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drien RICHARD Fixed Points in

A boolean network is a function

f:{0,1}" — {0,1}"
T = (1‘1,...,:)’;”> = f(.%‘) = (fl(x)avfn(x))

The dynamics is described by the successive iterations of f

7= f@) = ) > o)

Fixed points correspond to stable states

slean Networks Paris 2016
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Example with n = 3 and f defined by v | f(z)
000 | 000

001 | 110

filx) =axaVas 010 | 101

fa(x) =TTAT3 011 | 110

f3(x) =Tz A (11D x0) 100 | 001

101 | 100

110 | 100

111 | 100

Dynamics
010 — 101 111 011

3/25



drien RICHARD Fixed Points in

The interaction graph of f is the digraph G defined by
- the vertex set is [n] := {1,...,n}

- thereis an arc j — 1 if f; depends on x;

The signed interaction graph of f is the signed digraph G, where o is
the arc-labelling function defined by

1 if f; is non-decreasing with x;
o(j = i) =< —1 if f; is non-increasing with x;
0 otherwise

works Paris 2016



Example with n = 3 and f defined by

fl(l‘) 2562\/1‘3
fo(z) =T1NT3
fg(l') =73 A (fL‘l D £C2)

Dynamics Interaction graph

010 — 101 111 011 @%\@

\/ |

000

O
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Example with n = 3 and f defined by
fl(l‘) = T2 V T3

fa(z) =TiNT3
fg(ZL') =3 A\ (fEl ) £C2)

Dynamics Signed interaction graph

010 — 101 111 011 O—=0@

W '\\@// -
O

\001/ 0

—

000

O

5/25



\drien

Many applications

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]

- Epidemic diffusion, social network, etc
Very often, reliable information concern the (signed) interaction graph

Natural questions

- What can be said on the dynamics of a system
according to its interaction graph ?

RICHARD Fixed Points in Boolean Networks Paris 2016
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Many applications

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]

- Epidemic diffusion, social network, etc
Very often, reliable information concern the (signed) interaction graph

Natural questions

- What can be said on the dynamics of a system
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Many applications
- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]

- Epidemic diffusion, social network, etc

Very often, reliable information concern the (signed) interaction graph

Natural questions

- What can be said on the dynamics of a system
according to its interaction graph ?

- What can be said on the number of fixed points
a boolean network according to its interaction graph ?

Number fixed points in the gene

network of a multicellular organism Number of cellular types

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 6/25



Quantities of interest

¢(G) := maximum number of fixed points in a boolean network
with G as interaction graph

¢(Gs) := maximum number of fixed points in a boolean network
with G, as signed interaction graph
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Quantities of interest

¢(G) := maximum number of fixed points in a boolean network
with G as interaction graph

¢(Gs) := maximum number of fixed points in a boolean network
with G, as signed interaction graph

Q==

v

¢(G) =4

(100 networks)
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Quantities of interest

¢(G) := maximum number of fixed points in a boolean network
with G as interaction graph

¢(Gs) := maximum number of fixed points in a boolean network
with G, as signed interaction graph

O—=0O O—=0O®

V Y

P(G) =4 p(G_) =3

(100 networks) (8 networks)
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Quantities of interest

¢(G) := maximum number of fixed points in a boolean network
with G as interaction graph

¢(Gs) := maximum number of fixed points in a boolean network
with G, as signed interaction graph

Q== O=—=O O=—=0O

Vv V Y

9(G) = 4 o(G_) =3 o(Gy) =2

(100 networks) (8 networks) (8 networks)

Adrien RICHARD Fixed Points in Boolean Networks



Notations

f:{0,1}™ — {0,1}" is a boolean network

G is the interaction graph of f (the vertex set is [n])

G, is the signed interaction graph of f

Given z,y € {0,1}" we set A(z,y) :={i € [n] : z; # yi}
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Upper bound on ¢(G)
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Lemma I/f x and y are two distinct fixed points of f, then the subgraph
of G induced by A(x,y) has a cycle. J

Proof If i € A(z,y) then
filz) =z #yi = fi(y)

thus f; depends on at least one component j such that z; # y;, that is,
G has an arc j — i with j € A(z,y).

