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An n-dimensional Boolean network is a function

f : Bn → Bn (B = {0, 1} )

x = (x1, . . . , xi, . . . , xn) "→ f(x) = (f1(x), . . . , fi(x), . . . , fn(x))

↑
local transition function

The interaction graph of f is the directed graph G(f)

with vertex set {1, . . . , n} and arcs defined by

j → i ∈ G(f) ⇔ fi depends on xj



Example : f : B3 → B3 is defined by :

x f(x)
000 100
001 000
010 101
011 001
100 100
101 110
110 101
111 111

⇔
f1(x) = x1 ∨ x3

f2(x) = x1 ∧ x3

f3(x) = x2

The interaction graph of f is :

G(f)

1 2

3



A network f with an update schedule (parallel, sequential, block-
sequential, asynchronous...) defines a discrete dynamical system.

With the parallel update schedule : xt+1 = f(xt)

f1(x) = x1 ∨ x3

f2(x) = x1 ∧ x3

f3(x) = x2

Parallel dynamics

001

000

100 111110

101

010

011

For all update schedules : fixed points of f = stable states.



Simple definitions, but complex behaviors : several attractors,
long limit cycles, long transient phases...

Many applications : biology, sociology, computer science...

In particular, from the seminal works of Thomas and Kauffman (60’s),
Boolean networks are extensively used to model gene networks.

In this context :

◃◃- G(f) is “known” but f is “unknown”

◃◃- fixed points of f ≃ cell types

What can be said on fixed points of f according to G(f) ?
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THEOREM (Robert 1980)
If G(f) has no cycle, then f has a unique fixed point.

More precisely, if G(f) has no cycle, then f has a unique fixed point ξ,
and the system converges toward ξ (for all update schedules).
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Notation : xi = (x1, . . . , xi, . . . , xn)

The local interaction graph of f : Bn → Bn evaluated at state x ∈ Bn

is the directed graph Gf(x) with vertex set {1, . . . , n} and such that

j → i ∈ Gf(x) ⇔ fi(x) ̸= fi(x
j)

⇓

fi depends on xj

⇕

j → i ∈ G(f)

Property : ∀x ∈ Bn, Gf(x) is a subgraph of G(f). More precisely

⋃

x∈Bn

Gf(x) = G(f)
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THEOREM (Shih & Dong 2005)
If Gf(x) has no cycle ∀x ∈ Bn, then f has a unique fixed point.

The proof is more technical. It’s an induction on n that uses
the notion of subnetwork (introduced in few slides).

Shih-Dong’s theorem generalizes Robert’s one :

G(f) has no cycle

⇓ ̸⇑
Gf(x) has no cycle ∀x ∈ Bn

⇓
f has a unique fixed point



Example : f : B4 → B4 is defined by :

f1(x) = x2 ∧ (x3 ∨ x4)
f2(x) = x3 ∧ x4

f3(x) = x1 ∧ x2 ∧ x4

f4(x) = x1 ∧ x2 ∧ x3

G(f)

1 2

3 3

G(f) has 14 cycles, but Gf(x) has no cycle ∀x ∈ B4,
and f has indeed a unique fixed point :

0111 0100

0110 1110

1000

1011 1001

0101 1111 0001 1010 1100

1101 0011 0010

0000

The condition “ Gf(x) has no cycle ∀x ∈ Bn ” doesn’t imply
the convergence toward the unique fixed point.
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A subnetwork of f : Bn → Bn is a network f̃ : Bk → Bk obtained
from f by fixing n − k components to zero or one, with 1 ≤ k ≤ n.

Remark : f is a subnetwork of f

Example : f : B3 → B3 is defined by

f1(x1, x2, x3) = x1 ∨ x3

f2(x1, x2, x3) = x1 ∧ x3

f3(x1, x2, x3) = x2

The subnetwork f̃ : B2 → B2 obtained by fixing “x3 = 1” is

f̃1(x1, x2) = x1 ∨ 1 = x1

f̃1(x1, x2) = x1 ∧ 1 = x1



A subnetwork of f : Bn → Bn is a network f̃ : Bk → Bk obtained
from f by fixing n − k components to zero or one, with 1 ≤ k ≤ n.

Remark : f is a subnetwork of f

Example : f : B3 → B3 is defined by
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f3(x1, x2, x3) = x2

The subnetwork f̃ : B2 → B2 obtained by fixing “x3 = 1” is

f̃1(x1, x2) = x1 ∨ 1 = x1
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Let f̃ be a subnetwork of f of dimension k ≤ n.

