Fixed points and feedback cycles in Boolean networks

Adrien Richard

Laboratoire I3S, CNRS & Université de Nice-Sophia Antipolis

Joint work with

Julio Aracena & Lilian Salinas Universidad de Concepción, Chile

Groupe de travail Bioss sur la Biologie systémique symbolique

Journées Nationales du GDR IM January 19, 2016 A boolean network is a function

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

The dynamics is described by the successive iterations of f

$$x \to f(x) \to f^2(x) \to f^3(x) \to \cdots$$

Fixed points correspond to stable states

Example with $n = 3$ and f defined by	x	f(x)
	000	000
	001	110
$\int f_1(x) = x_2 \vee x_3$	010	101
$\begin{cases} f_2(x) &= \overline{x_1} \wedge \overline{x_3} \end{cases}$	011	110
$f_3(x) = \overline{x_3} \wedge (x_1 \oplus x_2)$	100	001
`	101	100
	110	100
	111	100

Dynamics

The **interaction graph** of f is the digraph G defined by

- the vertex set is $[n]:=\{1,\ldots,n\}$
- there is an arc $j \rightarrow i$ if f_i depends on x_j

The signed interaction graph of f is the signed digraph G_{σ} where σ is the arc-labelling function defined by

$$\sigma(j \to i) = \begin{cases} 1 & \text{if } f_i \text{ is non-decreasing with } x_j \\ -1 & \text{if } f_i \text{ is non-increasing with } x_j \\ 0 & \text{otherwise} \end{cases}$$

Example with n = 3 and f defined by

$$\begin{cases} f_1(x) &= x_2 \lor x_3 \\ f_2(x) &= \overline{x_1} \land \overline{x_3} \\ f_3(x) &= \overline{x_3} \land (x_1 \oplus x_2) \end{cases}$$

Dynamics

Interaction graph

Example with n = 3 and f defined by

$$\begin{cases} f_1(x) &= x_2 \lor x_3 \\ f_2(x) &= \overline{x_1} \land \overline{x_3} \\ f_3(x) &= \overline{x_3} \land (x_1 \oplus x_2) \end{cases}$$

Dynamics $010 \rightarrow 101 \quad 111 \quad 011$ $100 \leftarrow 101 \quad 110 \quad 011$ $000 \leftarrow 001 \quad 001 \quad 001 \quad 001$

Many applications

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]
- Epidemic diffusion, social network, etc

Very often, reliable information concern the (signed) interaction graph

Natural questions

- What can be said on the dynamics of a system according to its interaction graph ?

Many applications

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]
- Epidemic diffusion, social network, etc

Very often, reliable information concern the (signed) interaction graph

Natural questions

- What can be said on the dynamics of a system according to its interaction graph ?

Many applications

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]
- Epidemic diffusion, social network, etc

Very often, reliable information concern the (signed) interaction graph

Natural questions

- What can be said on the dynamics of a system according to its interaction graph ?
- What can be said on the **number of fixed points** a **boolean network** according to its interaction graph ?

Number fixed points in the gene network of a multicellular organism $~\approx~$ Number of cellular types

 $\phi(G) :=$ maximum number of fixed points in a boolean network with G as interaction graph

 $\phi(G_\sigma):=$ maximum number of fixed points in a boolean network with G_σ as signed interaction graph

 $\phi(G) :=$ maximum number of fixed points in a boolean network with G as interaction graph

 $\phi(G_\sigma):=$ maximum number of fixed points in a boolean network with G_σ as signed interaction graph

(100 networks)

- $\phi(G) :=$ maximum number of fixed points in a boolean network with G as interaction graph
- $\phi(G_\sigma) :=$ maximum number of fixed points in a boolean network with G_σ as signed interaction graph

- $\phi(G) :=$ maximum number of fixed points in a boolean network with G as interaction graph
- $\phi(G_\sigma) :=$ maximum number of fixed points in a boolean network with G_σ as signed interaction graph

