a word fixing \mathcal{F}.

Example: 1231 is fixing (and no shorter word is fixing, thus $\lambda(f)=4$).

Remarks

1. f is fixable only if f has a fixed point.
2. If f has a unique fixed point then: w fixes $f \Longleftrightarrow w$ is synchronizing.
3. A family \mathcal{F} is fixable if and only if each $f \in \mathcal{F}$ is fixable.

Remarks

1. f is fixable only if f has a fixed point.
2. If f has a unique fixed point then: w fixes $f \Longleftrightarrow w$ is synchronizing.
3. A family \mathcal{F} is fixable if and only if each $f \in \mathcal{F}$ is fixable.

Theorem 1 [Bollobás, Gotsman and Shamir 1993]
There is a positive fraction $\phi(n)$ of fixable BNs with n components:

$$
\lim _{n \rightarrow \infty} \phi(n)=1-\frac{1}{e} \geq 0.64
$$

Example of fixable families

1. $\boldsymbol{F}_{\boldsymbol{M}}(\boldsymbol{n})$: Monotone $\mathrm{BNs}\left(2^{\Theta\left(\sqrt{n} 2^{n}\right)}\right)$:

$$
\forall x, y \in\{0,1\}^{n}, \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

Example of fixable families

1. $\boldsymbol{F}_{\boldsymbol{M}}(\boldsymbol{n})$: Monotone $\mathrm{BNs}\left(2^{\Theta\left(\sqrt{n} 2^{n}\right)}\right)$:

$$
\forall x, y \in\{0,1\}^{n}, \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

2. $\boldsymbol{F}_{\boldsymbol{A}}(\boldsymbol{n}): \mathrm{BNs}$ with an Acyclic interaction graph $\left(2^{\Theta\left(2^{n}\right)}\right)$.

Example of fixable families

1. $\boldsymbol{F}_{\boldsymbol{M}}(\boldsymbol{n})$: Monotone $\mathrm{BNs}\left(2^{\Theta\left(\sqrt{n} 2^{n}\right)}\right)$:

$$
\forall x, y \in\{0,1\}^{n}, \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

2. $\boldsymbol{F}_{\boldsymbol{A}}(\boldsymbol{n}): \mathrm{BNs}$ with an Acyclic interaction graph $\left(2^{\Theta\left(2^{n}\right)}\right)$.
3. $\boldsymbol{F}_{\boldsymbol{I}}(\boldsymbol{n})$: Increasing $\mathrm{BNs}\left(2^{n 2^{n-1}}\right)$:

$$
\forall x \in\{0,1\}^{n}, \quad x \leq f(x)
$$

Example of fixable families

1. $\boldsymbol{F}_{\boldsymbol{M}}(\boldsymbol{n})$: Monotone $\mathrm{BNs}\left(2^{\Theta\left(\sqrt{n} 2^{n}\right)}\right)$:

$$
\forall x, y \in\{0,1\}^{n}, \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

2. $\boldsymbol{F}_{\boldsymbol{A}}(\boldsymbol{n})$: BNs with an Acyclic interaction graph $\left(2^{\Theta\left(2^{n}\right)}\right)$.
3. $\boldsymbol{F}_{\boldsymbol{I}}(\boldsymbol{n})$: Increasing $\mathrm{BNs}\left(2^{n 2^{n-1}}\right)$:

$$
\forall x \in\{0,1\}^{n}, \quad x \leq f(x)
$$

4. $\boldsymbol{F}_{\boldsymbol{P}}(\boldsymbol{n})$: Monotone BNs whose interaction graph is a Path ($2 n!$).

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	\mathcal{F}	$\max _{f \in \mathcal{F}} \lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_{A}(n)$	n	$\Theta\left(n^{2}\right)$
Path	$F_{P}(n)$	n	$\Theta\left(n^{2}\right)$
Increasing	$F_{I}(n)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Monotone	$\boldsymbol{F}_{\boldsymbol{M}}(\boldsymbol{n})$	$\boldsymbol{\Omega}\left(\boldsymbol{n}^{2}\right)$	$\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$

Acyclic networks

Proposition. Let $f \in F_{A}(n)$ and $w \in[n]^{*}$.