Thus G[A(z,y)] is of minimal in-degree at least one. O
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Lemma I/f x and y are two distinct fixed points of f, then the subgraph
of G induced by A(x,y) has a cycle. J

Proof If i € A(z,y) then
filz) =z #yi = fi(y)

thus f; depends on at least one component j such that z; # y;, that is,
G has an arc j — i with j € A(z,y).

Thus G[A(z,y)] is of minimal in-degree at least one. O

Remark G is acyclic <= ¢(G) =1
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7(G) :

transversal number
minimum Feedback Vertex Set (FVS)

minimum size of a set of vertices meeting every cycle

Adrien RICHARD
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7(G) := transversal number
:= minimum Feedback Vertex Set (FVS)

:= minimum size of a set of vertices meeting every cycle

Remark T is invariant under subdivisions of arcs (— replaced by ——)

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 10/25



Theorem (Classical upper bound) [Riis, 2007]
f has at most 27 fixed points J

Proof Let I be a FVS of size |I| = 7, and let « and y be fixed points.
If z # y then G[A(z,y)] has a cycle C (lemma) and I N C # 0 by def.
Hence TN A(z,y) # 0 so that z; # y.

Thus = + 7 is an injection from the set of fixed points to {0, 1}". g
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Theorem (Classical upper bound) [Riis, 2007]
f has at most 27 fixed points

Proof Let I be a FVS of size |I| = 7, and let « and y be fixed points.
If z # y then G[A(z,y)] has a cycle C (lemma) and I N C # 0 by def.
Hence TN A(z,y) # 0 so that z; # y.

Thus = + 7 is an injection from the set of fixed points to {0,1}/. O

Reformulation o(G) <27 J

Remark Gisacyclic = 7=0 = ¢(G)<1
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Remark If H C G then 7(H) < 7(G) thus ¢(H) < 27H) < 27(G)
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Remark If H C G then 7(H) < 7(G) thus ¢(H) < 27H) < 27(G)

< connexion with Network Coding from Information Theory

Binary network coding problem
Given a digraph G, is there exists H C G such that ¢(H) = 27(%) ?
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Remark If H C G then 7(H) < 7(G) thus ¢(H) < 27H) < 27(G)

< connexion with Network Coding from Information Theory

Binary network coding problem
Given a digraph G, is there exists H C G such that ¢(H) = 27(%) ?

Surprisingly, the following question has deserved very few attention
Given a digraph G, do we have ¢(G) = 27() ?
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Upper bounds on ¢(G,)
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In G, the sign of a cycle (or path) is the product of the sign of its arcs

71t(G,) := positive transversal number
:= minimum size of a set of vertices meeting
every non-negative cycle

Remark 1 7+ <71

Remark 2 77 is invariant under subdivisions of arcs preserving signs

e.g. — replaced by ——, or — replaced by —-—

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 13/25



Theorem [Aracena, 2008]
For every signed digraph G,

$(Go) <27
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Theorem [Aracena, 2008]
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$(Go) <27

Remark 1 G, has only negative cycles = 77 =0 = ¢(G,) <1

Also true for differential equation systems [Soulé 03] !
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Theorem [Aracena, 2008]
For every signed digraph G,

$(Go) <27

Remark 1 G, has only negative cycles = 77 =0 = ¢(G,) <1

Also true for differential equation systems [Soulé 03] !

Remark 2 We recover the classical upper-bound:

#(G) = max ¢(G,) < max 27 (@) = 27(9)
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Theorem [Aracena, 2008]
For every signed digraph G,

$(Go) <27

Remark 1 G, has only negative cycles = 77 =0 = ¢(G,) <1

Also true for differential equation systems [Soulé 03] !
Remark 2 We recover the classical upper-bound:
¢(G) = max ¢(G,) < max 977 (Go) = 2m(®)

This is the state of the art for upper bounds
that depend on the cycle structure
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Theorem [Aracena, 2008]
For every signed digraph G,