Notations

 $f: \{0,1\}^n \to \{0,1\}^n$ is a boolean network

G is the interaction graph of f (the vertex set is [n])

 G_{σ} is the signed interaction graph of f

Given $x,y\in\{0,1\}^n$ we set $\Delta(x,y):=\{i\in[n]\,:\,x_i\neq y_i\}$

Upper bound on $\phi(G)$

Proof If $i \in \Delta(x, y)$ then

$$f_i(x) = x_i \neq y_i = f_i(y)$$

thus f_i depends on at least one component j such that $x_j \neq y_j$, that is, G has an arc $j \to i$ with $j \in \Delta(x, y)$.

Thus $G[\Delta(x, y)]$ is of minimal in-degree at least one.

Proof If $i \in \Delta(x, y)$ then

$$f_i(x) = x_i \neq y_i = f_i(y)$$

thus f_i depends on at least one component j such that $x_j \neq y_j$, that is, G has an arc $j \rightarrow i$ with $j \in \Delta(x, y)$. Thus $G[\Delta(x, y)]$ is of minimal in-degree at least one.

Remark G is acyclic $\implies \phi(G) \le 1$

Proof If $i \in \Delta(x, y)$ then

$$f_i(x) = x_i \neq y_i = f_i(y)$$

thus f_i depends on at least one component j such that $x_j \neq y_j$, that is, G has an arc $j \rightarrow i$ with $j \in \Delta(x, y)$. Thus $G[\Delta(x, y)]$ is of minimal in-degree at least one.

Remark G is acyclic $\implies \phi(G) = 1$

Proof If $i \in \Delta(x, y)$ then

$$f_i(x) = x_i \neq y_i = f_i(y)$$

thus f_i depends on at least one component j such that $x_j \neq y_j$, that is, G has an arc $j \rightarrow i$ with $j \in \Delta(x, y)$. Thus $G[\Delta(x, y)]$ is of minimal in-degree at least one.

Remark G is acyclic $\iff \phi(G) = 1$

au(G) := transversal number

- := minimum Feedback Vertex Set (FVS)
- := minimum size of a set of vertices meeting every cycle

$$\tau = 2$$

Remark τ is invariant under subdivisions of arcs (\rightarrow replaced by $\rightarrow \rightarrow$)

Theorem (Classical upper bound) [Riis, 2007] f has at most 2^{τ} fixed points

Proof Let I be a FVS of size $|I| = \tau$, and let x and y be fixed points. If $x \neq y$ then $G[\Delta(x, y)]$ has a cycle C (lemma) and $I \cap C \neq \emptyset$ by def. Hence $I \cap \Delta(x, y) \neq \emptyset$ so that $x_I \neq y_I$.

Thus $x \mapsto x_I$ is an injection from the set of fixed points to $\{0,1\}^I$. \Box

Theorem (Classical upper bound) [Riis, 2007] f has at most 2^{τ} fixed points

Proof Let *I* be a FVS of size $|I| = \tau$, and let *x* and *y* be fixed points. If $x \neq y$ then $G[\Delta(x, y)]$ has a cycle *C* (lemma) and $I \cap C \neq \emptyset$ by def. Hence $I \cap \Delta(x, y) \neq \emptyset$ so that $x_I \neq y_I$. Thus $x \mapsto x_I$ is an injection from the set of fixed points to $\{0, 1\}^I$.

Reformulation $\phi(G) \le 2^{\tau}$

Theorem (Classical upper bound) [Riis, 2007] f has at most 2^{τ} fixed points

Proof Let *I* be a FVS of size $|I| = \tau$, and let *x* and *y* be fixed points. If $x \neq y$ then $G[\Delta(x, y)]$ has a cycle *C* (lemma) and $I \cap C \neq \emptyset$ by def. Hence $I \cap \Delta(x, y) \neq \emptyset$ so that $x_I \neq y_I$. Thus $x \mapsto x_I$ is an injection from the set of fixed points to $\{0, 1\}^I$.

