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The structure of a gene regulatory network often known

and represented by an interaction graph :
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The dynamics of the network is often unknown and difficile to observe.

What dynamical properties of a gene network

can be deduced from its interaction graph ?



(Second) Thomas’ conjecture (1981) :

◃◃Without negative circuit (odd number of inhibitions)

◃◃in the interaction graph, there is no sustained oscillations.

Equivalent formulation :

◃◃If a network produces sustained oscillations,

◃◃then its interaction graph has a negative circuit.
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In this presentation :

◃◃We state the conjecture in a general discrete framework

◃◃which includes the Generalized Logical Analysis of Thomas.

◃◃(The proof is given in the paper.)

Remark : Discrete models are a good alternative to continuous models

(based on ODEs) which are difficult to use in pratice because of the

lack of precise datas about the behavior of genetic regulatory networks.



Outline :

◃◃1. We describe the dynamics of a network

◃◃1. by a discrete dynamical system Γ.

◃◃2. We define, from the dynamic Γ,

◃◃2. the interaction graphe G of the network.

◃◃3. We show that the presence of sustained oscillations in the

◃◃3. dynamics Γ imply the presence of a negative circuit in G.



Part 1

Discrete dynamical framework



We consider the evolution of network of n genes :

◃" The set of states X is of the form :

X = X1 × · · ·× Xn, Xi = {0,1, . . . , bi}, i = 1, . . . , n.

◃" To describe the dynamics, we consider a map f : X → X :

x = (x1, . . . , xn) ∈ X → f(x) = (f1(x), . . . , fn(x)) ∈ X.

Intuitively, at state x, the network evolves toward f(x) :

◃◃◃ If xi < fi(x) the expression level xi of gene i is increasing.

◃◃◃ If xi = fi(x) the expression level xi of gene i is stable.

◃◃◃ If xi > fi(x) the expression level xi of gene i is decreasing.



◃" More precisely, as in the Thomas’ model, the dynamics is described
◃◃ by the asynchronous state transition graph of f , denoted Γ(f) :

◃◃◃◃1. The set of nodes is the set of states X.

◃◃◃◃2. The set of arcs is defined by : for each state x and gene i,

◃◃◃◃◃◃◃ if xi < fi(x) there is an arc x→ y = (x1, . . . , xi + 1, . . . , xn),

◃◃◃◃◃◃◃ if xi > fi(x) there is an arc x→ y = (x1, . . . , xi − 1, . . . , xn).

Example : with n = 2 and X = {0,1,2}× {0,1,2} :

x f(x)
◃ (0,0) (1,2)

(0,1) (1,2)
(0,2) (2,2)
(1,0) (2,2)
(1,1) (2,1)
(1,2) (0,0)
(2,0) (2,0)
(2,1) (2,2)
(2,2) (0,2)

Γ(f)

(0,0)

(0,2)

(1,0) (2,0)

(1,1)

(1,2)

(2,1)

(2,2)

(0,1)
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◃" More precisely, as in the Thomas’ model, the dynamics is described
◃◃ by the asynchronous state transition graph of f , denoted Γ(f) :
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Example : with n = 2 and X = {0,1,2}× {0,1,2} :

x f(x)
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Remarks :

◃◃1. The dynamics described by Γ(f) is undeterministic.

(0,0)

(0,2)

(1,0) (2,0)

(1,1)

(1,2)

(2,1)

(2,2)

(0,1)

◃◃2. Snoussi and Thomas have showed that this discrete dynamical

◃◃2. model is a good approximation of continuous models based

◃◃2. on piece-wise differential equations systems.



◃" An attractor of Γ(f) is a smallest non-empty subset A of X

◃◃ such that all paths of Γ(f) starting in A remain in A.

(0,0)

(0,2)

(1,0) (2,0)

(1,1)

(1,2)

(2,1)

(2,2)

(0,1)

cyclic attractor

stable state

◃◃◃◃ An attractor which contains at least 2 states describes

◃◃◃◃ sustained oscillations, and is called cyclic attractor.

◃◃◃◃ An attractor which contains a unique state is a stable state.

Remark : There is always at least one attractor in Γ(f).



Part 2

Interaction graph of f

(0,0)

(0,2)

(1,0) (2,0)

(1,1)

(1,2)

(2,1)

(2,2)

(0,1)
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" The interaction graph G(f) of f is the signed oriented graph

◃ whose set of nodes is {1, . . . , n} and such that (3 rules) :

◃◃◃ 1. There is a positive interaction i → j, with i ̸= j,

◃◃◃ 1. if one of the two following motifs is present in Γ(f) :

x y

Increase of j

Increase of i

y x

Decrease of j

Decrease of i

Remark : G(f) is a subgraph of the interaction graphs

Remark : considered by Thomas and Remy.



The interaction graph G(f) of f is the signed oriented graph

whose set of nodes is {1, . . . , n} and such that :

◃◃◃ 2. There is a negative interaction i → j, with i ̸= j,

◃◃◃ 2. if one of the two following motifs is present in Γ(f) :

x y

Increase of i

Decrease of j
xy

Increase of j

Decrease of i

Remark : G(f) is a subgraph of the interaction graphs

Remark : considered by Thomas and Remy.



The interaction graph G(f) of f is the signed oriented graph

whose set of nodes is {1, . . . , n} and such that :

◃◃◃ 3. There is a negative interaction i → i,

◃◃◃ 3. if the following motifs is present in Γ(f) :

x y

Decrease of i

Increase of i

Remark : G(f) is a subgraph of the interaction graphs

Remark : considered by Thomas and Remy et al.



Asynchronous state

transition graph Γ(f)
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Part 3

Result



Let f : X → X, with X the product of n finite intervals of integers.

Theorem (discrete version of the 2nd Thomas’ conjecture) :

aIf Γ(f) has a cyclic attractor, then G(f) has a negative circuit.

To prove the theorem, we reason by induction on the number

of transitions in the cyclic attractors ; the base case corresponds

to the case where there is a cyclic attractor A containing a state

which has a unique successor.

Remark : This theorem was proved by Remy et al. in the boolean

(X = {0,1}n) and under the strong hypothesis that Γ(f) contains an

attractor A such that all the states of A have a unique successor.



Γ(f)

(0,0)

(0,2)

(1,0) (2,0)

(1,1)

(1,2)
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(0,1)

G(f)
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Concluding Remarks :

◃◃1. As corollary we have a

◃◃1. Fixed point theorem :

◃◃1. If G(f) has no negative circuit, then f has at least one fixed point.

◃◃1. Indeed, there is always at least one attractor A in Γ(f).

◃◃1. If G(f) has no negative circuit then A is not a cyclic attractor,

◃◃1. so A is reduced to a unique state x which is a fixed point of f .



Concluding remarks :

◃◃2. The presence of a cycle in Γ(f) does not imply

◃◃2. the presence of a negative circuit in G(f).

Γ(f) G(f)

0 0 0

0 1 1

1 0 0

0 0 1 1 0 1

1 1 1

0 1 0 1 1 0

+

++

gene 2gene 1

gene 3

◃◃2. It seams difficult to find a form of oscillation in Γ(f)

◃◃2. more general than the cyclic attractors and which

◃◃2. imply the presence of a negative circuit in G(f).


