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Abstract. We consider a Delay/Disruption Tolerant Network under
two-hop routing. Our objective is to estimate and track the degree of
spread of a message/file in the network. Indeed, having such real-time
information is critical for online control of routing and energy expen-
diture. It also benefits the multicasting application. With exponential
inter-meeting times of mobile nodes: (i) for the estimation problem we,
obtain exact expressions for the minimum mean-squared error (MMSE)
estimator, and (ii) for the tracking problem, we first derive the diffusion
approximations for the system dynamics and the measurements and then
apply Kalman filtering. We also apply the solutions of the estimation and
filtering problems to predict the time when a certain pre-defined fraction
of nodes have received a copy of the message/file. Our analytical results
are corroborated with extensive simulation results.

Keywords. delay/disruption tolerant networks; two-hop routing, multi-casting,
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1 Introduction

Mobile Ad hoc Networks (MANETs) aim at allowing communication between
mobile users without any infrastructure. If the spatial density of mobiles in a
MANET is low, then end-to-end communication between a source and a destina-
tion is limited by the lack of connectivity; in order to exchange packets, two mo-
bile nodes must come into the radio range of each other. Owing to the intermit-
tent connectivity, the nodes must rely on the Store-Carry-and-Forward paradigm
which inherently entails a delay of communication. Such sparse MANETs are re-
ferred to as Delay Tolerant Networks (DTNs) wherein a source has to rely on the



mobility of other nodes which act as relays, and takes advantage of the transmis-
sion opportunities which occur when the mobile relays come into contact. This
forwarding strategy is known as opportunistic routing.

Several alternate methods of spreading multiple copies of the same mes-
sage (or packet or file) have been investigated under opportunistic routing. In
epidemic routing [11] data packets are flooded to all nodes in the network to
minimize the delay. However, often the mobile nodes in DTNs have limited en-
ergy reserves and may prefer fewer transmissions to prolong network lifetime.
Spray-and-Wait routing [10] and probabilistic routing [5] are proposed to achieve
trade-offs between network resource consumption and protocol performance (in
particular, energy versus delay trade-off). Unlike epidemic routing, in two-hop
routing the relays do not give copies of the message to other relays.

As multiple copies of the same packet are allowed to spread in the network,
it is important, in practice, to track the number of copies so as to have an online
adaptive replication policy. If there is just one source spreading packets under
two-hop routing, then it can have perfect knowledge of the current number of
copies. However, if there are several source nodes spreading packets, then a source
cannot have perfect knowledge of the current number of copies in the network.
The same occurs in the case of epidemic or Spray-and-Wait routings (multi-hop
routing cases) mentioned above, where the relays are allowed to themselves relay
the packets to other intermediate nodes they are carrying.

In this paper, we address the case of two-hop routing. We assume that an
observer node (that can be a source, but not necessarily) moves around in the
network meeting with relay nodes to count the number of copies of the mes-
sage. The nodes it meets inform it of whether they are carrying a copy of the
packet. The problem is to get as accurate an estimation as possible of the num-
ber of nodes with copies using the measurements of the observer. The problem
of adaptively controlling the spreading process will be addressed in future works.

Our Contributions: In this paper, we solve three problems. First, given the
measurement of the observer at time t, we derive the exact expressions, under
exponential inter-meeting times, for the instantaneous linear Minimum-Mean-
Squared-Error (MMSE) estimator. Second, we derive a discrete time Kalman
filter based on diffusion approximations for the spreading process and the mea-
surements. Third, we estimate/predict the time at which a certain given fraction
of population has received copies of the file. All analyses are substantiated by
discrete event simulations.

Related Work: Mean-field approximations have been used to estimate the
mean number of infected nodes under various spreading policies [13]. Such ap-
proximations are accurate when the number of nodes is sufficiently large. Our
approach based on measurements with MMSE and Kalman filtering, allows to
track the discrepancy between the actual process and the mean-field approxima-
tions. Also, our Kalman filter estimation is based on a second-order approxima-
tion whereas the mean-field approximations are only first-order descriptions.