$\label{eq:phi} {\rm Reformulation} \qquad \qquad \phi(G) \leq 2^\tau$

 $\mbox{Remark} \qquad G \mbox{ is acyclic } \Rightarrow \ \tau = 0 \ \Rightarrow \ \phi(G) \leq 1$

Remark If $H \subseteq G$ then $\tau(H) \leq \tau(G)$ thus $\phi(H) \leq 2^{\tau(H)} \leq 2^{\tau(G)}$

Remark If $H \subseteq G$ then $\tau(H) \leq \tau(G)$ thus $\phi(H) \leq 2^{\tau(H)} \leq 2^{\tau(G)}$ \hookrightarrow connexion with *Network Coding* from Information Theory

Binary network coding problem

Given a digraph G, is there exists $H \subseteq G$ such that $\phi(H) = 2^{\tau(G)}$?

Remark If $H \subseteq G$ then $\tau(H) \leq \tau(G)$ thus $\phi(H) \leq 2^{\tau(H)} \leq 2^{\tau(G)}$ \hookrightarrow connexion with *Network Coding* from Information Theory

Binary network coding problem

Given a digraph G, is there exists $H \subseteq G$ such that $\phi(H) = 2^{\tau(G)}$?

Surprisingly, the following question has deserved very few attention Given a digraph G, do we have $\phi(G) = 2^{\tau(G)}$?

Upper bounds on $\phi(G_{\sigma})$

In G_{σ} the sign of a cycle (or path) is the product of the sign of its arcs

Remark 1 $\tau^+ \leq \tau$ Remark 2 τ^+ is invariant under subdivisions of arcs preserving signs
e.g. \rightarrow replaced by $\rightarrow \rightarrow$, or \rightarrow replaced by $\rightarrow \rightarrow$

For every signed digraph G_{σ}

 $\phi(G_{\sigma}) \le 2^{\tau^+}$

For every signed digraph G_{σ}

 $\phi(G_{\sigma}) \le 2^{\tau^+}$

Remark 1 G_{σ} has only negative cycles $\Rightarrow \tau^+ = 0 \Rightarrow \phi(G_{\sigma}) \leq 1$

For every signed digraph G_{σ}

 $\phi(G_{\sigma}) \le 2^{\tau^+}$

Remark 1 G_{σ} has only negative cycles $\Rightarrow \tau^{+} = 0 \Rightarrow \phi(G_{\sigma}) \leq 1$ Also true for differential equation systems [Soulé 03] !

For every signed digraph G_{σ}

 $\phi(G_{\sigma}) \le 2^{\tau^+}$

Remark 1 G_{σ} has only negative cycles $\Rightarrow \tau^+ = 0 \Rightarrow \phi(G_{\sigma}) \le 1$ Also true for differential equation systems [Soulé 03] !

Remark 2 We recover the classical upper-bound:

$$\phi(G) = \max_{\sigma} \phi(G_{\sigma}) \leq \max_{\sigma} 2^{\tau^+(G_{\sigma})} = 2^{\tau(G)}$$

For every signed digraph G_{σ}

 $\phi(G_{\sigma}) \le 2^{\tau^+}$

Remark 1 G_{σ} has only negative cycles $\Rightarrow \tau^+ = 0 \Rightarrow \phi(G_{\sigma}) \le 1$ Also true for differential equation systems [Soulé 03] !

Remark 2 We recover the classical upper-bound:

$$\phi(G) = \max_{\sigma} \phi(G_{\sigma}) \leq \max_{\sigma} 2^{\tau^+(G_{\sigma})} = 2^{\tau(G)}$$

This is the state of the art for upper bounds that depend on the cycle structure

For every signed digraph G_{σ}

 $\phi(G_{\sigma}) \le 2^{\tau^+}$

Remark 1 G_{σ} has only negative cycles $\Rightarrow \tau^+ = 0 \Rightarrow \phi(G_{\sigma}) \le 1$ Also true for differential equation systems [Soulé 03] !