$(Go) <27

Remark 1 G, has only negative cycles = 77 =0 = ¢(G,) <1

Also true for differential equation systems [Soulé 03] !
Remark 2 We recover the classical upper-bound:
¢(G) = max ¢(G,) < max 977 (Go) = 2m(®)

This is the state of the art for upper bounds
that depend on the cycle structure

No lower bounds on ¢(G) neither (G, ) !
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The bound ¢ < 27" s very perfectible
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The bound ¢ < 27" s very perfectible
e TS e— P e— e

NP2

T+ _ on/4
O [ [ [ 2 2
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The bound ¢ < 27" s very perfectible

.,;:::_:_;:j/.;;:::_:_;;j; .n:::_:_:;j; . ce .K:::‘:_;:j/o q6 o

T+ _ on/4
O [ [ [ 2 2

We think that improvements could be obtained by considering
negative cycles too. This is a difficult problem...

What happen when there is only positive cycles 7

< This essentially corresponds to the case where f is monotone
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Monotone networks
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{0,1}™ is equipped with the usual partial order
r<y <= x; <y;foralli
f is monotone if for all z,y € {0,1}"™

<y = f(z) < fly)
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{0,1}™ is equipped with the usual partial order
r<y <= x; <y;foralli
f is monotone if for all z,y € {0,1}"™

<y = f(z) < fly)

Remark f is monotone <= G, has only positive arcs

¢(G) = maximum number of fixed points in a monotone boolean
network with G as interaction graph

Proposition If G, is strong and has only positive cycles then

¢(G0) = ¢(G+)

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 16/25



Fixed points in monotone networks
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Theorem [Knaster-Tarski, 1928]
If f is monotone then FIXE(f) is a non-empty lattice
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Theorem [Knaster-Tarski, 1928]
If f is monotone then FIXE(f) is a non-empty lattice

To go further we need another graph parameter about cycles

v(G) := packing number
:= maximum number of vertex-disjoint cycles

Remark v <7

Adrien RICHARD Fixed Points in Boolean Networks Paris 2016 17/25



Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}" s.t.
1. L is a non-empty lattice
2. L has no chains of size v + 2
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.
1. L is a non-empty lattice
2. L has no chains of size v + 2

Proof of the isomorphism Vz,y € FIXE(f) z;<y; <= z<y

FVS of size 7
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.
1. L is a non-empty lattice
2. L has no chains of size v + 2

Proof of the isomorphism Vz,y € FIXE(f) z;<y; <= z<y

FIXE(f) is isomorphic to L = {z : € FIXE(f)}

[ \\.//'\\.//'\
VAVAN
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}" s.t.
1. L is a non-empty lattice
2. L has no chains of size v + 2

Proof of the isomorphism Vz,y € FIXE(f) z;<y; — z<y

Il \\.// \\.// \ r=21 Il \\.// \\. / 1\
VAVAY VaVaY
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Theorem [Aracena-Salinas-R, 2016+]
If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}" s.t.

1. L is a non-empty lattice
2. L has no chains of size v + 2

Proof of the isomorphism Vz,y € FIXE(f) z;<y; — z<y

I 1 0 rr <yr 1 1
7/~ /1 7/~ /1

Y ¢ Y ¢ YV Y ¢

J /.\ /.\ /.\ /.\
VAAWARY VAAWARY
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}" s.t.
1. L is a non-empty lattice
2. L has no chains of size v + 2

Proof of the isomorphism Vz,y € FIXE(f) z;<y; — z<y

110 1 0 xr < yr 1 1 0
RN /N /\ RN / N\ /\
N/ \_/ N/ \_/
¢ N ¥ N
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110 1 0 xr < yr 1 1 0
RN /N /\ RN / N\ /\
N/ \_/ N/ \_/
¢ N ¥ N

A BN fi(z) < fi(y) R BN
VWAV VAWV
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}" s.t.
1. L is a non-empty lattice
2. L has no chains of size v + 2

Proof of the isomorphism Vz,y € FIXE(f) z;<y; — z<y

110 1 0 xr < yr 1 1 0
NN 7\ /\ RN / N\ /\
N/ N/ N/ N/
Y Y Y Y
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}" s.t.