1. If w is a topological sort of $G(f)$, then w fixes f, thus $\lambda(f)=n$.
2. If w contains a topological sort of $G(f)$ then w fixes f.
3. If w contains all the permutations of $[n]$, then it fixes $F_{A}(n)$.

An n-complete word is a word $w \in[n]^{*}$ that contains (as subsequences) all the permutations of $[n]$.
$\lambda(n):=$ minimum length of an n-complete word.

An n-complete word is a word $w \in[n]^{*}$ that contains (as subsequences) all the permutations of $[n]$.
$\lambda(n):=$ minimum length of an n-complete word.

Corollary. Every n-complete word fixes $F_{A}(n)$, thus

$$
\lambda\left(F_{A}(n)\right) \leq \lambda(n) .
$$

What is the magnitude order of $\lambda(n)$?

For an upper-bound, let

$$
w:=\underbrace{123 \ldots n}_{1} \underbrace{123 \ldots n}_{2} \cdots \underbrace{123 \ldots n}_{n}
$$

Let $\pi=i_{1} i_{2} \ldots i_{n}$ be a permutation of $[n]$. Then

$$
w:=\underbrace{123 \ldots n}_{\text {contains } i_{1}} \underbrace{123 \ldots n}_{\text {contains } i_{2}} \cdots \underbrace{123 \ldots n}_{\text {contains } i_{n}}
$$

Hence w contains π. Thus w is n-complete: $\lambda(n) \leq|w|=n^{2}$.

What is the magnitude order of $\lambda(n)$?
For a better upper-bound, let

$$
w:=\underbrace{123 \ldots n}_{1} \underbrace{n(n-1) \ldots 321}_{2} \underbrace{123 \ldots n}_{3} \cdots \underbrace{123 \ldots n}_{n}
$$

Then w is n-complete, and

$$
w^{\prime}:=\underbrace{123 \ldots n}_{1} \underbrace{(n-1) \ldots 321}_{2} \underbrace{23 \ldots n}_{3} \cdots \underbrace{23 \ldots n}_{n}
$$

is also n-complete, thus $\lambda(n) \leq\left|w^{\prime}\right|=n^{2}-n+1$.

What is the magnitude order of $\lambda(n)$?
For a better upper-bound, let

$$
w:=\underbrace{123 \ldots n}_{1} \underbrace{n(n-1) \ldots 321}_{2} \underbrace{123 \ldots n}_{3} \cdots \underbrace{123 \ldots n}_{n}
$$

Then w is n-complete, and

$$
w^{\prime}:=\underbrace{123 \ldots n}_{1} \underbrace{(n-1) \ldots 321}_{2} \underbrace{23 \ldots n}_{3} \cdots \underbrace{23 \ldots n}_{n}
$$

is also n-complete, thus $\lambda(n) \leq\left|w^{\prime}\right|=n^{2}-n+1$.
Theorem

$$
\begin{array}{lll}
\lambda(n) \leq n^{2}-2 n+4 & \text { for all } n \geq 1 & \text { [Adleman 1974] } \\
\lambda(n) \leq n^{2}-2 n+3 & \text { for all } n \geq 10 & \text { [Zlinescu 2011] } \\
\lambda(n) \leq\left\lceil n^{2}-\frac{7}{3} n+\frac{19}{3}\right\rceil & \text { for all } n \geq 7 & \text { [Radomirovic 2012] }
\end{array}
$$

What is the magnitude order of $\lambda(n)$?

