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A boolean network is a function

f : {0, 1}n → {0, 1}n

x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x))

The dynamics is described by the successive iterations of f

x→ f(x)→ f2(x)→ f3(x)→ · · ·

Fixed points correspond to stable states
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Example with n = 3 and f defined by

 f1(x) = x2 ∨ x3
f2(x) = x1 ∧ x3
f3(x) = x3 ∧ (x1 ⊕ x2)

x f(x)
000 000
001 110
010 101
011 110
100 001
101 100
110 100
111 100

Dynamics

000 001

010 011

100

101

110

111
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The interaction graph of f is the digraph G defined by

- the vertex set is [n] := {1, . . . , n}
- there is an arc j → i if fi depends on xj

The signed interaction graph of f is the signed digraph Gσ where σ is
the arc-labelling function defined by

σ(j → i) =


1 if fi is non-decreasing with xj

−1 if fi is non-increasing with xj

0 otherwise
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Many applications

- Neural networks [McCulloch & Pitts 1943]

- Gene networks [Kauffman 1969, Tomas 1973]

- Epidemic diffusion, social network, etc

Very often, reliable information concern the (signed) interaction graph

Natural questions

- What can be said on the dynamics of a system
- according to its interaction graph ?

- What can be said on the number of fixed points
- a boolean network according to its interaction graph ?

Number fixed points in the gene
network of a multicellular organism ≈ Number of cellular types
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Quantities of interest

φ(G) := maximum number of fixed points in a boolean network
with G as interaction graph

φ(Gσ) := maximum number of fixed points in a boolean network
with Gσ as signed interaction graph

1 2

3

1 2

3

1 2

3

φ(G) = 4

φ(G−) = 3 φ(G+) = 2

(100 networks)

(8 networks) (8 networks)
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Notations

f : {0, 1}n → {0, 1}n is a boolean network

G is the interaction graph of f (the vertex set is [n])

Gσ is the signed interaction graph of f

Given x, y ∈ {0, 1}n we set ∆(x, y) := {i ∈ [n] : xi 6= yi}
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Upper bound on φ(G)
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Lemma If x and y are two distinct fixed points of f , then the subgraph
of G induced by ∆(x, y) has a cycle.

Proof If i ∈ ∆(x, y) then

fi(x) = xi 6= yi = fi(y)

thus fi depends on at least one component j such that xj 6= yj , that is,
G has an arc j → i with j ∈ ∆(x, y).

Thus G[∆(x, y)] is of minimal in-degree at least one. �

Remark G is acyclic =⇒

⇐⇒

φ(G)1
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τ (G) := transversal number

:= minimum Feedback Vertex Set (FVS)

:= minimum size of a set of vertices meeting every cycle

• •

•
τ = 2

Remark τ is invariant under subdivisions of arcs (→ replaced by →→)
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Theorem (Classical upper bound) [Riis, 2007]

f has at most 2τ fixed points

Proof Let I be a FVS of size |I| = τ , and let x and y be fixed points.

If x 6= y then G[∆(x, y)] has a cycle C (lemma) and I ∩ C 6= ∅ by def.

Hence I ∩∆(x, y) 6= ∅ so that xI 6= yI .

Thus x 7→ xI is an injection from the set of fixed points to {0, 1}I . �

Reformulation φ(G) ≤ 2τ

Remark G is acyclic ⇒ τ = 0 ⇒ φ(G) ≤ 1
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Remark If H ⊆ G then τ(H) ≤ τ(G) thus φ(H) ≤ 2τ(H) ≤ 2τ(G)

↪→ connexion with Network Coding from Information Theory

Binary network coding problem

Given a digraph G, is there exists H ⊆ G such that φ(H) = 2τ(G) ?

Surprisingly, the following question has deserved very few attention

Given a digraph G, do we have φ(G) = 2τ(G) ?

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 12/25



Remark If H ⊆ G then τ(H) ≤ τ(G) thus φ(H) ≤ 2τ(H) ≤ 2τ(G)

↪→ connexion with Network Coding from Information Theory

Binary network coding problem

Given a digraph G, is there exists H ⊆ G such that φ(H) = 2τ(G) ?

Surprisingly, the following question has deserved very few attention

Given a digraph G, do we have φ(G) = 2τ(G) ?

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 12/25



Remark If H ⊆ G then τ(H) ≤ τ(G) thus φ(H) ≤ 2τ(H) ≤ 2τ(G)

↪→ connexion with Network Coding from Information Theory

Binary network coding problem

Given a digraph G, is there exists H ⊆ G such that φ(H) = 2τ(G) ?

Surprisingly, the following question has deserved very few attention

Given a digraph G, do we have φ(G) = 2τ(G) ?