Remark 2 We recover the classical upper-bound:

$$\phi(G) = \max_{\sigma} \phi(G_{\sigma}) \leq \max_{\sigma} 2^{\tau^+(G_{\sigma})} = 2^{\tau(G)}$$

This is the state of the art for upper bounds that depend on the cycle structure

No lower bounds on $\phi(G)$ neither $\phi(G_{\sigma})$!
The bound $\phi \leq 2^{\tau^+}$ is very perfectible

The bound $\phi \leq 2^{\tau^+}$ is very perfectible

The bound $\phi \leq 2^{\tau^+}$ is very perfectible

We think that improvements could be obtained by considering **negative cycles** too. This is a difficult problem...

What happen when there is only positive cycles ?

 \hookrightarrow This essentially corresponds to the case where f is monotone

Monotone networks

 $\{0,1\}^n$ is equipped with the usual partial order

$$x \leq y \iff x_i \leq y_i \text{ for all } i$$

f is monotone if for all $x, y \in \{0, 1\}^n$

$$x \le y \ \Rightarrow \ f(x) \le f(y)$$

 $\{0,1\}^n$ is equipped with the usual partial order

$$x \leq y \iff x_i \leq y_i \text{ for all } i$$

f is monotone if for all $x, y \in \{0, 1\}^n$

$$x \leq y \ \Rightarrow \ f(x) \leq f(y)$$

Remark f is monotone $\iff G_{\sigma}$ has only positive arcs

 $\phi(G_+) = \max \min$ number of fixed points in a **monotone** boolean network with G as interaction graph

 $\{0,1\}^n$ is equipped with the usual partial order

$$x \leq y \iff x_i \leq y_i$$
 for all i

f is monotone if for all $x, y \in \{0, 1\}^n$

$$x \le y \ \Rightarrow \ f(x) \le f(y)$$

Remark f is monotone $\iff G_{\sigma}$ has only positive arcs

 $\phi(G_+) = \max \min$ number of fixed points in a **monotone** boolean network with G as interaction graph

Proposition If G_{σ} is strong and has only positive cycles then

$$\phi(G_{\sigma}) = \phi(G_+)$$

Fixed points in monotone networks

Theorem [Knaster-Tarski, 1928]

If f is monotone then $\ensuremath{\operatorname{FIXE}}(f)$ is a non-empty lattice

Theorem [Knaster-Tarski, 1928]

If f is monotone then $\ensuremath{\operatorname{FIXE}}(f)$ is a non-empty lattice

To go further we need another graph parameter about cycles

u(G) :=packing number := maximum number of vertex-disjoint cycles

Remark $\nu \leq \tau$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

Proof of the isomorphism

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

Proof of the isomorphism

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

Proof of the isomorphism

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

Proof of the isomorphism $\forall x, y \in \text{FIXE}(f) \quad x_I \leq y_I \iff x \leq y$

FIXE(f) is isomorphic to $L = \{x_I : x \in FIXE(f)\}$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. *L* is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. *L* is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$

Proof of 2 If FIXE(f) has a chain of size k then $\nu \ge k-1$

Thus FIXE(f) has no chains of length $\nu + 2$ and so L

If $X \subseteq \{0,1\}^n$ has no chains of size $\ell + 1$ then

 $|X| \leq$ the sum of the ℓ largest binomial coefficients $\binom{n}{k}$

If $X \subseteq \{0,1\}^n$ has no chains of size $\ell + 1$ then

 $|X| \leq$ the sum of the ℓ largest binomial coefficients $\binom{n}{k}$

Remark The case $\ell = 1$ is Sperner's lemma on antichains

If $X \subseteq \{0,1\}^n$ has no chains of size $\ell + 1$ then

 $|X| \leq$ the sum of the ℓ largest binomial coefficients $\binom{n}{k}$

Corollary If f is monotone then

 $|\text{FIXE}(f)| - 2 \leq \text{the sum of the } \nu - 1 \text{ largest } {\tau \choose k}$