For a lower-bound, note that if w is n-complete then

$$
n!\leq \mid\{\text { subsequences of length } n \text { contained in } w\} \left\lvert\, \leq\binom{|w|}{n} \leq \frac{|w|^{n}}{n!}\right.
$$

Hence,

$$
|w|^{n} \geq(n!)^{2} \geq\left(\frac{n}{e}\right)^{2 n} \quad \text { thus } \quad|w| \geq\left(\frac{n}{e}\right)^{2}
$$

We deduce that

$$
\lambda(n)=\Theta\left(n^{2}\right) .
$$

What is the magnitude order of $\lambda(n)$?
For a lower-bound, note that if w is n-complete then

$$
n!\leq \mid\{\text { subsequences of length } n \text { contained in } w\} \left\lvert\, \leq\binom{|w|}{n} \leq \frac{|w|^{n}}{n!}\right.
$$

Hence,

$$
|w|^{n} \geq(n!)^{2} \geq\left(\frac{n}{e}\right)^{2 n} \quad \text { thus } \quad|w| \geq\left(\frac{n}{e}\right)^{2}
$$

We deduce that

$$
\lambda(n)=\Theta\left(n^{2}\right) .
$$

Theorem [Kleitman, Kwiatkowski 1976]

$$
\lambda(n)=n^{2}-o\left(n^{2}\right) .
$$

Corollary. $\lambda\left(F_{A}(n)\right) \leq \lambda(n)=n^{2}-o\left(n^{2}\right)$.

Corollary. $\lambda\left(F_{A}(n)\right) \leq \lambda(n)=n^{2}-o\left(n^{2}\right)$.

For a lower-bound, let $\pi=i_{1} i_{2} \ldots i_{n}$ a permutation of [n], and consider the monotone $\mathrm{BN} f$ whose interaction graph is

Then $w \in[n]^{*}$ fixes f if and only if w contains π.

Corollary. $\lambda\left(F_{A}(n)\right) \leq \lambda(n)=n^{2}-o\left(n^{2}\right)$.

For a lower-bound, let $\pi=i_{1} i_{2} \ldots i_{n}$ a permutation of [n], and consider the monotone $\mathrm{BN} f$ whose interaction graph is

Then $w \in[n]^{*}$ fixes f if and only if w contains π.

Proposition 2. A word fixes $F_{P}(n)$ if and only if it is n-complete, thus

$$
\lambda\left(F_{P}(n)\right)=\lambda(n)
$$

Corollary. $\lambda\left(F_{A}(n)\right) \leq \lambda(n)=n^{2}-o\left(n^{2}\right)$.

For a lower-bound, let $\pi=i_{1} i_{2} \ldots i_{n}$ a permutation of [n], and consider the monotone $\mathrm{BN} f$ whose interaction graph is

Then $w \in[n]^{*}$ fixes f if and only if w contains π.

Proposition 2. A word fixes $F_{P}(n)$ if and only if it is n-complete, thus

$$
\lambda\left(F_{P}(n)\right)=\lambda(n)
$$

Since $F_{P}(n) \subseteq F_{A}(n)$ we deduce that $\lambda(n) \leq \lambda\left(F_{A}(n)\right)$ and thus
Theorem. $\quad \lambda\left(F_{P}(n)\right)=\lambda\left(F_{A}(n)\right)=\lambda(n)=n^{2}-o\left(n^{2}\right)$.

Theorem [Aracena, Gadoudeau, R., Salinas 2018+]

Networks	\mathcal{F}	$\max _{f \in \mathcal{F}} \lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_{A}(n)$	\boldsymbol{n}	$\Theta\left(\boldsymbol{n}^{2}\right)$
Path	$F_{P}(n)$	n	$\Theta\left(n^{2}\right)$
Increasing	$F_{I}(n)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Monotone	$\boldsymbol{F}_{\boldsymbol{M}}(\boldsymbol{n})$	$\boldsymbol{\Omega}\left(\boldsymbol{n}^{2}\right)$	$\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$

A monotone network hard to fixe

A monotone $\mathrm{BN} f$ with $n=a+b$, which is hard to fixe:

a

A monotone $\mathrm{BN} f$ with $n=a+b$, which is hard to fixe:

For each input x with $\left\lfloor\frac{b}{2}\right\rfloor$ ones, f behaves a path π_{x} (permut. of $[a]$).

