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The structure of a gene regulatory network often known
and represented by an interaction graph :

T he dynamics of the network is often unknown and difficile to observe.

What dynamical properties of a gene network
can be deduced from its interaction graph ?



(Second) Thomas’ conjecture (1981) :

Without negative circuit (odd number of inhibitions)

in the interaction graph, there is no sustained oscillations.
Equivalent formulation :

If a network produces sustained oscillations,
then its interaction graph has a negative circuit.

+ expression levels

time



In this presentation :

We state the conjecture in a general discrete framework
which includes the Generalized Logical Analysis of Thomas.
(The proof is given in the paper.)

Remark : Discrete models are a good alternative to continuous models
(based on ODEs) which are difficult to use in pratice because of the
lack of precise datas about the behavior of genetic regulatory networks.



Outline :

1. We describe the dynamics of a network
by a discrete dynamical system TI'.

2. We define, from the dynamic I,
the interaction graphe G of the network.

3. We show that the presence of sustained oscillations in the
dynamics I' imply the presence of a negative circuit in G.



Part 1

Discrete dynamical framework



We consider the evolution of network of n genes :

» T he set of states X is of the form :

X =X{x- X Xp, X; =4{0,1,...,b;}, i=1,...,n.

» To describe the dynamics, we consider amap f: X — X :

r=(z1,...,2n) € X — f(z) = (f1(2),..., fn(z)) € X.

Intuitively, at state z, the network evolves toward f(x) :

> If xz; < f;(x) the expression level x; of gene i is increasing.
> If x; = f;(xz) the expression level x; of gene i is stable.

> If z; > f;(x) the expression level x; of gene i is decreasing.



» More precisely, as in the Thomas' model, the dynamics is described
by the asynchronous state transition graph of f, denoted I'(f) :

1. The set of nodes is the set of states X.

2. The set of arcs is defined by : for each state x and gene 1,

> if ¢; < f;(x) thereisanarcxe—y=(z1,...,2;,+1,....x

> if ¢; > f;(z) thereisanarcx—y= (x1,...,2;, — 1, ...

Example : with n =2 and X = {0,1,2} x {0,1,2} :

i

f(z)

(0,0)
(0,1)
(0,2)
(1,0)
(1,1)
(1,2)
(2,0)
(2,1)
(2,2)

(1,2)
(1,2)
(2,2)
(2,2)
(2,1)
(0,0)
(2,0)
(2,2)
(0,2)

L'(f)

(0,2) = (1,2) =— (2,2)

R

(0,1) — (1,1) — (2,1)

]
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» More precisely, as in the Thomas' model, the dynamics is described
by the asynchronous state transition graph of f, denoted I'(f) :

1. The set of nodes is the set of states X.

2. The set of arcs is defined by : for each state x and gene 1,

> if ¢; < f;(x) thereisanarcx—y = (z1,...,2;,+1,..
> if ¢; > f;(z) thereisanarcx—y= (x1,...,2;, — 1, ...
Example : with n =2 and X = {0,1,2} x {0,1,2} :
> (0,0) |(1,2)
(0,1) | (1,2) (0,2) (1,2) (2,2)
(0,2) | (2,2) d
(1,1) | (2,1)
(1.2) | (0.0) (0,1) (1,1) (2,1)
(2,0) | (2,0) T
(2,1) | (2,2) S
(2,2) ] (0,2) (0,0) = (1,0) (2,0)
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» More precisely, as in the Thomas' model, the dynamics is described
by the asynchronous state transition graph of f, denoted I'(f) :

1. The set of nodes is the set of states X.

2. The set of arcs is defined by : for each state x and gene 1,

> if ¢; < f;(x) thereisanarcx—y = (z1,...,2;,+1,..
> if ¢; > f;(z) thereisanarcx—y= (x1,...,2;, — 1, ...
Example : with n =2 and X = {0,1,2} x {0,1,2} :
z | f(z) I'(f)
(0,0) | (1,2)
(0,1) | (1,2) (0,2) (1,2) &= (2,2)
(072) (272) Nl
(1,0)| (2,2
(1,1) | (2,1)
(1.2) | (0.0) (0,1) (1,1) (2,1)
(2,0) | (2,0)
(2,1) | (2,2)
> (2,2)(0,2) (0,0) (1,0) (2,0)
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» More precisely, as in the Thomas' model, the dynamics is described
by the asynchronous state transition graph of f, denoted I'(f) :

1. The set of nodes is the set of states X.

2. The set of arcs is defined by : for each state x and gene 1,

> if ¢; < f;(x) thereisanarcxe—y=(z1,...,2;,+1,....x

> if ¢; > f;(z) thereisanarcx—y= (x1,...,2;, — 1, ...