1. L is a non-empty lattice
2. L has no chains of size v + 2

Proof of the isomorphism Vz,y € FIXE(f) z;<y; — z<y

I1]10 1 0 rr <yr 1 1 0
L\ [\ / 1\ L\ [/ \ / 1\
N/ N\ [/ N/ N\ [/
N V& N N V& N &
J 0 1 x5 <y 1 1
[/ \ [\ [/ \ [\
/ N/ \ / N/ \
" 7 vV x. v vV x.
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}" s.t.

1. L is a non-empty lattice
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I1]10 1 0 rr <yr 1 1 0
L\ [\ / 1\ L\ [/ \ / 1\
N / N/ N / N/
N V& N N V& N &
J 0 1 5 <ys 1 1
[/ \ [\ [/ \ [\
/ N/ \ / N/ \
v N Z N R A4 Nz N
K| 0 1 0 Tk <YK 1 1 0
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Theorem [Aracena-Salinas-R, 2016-+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.

1. L is a non-empty lattice

2. L has no chains of size v + 2

Proof of 2 If FIXE(f) has a chain of size k thenv > k — 1

drien RICHARD Fixed Points in Boolean Networks Paris 2016
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Theorem [Aracena-Salinas-R, 2016-+]
If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.
1. L is a non-empty lattice

2. L has no chains of size v + 2

Proof of 2 If FIXE(f) has a chain of size k thenv > k — 1

»=111111111111111111
z=111111111111100000
2=111111111000000°000
22=111100000000000O00O0UO00
2'=0000000O0O00000O0O0GO0TO0DO0
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Theorem [Aracena-Salinas-R, 2016-+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.

1. L is a non-empty lattice

2. L has no chains of size v + 2

Proof of 2 If FIXE(f) has a chain of size k thenv > k — 1

<)
|

=

F%A 8 %%ﬂ 8 &
[[o R R R R
o Rk = =
[ [ R ~ ~
o lo Rl R K
o lo Rl R K
o lo Rl R K
oo B R~
[ o [ R ~
o oo R+
[0 o oo &~
o o o lo w
o o o lo
o o o lo R

o O O O =

19/25



Theorem [Aracena-Salinas-R, 2016+]
If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.
1. L is a non-empty lattice

2. L has no chains of size v + 2

Proof of 2 If FIXE(f) has a chain of size k thenv > k — 1

»=1111111111111[11111
z»=1111111111111[00000
=111 11111 1]/0 0.0 0J0 0 0 0 0
22=[111 1][0. 0 0 0 0J0O 0 0 0 0 0 0 0 O
2! =00 0 0J0O O OO0OO0OO0ODO0DO0O0O0O0O0O0O0
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d l d {

19/25



Theorem [Aracena-Salinas-R, 2016+]
If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.
1. L is a non-empty lattice

2. L has no chains of size v + 2

Proof of 2 If FIXE(f) has a chain of size k thenv > k — 1
Thus FIXE(f) has no chains of length v + 2 and so L

»=1111111111111[11111
z»=1111111111111[00000
=111 11111 1]/0 0.0 0J0 0 0 0 0
22=[111 1][0. 0 0 0 0J0O 0 0 0 0 0 0 0 O
2! =00 0 0J0O O OO0OO0OO0ODO0DO0O0O0O0O0O0O0
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Theorem [Erdds, 1945]
If X C{0,1}™ has no chains of size { 4+ 1 then

|X| < the sum of the ( largest binomial coefficients (}})
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Theorem [Erdds, 1945]
If X C{0,1}™ has no chains of size { 4+ 1 then

|X| < the sum of the ( largest binomial coefficients (}})

Remark The case £ =1 is Sperner’s lemma on antichains
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Theorem [Erdds, 1945]
If X C{0,1}™ has no chains of size { 4+ 1 then

|X| < the sum of the ( largest binomial coefficients (}})

Corollary If f is monotone then

|FIXE(f)| — 2 < the sum of the v — 1 largest (})
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Theorem [Erdds, 1945]
If X C{0,1}™ has no chains of size { 4+ 1 then

|X| < the sum of the ( largest binomial coefficients (}})