There exists an injection h : Bk → Bn such that

∀x ∈ Bk Gf̃(x) ⊆ Gf(h(x))

As a consequence G(f̃ ) ⊆ G(f).

PROPERTY OF SUBNETWORKS
If there exists λ points x ∈ Bk such that Gf̃(x) has a cycle, then
there exists λ points x ∈ Bn such that Gf(x) has a cycle of length ≤ k.



Let f̃ be a subnetwork of f of dimension k ≤ n.

There exists an injection h : Bk → Bn such that

∀x ∈ Bk Gf̃(x) ⊆ Gf(h(x))

As a consequence G(f̃ ) ⊆ G(f).

PROPERTY OF SUBNETWORKS
If there exists λ points x ∈ Bk such that Gf̃(x) has a cycle, then
there exists λ points x ∈ Bn such that Gf(x) has a cycle of length ≤ k.



Let f̃ be a subnetwork of f of dimension k ≤ n.

There exists an injection h : Bk → Bn such that

∀x ∈ Bk Gf̃(x) ⊆ Gf(h(x))

As a consequence G(f̃ ) ⊆ G(f).

PROPERTY OF SUBNETWORKS
If there exists λ points x ∈ Bk such that Gf̃(x) has a cycle, then
there exists λ points x ∈ Bn such that Gf(x) has a cycle of length ≤ k.



Let C be the set of all circular networks, that is,
the set of networks f such that G(f) is a cycle.

PROPERTY OF CIRCULAR NETWORKS
If f : Bn → Bn is a circular network, then it has 0 or 2 fixed points,
and Gf(x) = G(f) is a cycle for all x ∈ Bn.

According to Robert’s theorem, circular networks are
the most simple networks without a unique fixed point.

QUESTION :
If f has no subnetwork in C, then f has a unique fixed point ?
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A positive answer would generalize previous results, since :

G(f) has no cycle
⇓

Gf(x) has no cycle ∀x ∈ Bn

⇓
f has no subnetwork in C

¿ ⇓ ?
f has a unique fixed point

Suppose that f has subnetwork f̃ ∈ C of dimension k ≤ n.

◃◃By the PROPERTY OF CIRCULAR NETWORKS,
◃◃Gf̃(x) = G(f̃) is a cycle for all x ∈ Bk,

◃◃so, by the PROPERTY OF SUBNETWORKS,
◃◃it exists 2k points x ∈ Bn such that Gf(x) has a cycle.

However, the answer is negative : counter examples for each n ≥ 4
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Example : f : B4 → B4 is defined by :

f1(x) = (x2 ∧ x3 ∧ x4) ∨ ((x2 ∨ x3) ∧ x4)
f2(x) = (x3 ∧ x1 ∧ x4) ∨ ((x3 ∨ x1) ∧ x4)
f3(x) = (x1 ∧ x2 ∧ x4) ∨ ((x1 ∨ x2) ∧ x4)
f4(x) = (x2 ∧ x3 ∧ x1) ∨ ((x2 ∨ x3) ∧ x1)

G(f)

1 2

3 3

f has no circular subnetwork, but it has not a unique fixed point :

0100 1010

0011

0110

1110 1111

0101

1100

1001

1011

0001

1000

0010

0111

1101

0000

But all is not lost ! Counter examples are very particular !



The network f is self-dual : f(x) = f(x) for all x ∈ B4

And it is even : {x ⊕ f(x)} = {x with an even number of ones}

x f(x) x ⊕ f(x)
0000 0000 0000
0001 1110 1111
0010 1000 1010
0011 1010 1001
0100 0010 0110
0101 0110 0011
0110 0011 0101
0111 1011 1100
1000 0100 1100
1001 1100 0101
1010 1001 0011
1011 1101 0110
1100 0101 1001
1101 0111 1010
1110 0001 1111
1111 1111 0000
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CHARACTERIZATION OF CIRCULAR NETWORKS

A network f : Bn → Bn is circular if and only if it is

◃1. self-dual : ∀x ∈ Bn, f(x) = f(x)

◃2. even or odd :

{f(x) ⊕ x |x ∈ Bn} = {x ∈ Bn |x has an even number of ones}

or

{x ∈ Bn |x has an odd number of ones}

◃ 3. non-expansive : ∀x, y ∈ Bn, d(f(x), f(y)) ≤ d(x, y)



Let F be the set of even/odd self-dual networks without
even/odd self-dual strict subnetworks (C ⊂ F).