A related estimation problem in wireline networks has been considered in
[1], where the number of participants to a multicast session is tracked over time



thanks to measurements taken by polling the users. In [1], the authors assume
an infinite polulation from which arrivals occur and apply the diffusion approx-
imation of the well-known M/M/∞ queueing model. We, however, consider a
realistic finite population from which arrivals occur. In [1], the Kalman filter
is developed to track the fluctuations in the stationary regime of the M/M/∞
queue. We, however, track the fluctuations in the transient phase. Furthermore,
in [1], the delay in measurements (i.e., of the poll messages and the returning
acknowledgments) is ignored. We, however, explicitly characterize the measure-
ment process which complicates the derivation of the measurement equation.

2 Network Model and Objectives

We consider a Delay/Disruption Tolerant Network (DTN) consisting of S0 sources
and N0 relay nodes. We focus on the tracking of one given file (or message), gen-
erated by these S0 sources; tracking of other files generated by the same or other
sources follows the same lines. The inter-meeting times of any specific (say, the
i-th) source and any specific (say, the j-th) relay node are independent and ex-
ponentially distributed random variables with parameter β. At time zero, the
S0 sources start spreading a file adopting two-hop routing. Each time a source
meets with a relay, the relay gets a copy of the file. Recall that, in two-hop
routing the relays do not give copies of the file to other relays.

An observer H monitors the system. The observer may be one of the sources,
but not necessarily so. The inter-meeting times of the observer with any specific
(say, the k-th) relay are independent and exponentially distributed random vari-
ables with parameter µ. At each contact with a relay, the observer gets to know
if the relay has or does not have a copy of the file. The observer simply counts
the number of contacts it has had where the relay it met had a copy of the file.

Let X(t) denote the number of relays that have a copy of the file at time
t. Note that X(t) does not include the sources. Let Y (t) denote the number of
copies that the observer has counted up to time t. Henceforth, we shall refer to
{X(t), t ≥ 0} as “the process” and to {Y (t), t ≥ 0} as “the observation” or “the
measurement”. We assume that X(0) = 0 and Y (0) = 0.

Our objectives in this paper are to solve the following problems:

P1 Estimate the (value of the) process at time t, X(t), given the observation at
time t, Y (t).

P2 Estimate the process at time t, X(t), given the history of observation, {Y (u),
u ∈ U,U ⊆ [0, t]}.

P3 Estimate the time at which the process crosses a certain level XL.

Problem P3 is motivated by multicast where one would be interested to know
the time when a certain number, XL, of nodes have received a copy of the file.
Problems P1 and P2, as we shall see, can be seen as intermediate steps for solving
Problem P3. But, they are also important problems in their own rights.

Our approach is to use linear estimators that are simple to implement and
useful in practice. For solving Problem P1, we use the linear Minimum-Mean-
Squared-Error (MMSE) estimator, and for solving Problem P2, we use the



Kalman filter. The Kalman filter is known to be optimal in several important
ways [8], [9]. We solve Problem P3 using the solutions of Problems P1 and P2.

Problem P1: Consider two correlated random variables X and Y , with their
mean vector and covariance matrix given by

(

mx

my

)

and
(

Vxx Vxy

Vyx Vyy

)

, respectively.

We solve the optimal estimation problem P1 by applying Proposition 1.

Proposition 1. The linear estimator of X given Y which minimizes the ex-
pected square estimation error is given by

E[X|Y ] = mx + VxyV
−1
yy (Y −my). ut

We derive the required means and covariances in Section 3.2.

Problem P2: Making simplifying assumptions, we will approximate the pro-
cess {X(t), t ≥ 0} by a diffusion process. Sampling the approximate process at
regular monitoring intervals of duration T , we shall obtain a discrete time linear
stochastic difference equation for the process {X(t), t ≥ 0}. We will also derive
a discrete time linear stochastic equation relating the measurements to the pro-
cess. The linearity of both the system dynamics and the measurement equations
will allow us to apply the Kalman filter to use the previous estimation in order
to update the current estimation optimally. This is dealt with in Section 3.3.

Problem P3: A first-order solution to the level-crossing problem is obtained
by using the solution of Problem P1. A more accurate second-order solution
is obtained by using the solution of Problem P2. Those two expressions will
be inverted numerically and used to compare the accuracy of the MMSE and
Kalman estimators in estimating the level crossing times in Section 4.

3 Dynamics of the File Spread and Observation

In this section, guided by Proposition 1, we first derive the quantities mx, my,
Vxx, and Vxy as functions of time. Then, we derive diffusion approximations
for the process and the observation, and derive the corresponding discrete time
linear stochastic equations by sampling at regular intervals.