Corollary If f is monotone then

[FIXE(f)] —2 < the sum of the v — 1 largest (7)

Proof Let L C {0,1}" be a non-empty lattice isomorphic to FIXE(f)
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no chains
of size v +2

min a
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Corollary ¢(G1) < the sum of the v — 1 largest (;) + 2 J
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Corollary  ¢(G4) < the sum of thev — 1 largest (}) + 2

(-72)

7 — 1 coefficients
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Corollary  ¢(G4) < the sum of the v — 1 largest (}) + 2

(-72)

7 — 1 coefficients
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Corollary  ¢(G4) < the sum of the v — 1 largest (}) + 2 J

(-72)

Y o

© U — 1 coefficients

0

7 — 1 coefficients

Corollary d(Gy)=2" = v=r J
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Corollary ¢(G1) < the sum of the v — 1 largest (2) + 2 J

The upper bound is interesting when v is much more smaller that 7

The largest gap known is vlog v < 307 [Seymour 93]
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Corollary ¢(G1) < the sum of the v — 1 largest (;) + 2 J

The upper bound is interesting when v is much more smaller that 7
The largest gap known is vlogv < 307 [Seymour 93]

For a fixed v, 7 cannot be arbitrarily large...
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Corollary ¢(G1) < the sum of the v — 1 largest (D + 2 J

The upper bound is interesting when v is much more smaller that 7
The largest gap known is vlog v < 307 [Seymour 93]
For a fixed v, 7 cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995]
There exists h : N — N such that, for every digraph G,

7 < h(v)

The upper-bound on h(v) is astronomique (iterated use of Ramsey theorem)
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Corollary ¢(G1) < the sum of the v — 1 largest (Z) + 2 J

The upper bound is interesting when v is much more smaller that 7
The largest gap known is vlog v < 307 [Seymour 93]
For a fixed v, 7 cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995]
There exists h : N — N such that, for every digraph G,

7 < h(v)

The upper-bound on h(v) is astronomique (iterated use of Ramsey theorem)

Corollary #(G) < 27 < 2M¥) J
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Corollary ¢(G1) < the sum of the v — 1 largest (Z) + 2 J

The upper bound is interesting when v is much more smaller that 7
The largest gap known is vlog v < 307 [Seymour 93]
For a fixed v, 7 cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995]
There exists h : N — N such that, for every digraph G,

7 < h(v)

The upper-bound on h(v) is astronomique (iterated use of Ramsey theorem)

Corollary v+1<6(G) <27 < 2h0) J
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More on fixed points in monotone networks

22/25



Special packing J
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Special packing J
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Special packing J
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Special packing J

Pl

P

We denote by v*(G) the maximum size of a special packing ]

Remark v* < v < 71
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A k-pattern in X C {0,1}" is a sequence (z!,...,2%) € X* such that

(z1,...,2F) e X* and P <727 <= p#q
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A k-pattern in X C {0,1}" is a sequence (z!,...,z%) € X* such that

(z1,...,2F) e X* and P <727 <= p#q

Example (ey,eq,e3) is a 3-pattern of {0,1}3

e; =011 e = 101 e3 =110

e; = 100 ez = 010 ez = 001
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A k-pattern in X C {0,1}" is a sequence (z!,...,z%) € X* such that

(z1,...,2F) e X* and P <727 <= p#q

Example (ey,eq,e3) is a 3-pattern of {0,1}3

&7 =011 2 = 101 & =110
e1 = 100 eo = 010 e5 = 001
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A k-pattern in X C {0,1}" is a sequence (z!,...,z%) € X* such that

(z1,...,2F) e X* and P <727 <= p#q

Example (ey,eq,e3) is a 3-pattern of {0,1}3

&7 =011 2 = 101 & =110
e1 = 100 es = 010 e5 = 001
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A k-pattern in X C {0,1}" is a sequence (z!,...,z%) € X* such that

(z1,...,2F) e X* and P <727 <= p#q

Example (ey,eq,e3) is a 3-pattern of {0,1}3

& =011 & = 101 & =110
e1 = 100 es = 010 es = 001
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A k-pattern in X C {0,1}" is a sequence (z!,...,z%) € X* such that

(x1,...,zF) e X* and 2P <27 <= p#q

Example (ey,eq,e3) is a 3-pattern of {0,1}3

e =011 ey =101 e3 =110
e; = 100 es = 010 es = 001
More generally (e1,ea,...,e,) is an n-pattern of {0,1}"
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.