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 12/25



Upper bounds on φ(Gσ)
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In Gσ the sign of a cycle (or path) is the product of the sign of its arcs

τ+(Gσ) := positive transversal number
:= minimum size of a set of vertices meeting

every non-negative cycle

Remark 1 τ+ ≤ τ

Remark 2 τ+ is invariant under subdivisions of arcs preserving signs

Remark 2 e.g. → replaced by →→, or → replaced by →→
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Theorem [Aracena, 2008]

For every signed digraph Gσ

φ(Gσ) ≤ 2τ
+

Remark 1 Gσ has only negative cycles ⇒ τ+ = 0 ⇒ φ(Gσ) ≤ 1

Also true for differential equation systems [Soulé 03] !

Remark 2 We recover the classical upper-bound:

φ(G) = max
σ

φ(Gσ) ≤ max
σ

2τ
+(Gσ) = 2τ(G)

This is the state of the art for upper bounds
that depend on the cycle structure

No lower bounds on φ(G) neither φ(Gσ) !
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The bound φ ≤ 2τ
+

is very perfectible

• •

•

•

•

•

•

· · · • •

•
φ = 1

2τ
+∼ 2n/4

We think that improvements could be obtained by considering
negative cycles too. This is a difficult problem...

What happen when there is only positive cycles ?

↪→ This essentially corresponds to the case where f is monotone
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Monotone networks
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{0, 1}n is equipped with the usual partial order

x ≤ y ⇐⇒ xi ≤ yi for all i

f is monotone if for all x, y ∈ {0, 1}n

x ≤ y ⇒ f(x) ≤ f(y)

Remark f is monotone ⇐⇒ Gσ has only positive arcs

φ(G+) = maximum number of fixed points in a monotone boolean
network with G as interaction graph

Proposition If Gσ is strong and has only positive cycles then

φ(Gσ) = φ(G+)
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Fixed points in monotone networks
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Theorem [Knaster-Tarski, 1928]

If f is monotone then Fixe(f) is a non-empty lattice

To go further we need another graph parameter about cycles

ν(G) := packing number
:= maximum number of vertex-disjoint cycles

Remark ν ≤ τ
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then Fixe(f) a isomorphic to a subset L ⊆ {0, 1}τ s.t.

1. L is a non-empty lattice

2. L has no chains of size ν + 2

Proof of the isomorphism ∀x, y ∈ Fixe(f) xI ≤ yI ⇐⇒

=⇒

x ≤ y

Fixe(f) is isomorphic to L = {xI : x ∈ Fixe(f)}

• • •

• •

• • •

1 1 0

• •

• • •
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Theorem [Erdős, 1945]

If X ⊆ {0, 1}n has no chains of size `+ 1 then

|X| ≤ the sum of the ` largest binomial coefficients
(
n
k

)

Remark The case ` = 1 is Sperner’s lemma on antichains
Corollary If f is monotone then

|Fixe(f)| − 2 ≤ the sum of the ν − 1 largest
(
τ
k

)
Proof Let L ⊆ {0, 1}τ be a non-empty lattice isomorphic to Fixe(f)

•

•

max b

min a

L
no chains

of size ν + 2
≤ the sum of the ν − 1 largest

(
τ
k

)
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Corollary φ(G+) ≤ the sum of the ν − 1 largest
(
τ
k

)
+ 2

2τ

(
τ
0

) (
τ
τ/2

) (
τ
τ

)

ν − 1 coefficients

τ − 1 coefficients

Corollary φ(G+) = 2τ ⇒ ν = τ

The upper bound is interesting when ν is much more smaller that τ

The largest gap known is ν log ν ≤ 30τ [Seymour 93]

For a fixed ν, τ cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995]

There exists h : N→ N such that, for every digraph G,

τ ≤ h(ν)

The upper-bound on h(ν) is astronomique (iterated use of Ramsey theorem)

Corollary

ν + 1 ≤

φ(G) ≤ 2τ ≤ 2h(ν)
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More on fixed points in monotone networks
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Special packing

•

•

•

•
•

We denote by ν∗(G) the maximum size of a special packing

Remark ν∗ ≤ ν ≤ τ
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A k-pattern in X ⊆ {0, 1}n is a sequence (x1, . . . , xk) ∈ Xk such that

(x1, . . . , xk) ∈ Xk and xp ≤ xq ⇐⇒ p 6= q

Example (e1, e2, e3) is a 3-pattern of {0, 1}3

e1 = 100 e2 = 010 e3 = 001

e1 = 011 e2 = 101 e3 = 110

More generally (e1, e2, . . . , en) is an n-pattern of {0, 1}n
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then Fixe(f) a isomorphic to a subset L ⊆ {0, 1}τ s.t.

