On the Link Between
 Oscillations and Negative Circuits
 in Discrete Genetic Regulatory Networks

Adrien Richard

INRIA Rhône-Alpes, France

The structure of a gene regulatory network often known and represented by an interaction graph :

The dynamics of the network is often unknown and difficile to observe.

What dynamical properties of a gene network
can be deduced from its interaction graph?
(Second) Thomas' conjecture (1981) :
Without negative circuit (odd number of inhibitions)
in the interaction graph, there is no sustained oscillations.

Equivalent formulation :

If a network produces sustained oscillations, then its interaction graph has a negative circuit.

expression levels

In this presentation :

We state the conjecture in a general discrete framework which includes the Generalized Logical Analysis of Thomas. (The proof is given in the paper.)

Remark : Discrete models are a good alternative to continuous models (based on ODEs) which are difficult to use in pratice because of the lack of precise datas about the behavior of genetic regulatory networks.

Outline :

1. We describe the dynamics of a network by a discrete dynamical system Γ.
2. We define, from the dynamic Γ, the interaction graphe G of the network.
3. We show that the presence of sustained oscillations in the dynamics Γ imply the presence of a negative circuit in G.

Part 1

Discrete dynamical framework

We consider the evolution of network of \boldsymbol{n} genes:

- The set of states X is of the form:

$$
X=X_{1} \times \cdots \times X_{n}, \quad X_{i}=\left\{0,1, \ldots, b_{i}\right\}, \quad i=1, \ldots, n
$$

- To describe the dynamics, we consider a map $\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{X}$:

$$
x=\left(x_{1}, \ldots, x_{n}\right) \in X \rightarrow f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) \in X
$$

Intuitively, at state x, the network evolves toward $f(x)$:
\triangleright If $x_{i}<f_{i}(x)$ the expression level x_{i} of gene i is increasing.
\triangleright If $x_{i}=f_{i}(x)$ the expression level x_{i} of gene i is stable.
\triangleright If $x_{i}>f_{i}(x)$ the expression level x_{i} of gene i is decreasing.

- More precisely, as in the Thomas' model, the dynamics is described by the asynchronous state transition graph of f, denoted $\Gamma(f)$:

1. The set of nodes is the set of states X.
2. The set of arcs is defined by : for each state x and gene i,
\triangleright if $x_{i}<f_{i}(x)$ there is an arc $x \rightarrow y=\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{n}\right)$,
\triangleright if $x_{i}>f_{i}(x)$ there is an arc $x \rightarrow y=\left(x_{1}, \ldots, x_{i}-1, \ldots, x_{n}\right)$.

Example : with $n=2$ and $X=\{0,1,2\} \times\{0,1,2\}$:

x	$f(x)$
$(0,0)$	$(1,2)$
$(0,1)$	$(1,2)$
$(0,2)$	$(2,2)$
$(1,0)$	$(2,2)$
$(1,1)$	$(2,1)$
$(1,2)$	$(0,0)$
$(2,0)$	$(2,0)$
$(2,1)$	$(2,2)$
$(2,2)$	$(0,2)$

- More precisely, as in the Thomas' model, the dynamics is described by the asynchronous state transition graph of f, denoted $\Gamma(f)$:

1. The set of nodes is the set of states X.
2. The set of arcs is defined by : for each state x and gene i,
\triangleright if $x_{i}<f_{i}(x)$ there is an arc $x \rightarrow y=\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{n}\right)$,
\triangleright if $x_{i}>f_{i}(x)$ there is an arc $x \rightarrow y=\left(x_{1}, \ldots, x_{i}-1, \ldots, x_{n}\right)$.

Example : with $n=2$ and $X=\{0,1,2\} \times\{0,1,2\}$:

$$
\triangleright \begin{array}{c|c}
x & f(x) \\
\hline(0,0) & (1,2) \\
(0,1) & (1,2) \\
(0,2) & (2,2) \\
(1,0) & (2,2) \\
(1,1) & (2,1) \\
(1,2) & (0,0) \\
(2,0) & (2,0) \\
& (2,1)
\end{array}(2,2)
$$

$\Gamma(f)$		
$(0,2)$	$(1,2)$	$(2,2)$
	\ldots	
$(0,1) \quad \therefore(1,1)$		$(2,1)$
$(0,0)$	$(1,0)$	$(2,0)$

- More precisely, as in the Thomas' model, the dynamics is described by the asynchronous state transition graph of f, denoted $\Gamma(f)$:

1. The set of nodes is the set of states X.
2. The set of arcs is defined by : for each state x and gene i,
\triangleright if $x_{i}<f_{i}(x)$ there is an arc $x \rightarrow y=\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{n}\right)$,
\triangleright if $x_{i}>f_{i}(x)$ there is an arc $x \rightarrow y=\left(x_{1}, \ldots, x_{i}-1, \ldots, x_{n}\right)$.