1. L is a non-empty lattice
2. L has no chains of size v + 2
3. L has no (v* + 1)-pattern
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rien RICHARD Fixed Points

Theorem [Aracena-Salinas-R, 2016-+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.

1. L is a non-empty lattice
2. L has no chains of size v + 2
3. L has no (v* + 1)-pattern

Remark If L ={0,1}" then L has a has a 7-pattern, so 7 < v* + 1.
Thus 7 < v* and since v* < 7 we deduce that v* = 7.
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.
1. L is a non-empty lattice
2. L has no chains of size v + 2
3. L has no (v* + 1)-pattern

Corollary p(Gy)=2" = vi=r1 J
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.
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3. L has no (v* + 1)-pattern
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.
1. L is a non-empty lattice
2. L has no chains of size v + 2
3. L has no (v* + 1)-pattern

Corollary p(Gy)=2" = vi=7T = v=r J

Theorem [Aracena-Salinas-R, 2016-+]

s

2" < ¢(Gy)
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Theorem [Aracena-Salinas-R, 2016+]

If f is monotone then FIXE(f) a isomorphic to a subset L C {0,1}7 s.t.

1. L is a non-empty lattice
2. L has no chains of size v + 2
3. L has no (v* + 1)-pattern

Corollary p(Gy)=2" = vi=7T = v=r

Theorem [Aracena-Salinas-R, 2016-+]

s

2" < ¢(Gy)

Corollary ¢(Gy) =27 <= v*=rT1
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Open problems
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rien RICHARD

Problem 1 For k, ¢ < n what is the max size of a subset X C {0,1}" s.t.

1. X is a lattice
2. X has no chain of size ¢/ + 1

3. X has no (k + 1)-pattern

— Erdos proved the max size of X subject to 2. only
— What is the max size of X subject to 3. only ?
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Problem 1 For k, ¢ < n what is the max size of a subset X C {0,1}" s.t.
1. X is a lattice
2. X has no chain of size / + 1
3. X has no (k + 1)-pattern

Problem 2 |s the lower bound v + 1 < ¢(G) tight ?

—  We known that the lower bound is tight in the monotone case
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Problem 1 For k, ¢ < n what is the max size of a subset X C {0,1}" s.t.
1. X is a lattice
2. X has no chain of size / + 1
3. X has no (k + 1)-pattern

Problem 2 |s the lower bound v + 1 < ¢(G) tight ? )

Problem 3 Do we have ¢(G) < 2°“1°8¥ for some constant ¢? J

— We known that 7 < h(v) and we may think that 7 < cvlogv
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Problem 1 For k, ¢ < n what is the max size of a subset X C {0,1}" s.t.
1. X is a lattice
2. X has no chain of size / + 1
3. X has no (k + 1)-pattern

Problem 2 |s the lower bound v + 1 < ¢(G) tight ? )

Problem 3 Do we have ¢(G) < 2°“1°8¥ for some constant ¢? J

Problem 4 Does there is an upper-bound on ¢(G,) according to v+ ?
Does there exist A : N — N such that

Tt <ht@t)

— Positive answer in the undirected case [Thomassen 88]
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Thank you!
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Problem 1 For k, ¢ < n what is the max size of a subset X C {0,1}" s.t.
1. X is a lattice
2. X has no chain of size / + 1
3. X has no (k + 1)-pattern

Problem 2 |s the lower bound v + 1 < ¢(G) tight ? )

Problem 3 Do we have ¢(G) < 2°“1°8¥ for some constant ¢? J

Problem 4 Does there is an upper-bound on ¢(G,) according to v+ ?
Does there exist A : N — N such that

Tt <ht@t)
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