A monotone $\mathrm{BN} f$ with $n=a+b$, which is hard to fixe:

For each input x with $\left\lfloor\frac{b}{2}\right\rfloor$ ones, f behaves a path π_{x} (permut. of $[a]$).

A monotone $\mathrm{BN} f$ with $n=a+b$, which is hard to fixe:

For each input x with $\left\lfloor\frac{b}{2}\right\rfloor$ ones, f behaves a path π_{x} (permut. of $[a]$). A word fixing f must contain all the permutations π_{x}.

A monotone $\mathrm{BN} f$ with $n=a+b$, which is hard to fixe:

For each input x with $\left\lfloor\frac{b}{2}\right\rfloor$ ones, f behaves a path π_{x} (permut. of $[a]$).
A word fixing f must contain all the permutations π_{x}.
If $\binom{b}{\left\lfloor\frac{b}{2}\right\rfloor} \geq a$!, then w must contains the a ! permutations of $[a]$, and then

$$
\lambda(f) \geq \lambda(a) \sim a^{2} .
$$

A monotone $\mathrm{BN} f$ with $n=a+b$, which is hard to fixe:

For each input x with $\left\lfloor\frac{b}{2}\right\rfloor$ ones, f behaves a path π_{x} (permut. of $[a]$). A word fixing f must contain all the permutations π_{x}. If $\binom{b}{\left\lfloor\frac{b}{2}\right\rfloor} \geq a$!, then w must contains the a ! permutations of $[a]$, and then

$$
\lambda(f) \geq \lambda(a) \sim a^{2}
$$

This works with $b=O(a \log a)$ and we get $a=\Omega\left(\frac{n}{\log n}\right)$.

A monotone $\mathrm{BN} f$ with $n=a+b$, which is hard to fixe:

For each input x with $\left\lfloor\frac{b}{2}\right\rfloor$ ones, f behaves a path π_{x} (permut. of $[a]$). A word fixing f must contain all the permutations π_{x}. If $\binom{b}{\left\lfloor\frac{b}{2}\right\rfloor} \geq a$!, then w must contains the a ! permutations of $[a]$, and then

$$
\lambda(f) \geq \lambda(a) \sim a^{2} .
$$

This works with $b=O(a \log a)$ and we get $a=\Omega\left(\frac{n}{\log n}\right)$.

The construction is based on the fact that a word containing the n ! permutations of S_{n} must be of quadratic length.

But maybe there exists a small subset $\Pi_{n} \subseteq S_{n}$ such that any word containing all the permutations in Π_{n} is still of quadratic length.

The construction is based on the fact that a word containing the n ! permutations of S_{n} must be of quadratic length.

But maybe there exists a small subset $\Pi_{n} \subseteq S_{n}$ such that any word containing all the permutations in Π_{n} is still of quadratic length.

Theorem. There exists $\Pi_{n} \subseteq S_{n}$ of size $2^{o(n)}$ such that any word containing all the permutations in Π_{n} is of length $\geq n^{2} / 3$.

The construction is based on the fact that a word containing the n ! permutations of S_{n} must be of quadratic length.

But maybe there exists a small subset $\Pi_{n} \subseteq S_{n}$ such that any word containing all the permutations in Π_{n} is still of quadratic length.

Theorem. There exists $\Pi_{n} \subseteq S_{n}$ of size $2^{o(n)}$ such that any word containing all the permutations in Π_{n} is of length $\geq n^{2} / 3$.