FORBIDDEN SUBNETWORKS THEOREM
If f has no subnetwork in F, then f has a unique fixed points

PROPERTY OF CIRCULAR NETWORKS
If f : Bn → Bn is a circular network, then it has 0 or 2 fixed points,
and Gf(x) = G(f) is a cycle for all x ∈ Bn.

Without the non-expansiveness, the property is almost the same :

PROPERTY OF EVEN/ODD SELF-DUAL NETWORKS
If f : Bn → Bn is an even/odd self-dual network, then it has 0 or 2

fixed points, and Gf(x) has a cycle for all x ∈ Bn.



Let F be the set of even/odd self-dual networks without
even/odd self-dual strict subnetworks (C ⊂ F).

FORBIDDEN SUBNETWORKS THEOREM
If f has no subnetwork in F, then f has a unique fixed points

PROPERTY OF CIRCULAR NETWORKS
If f : Bn → Bn is a circular network, then it has 0 or 2 fixed points,
and Gf(x) = G(f) is a cycle for all x ∈ Bn.

Without the non-expansiveness, the property is almost the same :

PROPERTY OF EVEN/ODD SELF-DUAL NETWORKS
If f : Bn → Bn is an even/odd self-dual network, then it has 0 or 2

fixed points, and Gf(x) has a cycle for all x ∈ Bn.



The forbidden subnetwork theorem generalizes previous results :

G(f) has no cycle
⇓ ̸⇑

Gf(x) has no cycle ∀x ∈ Bn

⇓ ̸⇑
f has no subnetwork in F

⇓
f has a unique fixed point

Suppose that f has subnetwork f̃ ∈ F of dimension k ≤ n.

◃◃By the PROPERTY OF EVEN/ODD SELF-DUAL NETWORKS,
◃◃Gf̃(x) has a cycle for all x ∈ Bk,

◃◃so, by the PROPERTY OF SUBNETWORKS, it exists 2k

◃◃points x ∈ Bn such that Gf(x) has a cycle of length ≤ k.

COROLLARY
If for k = 1, . . . n there is at most 2k − 1 points x ∈ Bn such that
Gf(x) has a cycle of length ≤ k, then f has a unique fixed point.
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Example : f : B3 → B3 is defined by :

f1(x) = x2 ∧ x3

f2(x) = x3 ∧ x1

f3(x) = x1 ∧ x2

111

001 100 010

011 110101

000

f has no subnetwork in F (and it has indeed a unique fixed point)
but Gf(x) has a cycle for some x ∈ B3 :

G(f) Gf(000) Gf(111)

1 2

3

1 2

3

1 2

3



There is something of optimal in the forbidden subnetwork theorem.

Let us say that a set H of networks has the fixed point property if

◃1. Every network f without subnetwork in H has a unique fixed point.

◃2. No member of H has a unique fixed point.

We have seen that F has the fixed point property (but not C).

COROLLARY
If H has the fixed point property, then F ⊆ H.
So F is the smallest set with the fixed point property.

◃Proof : Suppose that H has the fixed point property.
◃Suppose, by contradiction, that there exists f ∈ F \ H.
◃By the definition of F , f has no strict subnetwork in F .
◃So if f̃ is a strict subnetwork of f , then f̃ has no subnetwork in F .
◃By the forb. subnet. theorem, f̃ has a unique fixed point, so f̃ ̸∈ H.
◃So f has no subnetwork in H, so f has a unique fixed point.
◃Contradiction.
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We have seen that F has the fixed point property (but not C).

COROLLARY
If H has the fixed point property, then F ⊆ H.
So F is the smallest set with the fixed point property.

◃Proof : Suppose that H has the fixed point property.
◃Suppose, by contradiction, that there exists f ∈ F \ H.
◃By the definition of F , f has no strict subnetwork in F .
◃So if f̃ is a strict subnetwork of f , then f̃ has no subnetwork in F .
◃By the forb. subnet. theorem, f̃ has a unique fixed point, so f̃ ̸∈ H.
◃So f has no subnetwork in H, so f has a unique fixed point.
◃Contradiction.



Problem

Is there exists a class of forbidden subnetworks H such that :

◃1. Every network f without subnetwork in H
◃1. converges toward a unique fixed point.

◃2. No member of H converge toward a unique fixed point.