If $X \subseteq \{0,1\}^n$ has no chains of size $\ell + 1$ then

 $|X| \leq$ the sum of the ℓ largest binomial coefficients $\binom{n}{k}$

Corollary If f is monotone then $|FIXE(f)| - 2 \leq the sum of the <math>\nu - 1$ largest $\binom{\tau}{k}$

Proof Let $L \subseteq \{0,1\}^{\tau}$ be a non-empty lattice isomorphic to FIXE(f)

If $X \subseteq \{0,1\}^n$ has no chains of size $\ell + 1$ then

 $|X| \leq$ the sum of the ℓ largest binomial coefficients $\binom{n}{k}$

Corollary If *f* is monotone then

 $|\text{FIXE}(f)| - 2 \leq \text{ the sum of the } \nu - 1 \text{ largest } {\tau \choose k}$

Proof Let $L \subseteq \{0,1\}^{\tau}$ be a non-empty lattice isomorphic to FIXE(f)

If $X \subseteq \{0,1\}^n$ has no chains of size $\ell + 1$ then

 $|X| \leq$ the sum of the ℓ largest binomial coefficients $\binom{n}{k}$

Corollary If *f* is monotone then

$$|\text{FIXE}(f)| - 2 \leq \text{ the sum of the } \nu - 1 \text{ largest } {\tau \choose k}$$

Proof Let $L \subseteq \{0,1\}^{\tau}$ be a non-empty lattice isomorphic to FIXE(f)

 \leq the sum of the $\nu - 1$ largest $\binom{\tau}{k}$

Corollary

$$\phi(G_+) = 2^\tau \implies \nu = \tau$$

The upper bound is interesting when ν is much more smaller that τ The largest gap known is $\nu \log \nu \leq 30\tau$ [Seymour 93]

The upper bound is interesting when ν is much more smaller that τ The largest gap known is $\nu \log \nu \leq 30\tau$ [Seymour 93] For a fixed ν , τ cannot be arbitrarily large...

The upper bound is interesting when ν is much more smaller that τ The largest gap known is $\nu \log \nu \leq 30\tau$ [Seymour 93] For a fixed ν , τ cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995] There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G,

 $\tau \leq h(\nu)$

The upper-bound on $h(\nu)$ is astronomique (iterated use of Ramsey theorem)

The upper bound is interesting when ν is much more smaller that τ The largest gap known is $\nu \log \nu \leq 30\tau$ [Seymour 93] For a fixed ν , τ cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995] There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G,

 $\tau \leq h(\nu)$

The upper-bound on $h(\nu)$ is astronomique (iterated use of Ramsey theorem)

Corollary

$$\phi(G) \le 2^{\tau} \le 2^{h(\nu)}$$

The upper bound is interesting when ν is much more smaller that τ The largest gap known is $\nu \log \nu \leq 30\tau$ [Seymour 93] For a fixed ν , τ cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995] There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G,

 $\tau \leq h(\nu)$

The upper-bound on $h(\nu)$ is astronomique (iterated use of Ramsey theorem)

Corollary

$$\boldsymbol{\nu} + \mathbf{1} \le \phi(G) \le 2^{\tau} \le 2^{h(\boldsymbol{\nu})}$$

More on fixed points in monotone networks

We denote by $u^*(G)$ the maximum size of a special packing

Remark $\nu^* \leq \nu \leq \tau$

Example (e_1, e_2, e_3) is a 3-pattern of $\{0, 1\}^3$

 $\overline{e_1} = 011$ $\overline{e_2} = 101$ $\overline{e_3} = 110$

 $e_1 = 100$ $e_2 = 010$ $e_3 = 001$

Example (e_1, e_2, e_3) is a 3-pattern of $\{0, 1\}^3$

Example (e_1, e_2, e_3) is a 3-pattern of $\{0, 1\}^3$

Example (e_1, e_2, e_3) is a 3-pattern of $\{0, 1\}^3$

Example (e_1, e_2, e_3) is a 3-pattern of $\{0, 1\}^3$

More generally (e_1, e_2, \ldots, e_n) is an *n*-pattern of $\{0, 1\}^n$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$
- 3. L has no $(\nu^* + 1)$ -pattern

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$
- 3. L has no $(\nu^* + 1)$ -pattern

Remark If $L = \{0, 1\}^{\tau}$ then L has a has a τ -pattern, so $\tau < \nu^* + 1$. Thus $\tau \le \nu^*$ and since $\nu^* \le \tau$ we deduce that $\nu^* = \tau$.