In the construction f, we encode S_{a} with $b=O(a \log a)$ inputs.
But we can encode Π_{a} with $b=o(a)$ only, and get

$$
\lambda(f) \geq \frac{a^{2}}{3} \sim \frac{n^{2}}{3} .
$$

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	\mathcal{F}	$\max _{f \in \mathcal{F}} \lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_{A}(n)$	n	$\Theta\left(n^{2}\right)$
Path	$F_{P}(n)$	n	$\Theta\left(n^{2}\right)$
Increasing	$F_{I}(n)$	$\Omega\left(n^{2}\right)$	$O\left(n^{2}\right)$
Monotone	$\boldsymbol{F}_{\boldsymbol{M}}(\boldsymbol{n})$	$\Omega\left(\boldsymbol{n}^{2}\right)$	$O\left(\boldsymbol{n}^{3}\right)$

Theorem. There exists $\Pi_{n} \subseteq S_{n}$ of size $2^{o(n)}$ such that any word containing all the permutations in Π_{n} is of length $\geq n^{2} / 3$.

Baranyai' theorem [1975]

If $n=a b$, there exists a collection of $\frac{1}{b}\binom{n}{a}$ partitions of $[n]$ into a-sets, such that each a-subset of $[n]$ appears in exactly one partition.

For $a=2$ this this equivalent to that, for n even, there is a partition of the edges of K_{n} into perfect matchings.

For $n=a b$, there exists a collection $\Pi_{n} \subseteq S_{n}$ of size $a!\binom{n}{a} \leq n^{a}$ with the following properties:

For $n=a b$, there exists a collection $\Pi_{n} \subseteq S_{n}$ of size $a!\binom{n}{a} \leq n^{a}$ with the following properties:

set of word of length a without repetition $\left(a!\binom{n}{a}\right)$

For $n=a b$, there exists a collection $\Pi_{n} \subseteq S_{n}$ of size $a!\binom{n}{a} \leq n^{a}$ with the following properties:

For $n=a b$, there exists a collection $\Pi_{n} \subseteq S_{n}$ of size $a!\binom{n}{a} \leq n^{a}$ with the following properties:
b blocks of size a
at least $\frac{a!\binom{n}{a}}{n^{2 b}}$ permutations with the same profil
profile of the permutation
at most $n^{2 b}$
possible profils

By a counting argument

$$
|w| \geq\left(n^{-\frac{2 b}{a}}\right) \frac{n(n-a)}{e}
$$

Taking $a=n^{\frac{1}{2}+\epsilon}$ and $b=n^{\frac{1}{2}-\epsilon}$ we get

$$
|w| \sim \frac{n^{2}}{e} \quad \text { and } \quad\left|\Pi_{n}\right| \leq n^{n^{\frac{1}{2}+\epsilon}}=2^{o(n)}
$$

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	\mathcal{F}	$\max _{f \in \mathcal{F}} \lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_{A}(n)$	n	$\Theta\left(n^{2}\right)$
Path	$F_{P}(n)$	n	$\Theta\left(n^{2}\right)$
Increasing	$F_{I}(n)$	$\Omega\left(n^{2}\right)$	$O\left(n^{2}\right)$
Monotone	$F_{M}(\boldsymbol{n})$	$\Omega\left(n^{2}\right)$	$O\left(n^{3}\right)$

Fixing all increasing networks

Let f be any BN with n components and $x \in\{0,1\}^{n}$.

1. f is increasing from x if $f^{u}(x) \leq f^{u v}(x)$ for all $u, v \in[n]^{*}$.
2. f is decreasing from x if $f^{u}(x) \geq f^{u v}(x)$ for all $u, v \in[n]^{*}$.

Let f be any BN with n components and $x \in\{0,1\}^{n}$.

1. f is increasing from x if $f^{u}(x) \leq f^{u v}(x)$ for all $u, v \in[n]^{*}$.
2. f is decreasing from x if $f^{u}(x) \geq f^{u v}(x)$ for all $u, v \in[n]^{*}$.

Thus f is increasing $\Longleftrightarrow f$ is increasing from every state.

Let f be any BN with n components and $x \in\{0,1\}^{n}$.