Example : with n =2 and X = {0,1,2} x {0,1,2} :

i

f(z)

(0,0)
(0,1)
(0,2)
(1,0)
(1,1)
(1,2)
> (2,0)
(2,1)
(2,2)

(1,2)
(1,2)
(2,2)
(2,2)
(2,1)
(0,0)
(2,0)
(2,2)
(0,2)

L'(f)

(0,2) = (1,2) =— (2,2)

R

(0,1) — (1,1) — (2,1)

]

(0,0) — (1,0) — [2,0]
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Remarks :

1. The dynamics described by I'(f) is undeterministic.

%

(0,2) _

(1,2) =— (2,2)

T

(0,1) — (1,1) — (2,1)

(0,0) — (1,0) —— (2,0)

2. Snoussi and Thomas have showed that this discrete dynamical
model is a good approximation of continuous models based
on piece-wise differential equations systems.



» An attractor of I'(f) is a smallest non-empty subset A of X
such that all paths of I'(f) starting in A remain in A.
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> An attractor which contains at least 2 states describes
sustained oscillations, and is called cyclic attractor.

> An attractor which contains a unique state is a stable state.

Remark : There is always at least one attractor in I'(f).



Interaction graph of f

Part 2

(0,2) —~ (1,2) =<— (2,2)

(0,

1) — (17

T

1) —> (2,1)

(0,0) —— (1,0) —— (2,0)



» The interaction graph G(f) of f is the signed oriented graph
whose set of nodes is {1,...,n} and such that (3 rules) :

1. There is a positive interaction 2 — 3, with 7 £ 7,
if one of the two following motifs is present in I'(f) :

A
>< Increase of j

r ——— Yy

Increase of 1

Decrease of 3

Decrease of 1

y <—— <z

%



2. There is a negative interaction 2 — 3, with 7 £ j,
if one of the two following motifs is present in I'(f) :

Increase of 3 A

r VY Increase of j ><
>< Decrease of 3 . x

v Decrease of




3. There is a negative interaction 7 — 1,
if the following motifs is present in I'(f) :

Increase of 2

~~ O\
L Yy
~__
Decrease of 1

Remark : G(f) is a subgraph of the interaction graphs
considered by Thomas and Remy et al.



Asynchronous state
transition graph T'(f)

(0,2) = (1,2) =— (2,2)

R

(0,1) — (1,1) — (2,1)

]

(0,0) —— (1,0) —— (2,0)

Interaction graph G(f)



Asynchronous state
transition graph T'(f)

(0,2) = (1,2) =— (2,2)

T

(0,1) —= (1,1) ==p (2,1)

]

(0,0) —— (1,0) —— (2,0)

Interaction graph G(f)




Asynchronous state
transition graph T'(f)

(0,2) T (1,2) =<— (2,2)

I

(0,1) — (1,1) — (2,1)

]

(0,0) —— (1,0) —— (2,0)

Interaction graph G(f)

gene 1 gene 2
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Asynchronous state
transition graph T'(f)

(0,2) == (1,2) <— (2,2)

R

(0,1) — (1,1) — (2,1)

]

(0,0) —— (1,0) —— (2,0)

Interaction graph G(f)



Asynchronous state
transition graph T'(f)

(0,2) _— (1,2) w== (2,2)

T

(0,1) — (1,1) — (2,1)

]

(0,0) —— (1,0) —— (2,0)

Interaction graph G(f)
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Part 3

Result



Let f: X — X, with X the product of n finite intervals of integers.

Theorem (discrete version of the 2nd Thomas’ conjecture) :
If I'(f) has a cyclic attractor, then G(f) has a negative circuit.

To prove the theorem, we reason by induction on the number

of transitions in the cyclic attractors; the base case corresponds
to the case where there is a cyclic attractor A containing a state
which has a unique successor.

Remark : This theorem was proved by Remy et al. in the boolean
(X = {0,1}™) and under the strong hypothesis that I'(f) contains an
attractor A such that all the states of A have a unique successor.
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(0,0) — (1,0) —= (2,0)




Concluding Remarks :
1. As corollary we have a

Fixed point theorem :
If G(f) has no negative circuit, then f has at least one fixed point.

Indeed, there is always at least one attractor A in I'(f).
If G(f) has no negative circuit then A is not a cyclic attractor,
so A is reduced to a unique state = which is a fixed point of f.



Concluding remarks :

2. The presence of a cycle in I'(f) does not imply
the presence of a negative circuit in G(f).

'(f) G(f)
011 —>111 +
A | A /7N
0104'—110 gene 1 gene 2
J/ 001 === 101 _|_& /—1—
___________ ¢ »
000<—— 100 gene 3

It seams difficult to find a form of oscillation in I'(f)
more general than the cyclic attractors and which
imply the presence of a negative circuit in G(f).