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$
- 3. L has no $(\nu^* + 1)$ -pattern

Corollary $\phi(G_+) = 2^{\tau} \Rightarrow \nu^* = \tau$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$
- 3. L has no $(\nu^* + 1)$ -pattern

Corollary

$$\phi(G_+) = 2^\tau \implies \nu^* = \tau \implies \nu = \tau$$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$
- 3. L has no $(\nu^* + 1)$ -pattern

Corollary

$$\phi(G_+) = 2^\tau \Rightarrow \nu^* = \tau \Rightarrow \nu = \tau$$

Theorem [Aracena-Salinas-R, 2016+]

$$2^{\nu^*} \leq \phi(G_+)$$

If f is monotone then FIXE(f) a isomorphic to a subset $L \subseteq \{0,1\}^{\tau}$ s.t.

- 1. L is a non-empty lattice
- 2. L has no chains of size $\nu + 2$
- 3. L has no $(\nu^* + 1)$ -pattern

Corollary $\phi(G_+) = 2^{\tau} \Rightarrow \nu^* = \tau \Rightarrow \nu = \tau$

Theorem [Aracena-Salinas-R, 2016+]

$$2^{\nu^*} \leq \phi(G_+)$$

Corollary

$$\phi(G_+)=2^ au \iff
u^*= au$$

Open problems

- 1. X is a lattice
- 2. X has no chain of size $\ell + 1$
- 3. X has no (k+1)-pattern
- $\rightarrow~$ Erdős proved the max size of X subject to 2. only
- \rightarrow What is the max size of X subject to 3. only ?

- 1. X is a lattice
- 2. X has no chain of size $\ell + 1$
- 3. X has no (k+1)-pattern

Problem 2 Is the lower bound $\nu + 1 \le \phi(G)$ tight ?

 $\rightarrow~$ We known that the lower bound is tight in the monotone case

- 1. X is a lattice
- 2. X has no chain of size $\ell + 1$
- 3. X has no (k+1)-pattern

Problem 2 Is the lower bound $\nu + 1 \le \phi(G)$ tight ?

Problem 3 Do we have $\phi(G) \leq 2^{c\nu \log \nu}$ for some constant c?

 $\rightarrow~$ We known that $\tau \leq h(\nu)$ and we may think that $\tau \leq c \nu \log \nu$

- 1. X is a lattice
- 2. X has no chain of size $\ell + 1$
- 3. X has no (k+1)-pattern

Problem 2 Is the lower bound $\nu + 1 \le \phi(G)$ tight ?

Problem 3 Do we have $\phi(G) \leq 2^{c\nu \log \nu}$ for some constant *c*?

Problem 4 Does there is an upper-bound on $\phi(G_{\sigma})$ according to ν^+ ? Does there exist $h^+ : \mathbb{N} \to \mathbb{N}$ such that

$$\tau^+ \le h^+(\nu^+)$$

 \rightarrow Positive answer in the undirected case [Thomassen 88]

Thank you!

- 1. X is a lattice
- 2. X has no chain of size $\ell + 1$
- 3. X has no (k+1)-pattern

Problem 2 Is the lower bound $\nu + 1 \le \phi(G)$ tight ?

Problem 3 Do we have $\phi(G) \leq 2^{c\nu \log \nu}$ for some constant *c*?

Problem 4 Does there is an upper-bound on $\phi(G_{\sigma})$ according to ν^+ ? Does there exist $h^+ : \mathbb{N} \to \mathbb{N}$ such that

$$\tau^+ \le h^+(\nu^+)$$