1. f is increasing from x if $f^{u}(x) \leq f^{u v}(x)$ for all $u, v \in[n]^{*}$.
2. f is decreasing from x if $f^{u}(x) \geq f^{u v}(x)$ for all $u, v \in[n]^{*}$.

Thus f is increasing $\Longleftrightarrow f$ is increasing from every state.
Lemma. If f is increasing or decreasing from x, and w is n-complete, then $f^{w}(x)$ is a fixed point of f.

So any n-complete fixes every increasing f, thus $\lambda\left(F_{I}(n)\right) \leq \lambda(n)$.

Let f be any BN with n components and $x \in\{0,1\}^{n}$.

1. f is increasing from x if $f^{u}(x) \leq f^{u v}(x)$ for all $u, v \in[n]^{*}$.
2. f is decreasing from x if $f^{u}(x) \geq f^{u v}(x)$ for all $u, v \in[n]^{*}$.

Thus f is increasing $\Longleftrightarrow f$ is increasing from every state.
Lemma. If f is increasing or decreasing from x, and w is n-complete, then $f^{w}(x)$ is a fixed point of f.

So any n-complete fixes every increasing f, thus $\lambda\left(F_{I}(n)\right) \leq \lambda(n)$.
Conversely, by considering a variation of path networks, we show that if w fixes every increasing f, then w is n-complete.

Let f be any BN with n components and $x \in\{0,1\}^{n}$.

1. f is increasing from x if $f^{u}(x) \leq f^{u v}(x)$ for all $u, v \in[n]^{*}$.
2. f is decreasing from x if $f^{u}(x) \geq f^{u v}(x)$ for all $u, v \in[n]^{*}$.

Thus f is increasing $\Longleftrightarrow f$ is increasing from every state.
Lemma. If f is increasing or decreasing from x, and w is n-complete, then $f^{w}(x)$ is a fixed point of f.

So any n-complete fixes every increasing f, thus $\lambda\left(F_{I}(n)\right) \leq \lambda(n)$.
Conversely, by considering a variation of path networks, we show that if w fixes every increasing f, then w is n-complete.

Proposition. $\quad \lambda\left(F_{I}(n)\right)=\lambda(n)=n^{2}-o\left(n^{2}\right)$.

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	\mathcal{F}	$\max _{f \in \mathcal{F}} \lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_{A}(n)$	n	$\Theta\left(n^{2}\right)$
Path	$F_{P}(n)$	n	$\Theta\left(n^{2}\right)$
Increasing	$F_{I}(n)$	$\Omega\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Monotone	$F_{M}(n)$	$\Omega\left(n^{2}\right)$	$O\left(n^{3}\right)$

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	\mathcal{F}	$\max _{f \in \mathcal{F}} \lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_{A}(n)$	n	$\Theta\left(n^{2}\right)$
Path	$F_{P}(n)$	n	$\Theta\left(n^{2}\right)$
Increasing	$F_{I}(n)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Monotone	$F_{M}(n)$	$\Omega\left(n^{2}\right)$	$O\left(n^{3}\right)$

A cubic word fixing all the monotone networks

Lemma. If f is monotone and w is n-complete, then

$$
\begin{aligned}
& x \leq f(x) \Rightarrow f \text { is increasing from } x \Rightarrow f^{w}(x) \text { if a fixed point of } f \\
& x \geq f(x) \Rightarrow f \text { is decreasing from } x \Rightarrow f^{w}(x) \text { if a fixed point of } f
\end{aligned}
$$

Let ω^{n} be an n-complete word of length $\lambda(n)$ for each $n \geq 1$
Theorem. The word $W^{n}:=\omega^{1} \omega^{2} \ldots \omega^{n}$ fixes $F_{M}(n)$ and $\left|W^{n}\right| \leq n^{3}$.

Let ω^{n} be an n-complete word of length $\lambda(n)$ for each $n \geq 1$
Theorem. The word $W^{n}:=\omega^{1} \omega^{2} \ldots \omega^{n}$ fixes $F_{M}(n)$ and $\left|W^{n}\right| \leq n^{3}$.
We have $W^{n}=W^{n-1} \omega^{n}$.