1. L is a non-empty lattice

2. L has no chains of size ν + 2

3. L has no (ν∗ + 1)-pattern

Remark If L = {0, 1}τ then L has a has a τ -pattern, so τ < ν∗ + 1.
Remark Thus τ ≤ ν∗ and since ν∗ ≤ τ we deduce that ν∗ = τ .
Corollary φ(G+) = 2τ ⇒ ν∗ = τ

⇒ ν = τ

Theorem [Aracena-Salinas-R, 2016+]

2ν
∗
≤ φ(G+)

Corollary φ(G+) = 2τ ⇐⇒ ν∗ = τ

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 24/25



Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then Fixe(f) a isomorphic to a subset L ⊆ {0, 1}τ s.t.

1. L is a non-empty lattice

2. L has no chains of size ν + 2

3. L has no (ν∗ + 1)-pattern

Remark If L = {0, 1}τ then L has a has a τ -pattern, so τ < ν∗ + 1.
Remark Thus τ ≤ ν∗ and since ν∗ ≤ τ we deduce that ν∗ = τ .

Corollary φ(G+) = 2τ ⇒ ν∗ = τ

⇒ ν = τ

Theorem [Aracena-Salinas-R, 2016+]

2ν
∗
≤ φ(G+)

Corollary φ(G+) = 2τ ⇐⇒ ν∗ = τ

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 24/25



Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then Fixe(f) a isomorphic to a subset L ⊆ {0, 1}τ s.t.

1. L is a non-empty lattice

2. L has no chains of size ν + 2

3. L has no (ν∗ + 1)-pattern

Remark If L = {0, 1}τ then L has a has a τ -pattern, so τ < ν∗ + 1.
Remark Thus τ ≤ ν∗ and since ν∗ ≤ τ we deduce that ν∗ = τ .
Corollary φ(G+) = 2τ ⇒ ν∗ = τ

⇒ ν = τ

Theorem [Aracena-Salinas-R, 2016+]

2ν
∗
≤ φ(G+)

Corollary φ(G+) = 2τ ⇐⇒ ν∗ = τ

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 24/25



Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then Fixe(f) a isomorphic to a subset L ⊆ {0, 1}τ s.t.

1. L is a non-empty lattice

2. L has no chains of size ν + 2

3. L has no (ν∗ + 1)-pattern

Remark If L = {0, 1}τ then L has a has a τ -pattern, so τ < ν∗ + 1.
Remark Thus τ ≤ ν∗ and since ν∗ ≤ τ we deduce that ν∗ = τ .
Corollary φ(G+) = 2τ ⇒ ν∗ = τ ⇒ ν = τ

Theorem [Aracena-Salinas-R, 2016+]

2ν
∗
≤ φ(G+)

Corollary φ(G+) = 2τ ⇐⇒ ν∗ = τ

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 24/25



Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then Fixe(f) a isomorphic to a subset L ⊆ {0, 1}τ s.t.

1. L is a non-empty lattice

2. L has no chains of size ν + 2

3. L has no (ν∗ + 1)-pattern

Remark If L = {0, 1}τ then L has a has a τ -pattern, so τ < ν∗ + 1.
Remark Thus τ ≤ ν∗ and since ν∗ ≤ τ we deduce that ν∗ = τ .
Corollary φ(G+) = 2τ ⇒ ν∗ = τ ⇒ ν = τ

Theorem [Aracena-Salinas-R, 2016+]

2ν
∗
≤ φ(G+)

Corollary φ(G+) = 2τ ⇐⇒ ν∗ = τ

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 24/25



Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then Fixe(f) a isomorphic to a subset L ⊆ {0, 1}τ s.t.

1. L is a non-empty lattice

2. L has no chains of size ν + 2

3. L has no (ν∗ + 1)-pattern

Remark If L = {0, 1}τ then L has a has a τ -pattern, so τ < ν∗ + 1.
Remark Thus τ ≤ ν∗ and since ν∗ ≤ τ we deduce that ν∗ = τ .
Corollary φ(G+) = 2τ ⇒ ν∗ = τ ⇒ ν = τ

Theorem [Aracena-Salinas-R, 2016+]

2ν
∗
≤ φ(G+)

Corollary φ(G+) = 2τ ⇐⇒ ν∗ = τ

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 24/25



Open problems
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Problem 1 For k, ` ≤ n what is the max size of a subset X ⊆ {0, 1}n s.t.

1. X is a lattice

2. X has no chain of size `+ 1

3. X has no (k + 1)-pattern

→ Erdős proved the max size of X subject to 2. only

→ What is the max size of X subject to 3. only ?

Problem 2 Is the lower bound ν + 1 ≤ φ(G) tight ?

→ We known that the lower bound is tight in the monotone case
Problem 3 Do we have φ(G) ≤ 2cν log ν for some constant c?

→ We known that τ ≤ h(ν) and we may think that τ ≤ cν log ν
Problem 4 Does there is an upper-bound on φ(Gσ) according to ν+ ?
Does there exist h+ : N→ N such that

τ+ ≤ h+(ν+)

→ Positive answer in the undirected case [Thomassen 88]
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Thank you!
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