Example : with $n=2$ and $X=\{0,1,2\} \times\{0,1,2\}$:

$\Gamma(f)$
$(0,2) \longrightarrow(1,2) \longleftarrow(2,2)$
$\leftarrow \cdots \ldots, \ldots \ldots \ldots$
$(0,1) \longrightarrow(1,1) \longrightarrow(2,1)$
$(0,0) \longrightarrow(1,0) \longrightarrow(2,0)$

- More precisely, as in the Thomas' model, the dynamics is described by the asynchronous state transition graph of f, denoted $\Gamma(f)$:

1. The set of nodes is the set of states X.
2. The set of arcs is defined by : for each state x and gene i,
\triangleright if $x_{i}<f_{i}(x)$ there is an arc $x \rightarrow y=\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{n}\right)$,
\triangleright if $x_{i}>f_{i}(x)$ there is an arc $x \rightarrow y=\left(x_{1}, \ldots, x_{i}-1, \ldots, x_{n}\right)$.

Example : with $n=2$ and $X=\{0,1,2\} \times\{0,1,2\}$:

Remarks :

1. The dynamics described by $\Gamma(f)$ is undeterministic.

2. Snoussi and Thomas have showed that this discrete dynamical model is a good approximation of continuous models based on piece-wise differential equations systems.

- An attractor of $\Gamma(f)$ is a smallest non-empty subset A of X such that all paths of $\Gamma(f)$ starting in A remain in A.

\triangleright An attractor which contains at least 2 states describes sustained oscillations, and is called cyclic attractor.
\triangleright An attractor which contains a unique state is a stable state.

Remark : There is always at least one attractor in $\Gamma(f)$.

Part 2

Interaction graph of f

- The interaction graph $G(f)$ of f is the signed oriented graph whose set of nodes is $\{1, \ldots, n\}$ and such that (3 rules) :

1. There is a positive interaction $\boldsymbol{i} \longrightarrow \boldsymbol{j}$, with $i \neq j$, if one of the two following motifs is present in $\Gamma(f)$:

2. There is a negative interaction $\boldsymbol{i} \longrightarrow \boldsymbol{j}$, with $i \neq j$, if one of the two following motifs is present in $\Gamma(f)$:

3. There is a negative interaction $i \rightarrow i$, if the following motifs is present in $\Gamma(f)$:

Remark : $G(f)$ is a subgraph of the interaction graphs considered by Thomas and Remy et al.

Asynchronous state transition graph $\Gamma(f)$

Interaction graph $G(f)$

Asynchronous state transition graph $\Gamma(f)$

Interaction graph $G(f)$

Asynchronous state transition graph $\Gamma(f)$

Interaction graph $G(f)$

Asynchronous state transition graph $\Gamma(f)$

Interaction graph $G(f)$

Asynchronous state transition graph $\Gamma(f)$

Interaction graph $\boldsymbol{G}(\boldsymbol{f})$

Part 3

Result

Let $f: X \rightarrow X$, with X the product of n finite intervals of integers.

Theorem (discrete version of the 2nd Thomas' conjecture) :
If $\Gamma(f)$ has a cyclic attractor, then $G(f)$ has a negative circuit.

To prove the theorem, we reason by induction on the number of transitions in the cyclic attractors; the base case corresponds to the case where there is a cyclic attractor A containing a state which has a unique successor.

Remark : This theorem was proved by Remy et al. in the boolean ($X=\{0,1\}^{n}$) and under the strong hypothesis that $\Gamma(f)$ contains an attractor A such that all the states of A have a unique successor.

Concluding Remarks :

1. As corollary we have a

Fixed point theorem :

If $G(f)$ has no negative circuit, then f has at least one fixed point.

Indeed, there is always at least one attractor A in $\Gamma(f)$. If $G(f)$ has no negative circuit then A is not a cyclic attractor, so A is reduced to a unique state x which is a fixed point of f.

Concluding remarks :

2. The presence of a cycle in $\Gamma(f)$ does not imply the presence of a negative circuit in $G(f)$.

It seams difficult to find a form of oscillation in $\Gamma(f)$ more general than the cyclic attractors and which imply the presence of a negative circuit in $G(f)$.