Let ω^{n} be an n-complete word of length $\lambda(n)$ for each $n \geq 1$
Theorem. The word $W^{n}:=\omega^{1} \omega^{2} \ldots \omega^{n}$ fixes $F_{M}(n)$ and $\left|W^{n}\right| \leq n^{3}$.
We have $W^{n}=W^{n-1} \omega^{n}$.
Suppose that W^{n-1} fixes $F_{M}(n-1)$ and let $f \in F_{M}(n)$.

Let ω^{n} be an n-complete word of length $\lambda(n)$ for each $n \geq 1$
Theorem. The word $W^{n}:=\omega^{1} \omega^{2} \ldots \omega^{n}$ fixes $F_{M}(n)$ and $\left|W^{n}\right| \leq n^{3}$.
We have $W^{n}=W^{n-1} \omega^{n}$.
Suppose that W^{n-1} fixes $F_{M}(n-1)$ and let $f \in F_{M}(n)$.

Let ω^{n} be an n-complete word of length $\lambda(n)$ for each $n \geq 1$
Theorem. The word $W^{n}:=\omega^{1} \omega^{2} \ldots \omega^{n}$ fixes $F_{M}(n)$ and $\left|W^{n}\right| \leq n^{3}$.
We have $W^{n}=W^{n-1} \omega^{n}$.
Suppose that W^{n-1} fixes $F_{M}(n-1)$ and let $f \in F_{M}(n)$.

1. If y is a FP then $f^{\omega^{n}}(y)$ is a FP.

Let ω^{n} be an n-complete word of length $\lambda(n)$ for each $n \geq 1$
Theorem. The word $W^{n}:=\omega^{1} \omega^{2} \ldots \omega^{n}$ fixes $F_{M}(n)$ and $\left|W^{n}\right| \leq n^{3}$.
We have $W^{n}=W^{n-1} \omega^{n}$.
Suppose that W^{n-1} fixes $F_{M}(n-1)$ and let $f \in F_{M}(n)$.

1. If y is a FP then $f^{\omega^{n}}(y)$ is a FP.
2. If not $f(y)=y+e_{n}$ thus $y \leq f(y)$ or $y \geq f(y)$, thus $f^{\omega^{n}}(y)$ is FP.

Theorem [Aracena, Gadouleau, R., Salinas 2018+]

Networks	\mathcal{F}	$\max _{f \in \mathcal{F}} \lambda(f)$	$\lambda(\mathcal{F})$
Acyclic	$F_{A}(n)$	n	$\Theta\left(n^{2}\right)$
Path	$F_{P}(n)$	n	$\Theta\left(n^{2}\right)$
Increasing	$F_{I}(n)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
Monotone	$F_{M}(n)$	$\Omega\left(n^{2}\right)$	$O\left(n^{3}\right)$

Conclusion

It is interesting to regard the asynchronous dynamics as a DFA.
Emphasis on the notion of fixing words.
\hookrightarrow Some results in the monotone case, with various technics $\hookrightarrow n$-complete words, Baranyai's theorem etc.

Question. Is it as hard to fixe one $f \in F_{M}(n)$ as $F_{M}(n)$?

Conclusion

It is interesting to regard the asynchronous dynamics as a DFA.
Emphasis on the notion of fixing words.
\hookrightarrow Some results in the monotone case, with various technics $\hookrightarrow n$-complete words, Baranyai's theorem etc.

Question. Is it as hard to fixe one $f \in F_{M}(n)$ as $F_{M}(n)$?

What about classical notions in DFA?
A word w is a synchronizing word of a $\mathrm{BN} f$ if f^{w} is constant.
Černý's conjecture for Boolean networks
If a $\mathrm{BN} f$ has a synchronizing word, then it has one of length $\leq 2^{2 n}$.