3.1 Characterization of the Process and Observation

Let ξi(t) denote the indicator variable that takes the value 1 if relay i, i =
1, . . . , N0, has a copy of the file at time t, and 0 otherwise. Then, we have

X(t) =

N0
∑

i=1

ξi(t). (1)

Let T i
λ denote the time at which relay i receives a copy of the file. Note that

T i
λ is exponentially distributed with parameter λ = S0β. Then, the probability

p(t) that a relay has a copy of the file at time t is given by

p(t) = P (T i
λ ≤ t) = 1− exp(−λt). (2)



By independence of source-relay meeting events, we conclude that X(t) has
a Binomial distribution with parameters N0 and p(t), i.e.,

P (X(t) = k) =

(

N0

k

)

p(t)k(1− p(t))N0−k. (3)

Given the process {X(t), t ≥ 0}, the count of the observer, Y (t), has a (non-
homogeneous) Poisson distribution with parameter

θy(t) = µ

∫ t

0

X(u)du. (4)

We emphasize that, ∀t ≥ 0, θy(t) is a random variable, since X(t) is stochastic.

3.2 Derivation of the Means and (Co)variances

Lemma 1. (i) The process X(t) has mean mx(t) and variance Vxx(t) given by:

mx(t) = N0p(t) , Vxx(t) = N0p(t)(1− p(t)) .

(ii) The process Y (t) has mean my(t) and variance Vyy(t) given by my(t) =
µmx(t)E[Tx(t) and:

Vyy(t) = my(t) +mx(t)µ
2
(

E[T 2
x (t)]− (E[Tx(t)])

2
)

+ µ2E[T 2
x (t)]Vxx(t) ,

where Tx(t) is a random process with:

E[Tx(t)] =
t

1− exp(−λt)
− 1

λ
, E[T 2

x (t)] =
exp(λt)

λ3

(

λ2t2 − 2λt+ 2
)

− 2

λ3
.

(iii) The cross-correlation between X(t) and Y (t) is given by: Vyx(t) = my(t)(1−
p(t)).

Proof: From Equation (3), we have: mx(t) = E[X(t)] = N0p(t) and Vxx(t) =
var(X(t)) = N0p(t)(1− p(t)). Next, we compute the distribution of θy(t).

θy(t) =

N0
∑

i=1

µ

∫ t

0

ξi(u)du =

N0
∑

i=1

µmax(t− T i
λ, 0) =

X(t)
∑

i=1

µ(t− T i
λ) =

X(t)
∑

i=1

µT i
x(t),

where T i
x(t) are i.i.d. random variables distributed like the truncated random

variable Tx(t) (truncated at t) with the following distribution:

P (Tx(t) > a) = P (t− T i
λ > a|T i

λ ≤ t) =
1− exp(−λ(t− a))

1− exp(−λt)
for 0 ≤ a ≤ t. (5)

whereby E[Tx(t)] and E[T 2
x (t)] given above.

my(t) = E[Y (t)] = EX [EY [Y (t)|X(t)]] = E[θy(t)] = µmx(t)E[Tx(t)] (6)



Vyy(t) = var(Y (t)) = EX [varY (Y (t)|X(t))] + varX(EY [Y (t)|X(t)])

= E[θy(t)] + var(θy(t)), (7)

since the variance of a Poisson random variable is equal to its mean. As before,
E[θy(t)] = my(t) and var(θy(t)) is obtained as follows:

var(θy(t)) = E[X(t)]var(µTx(t)) + E[µ2Tx(t)
2]var(X(t))

= mx(t)µ
2
(

E[T 2
x (t)]− (E[Tx(t)])

2
)

+ µ2E[T 2
x (t)]Vxx(t) (8)

Vyx(t) = Vxy(t) = E[X(t)Y (t)]− E[X(t)]E[Y (t)]

= EX [EY [X(t)Y (t)|X(t)]]−mx(t)my(t)

= E[X(t)θy(t)]−mx(t)my(t) = E[X2(t)]µE[Tx(t)]−mx(t)my(t)

=
(

Vxx(t) + (mx(t))
2
)

µE[Tx(t)]−mx(t)my(t) = my(t)(1− p(t)) (9)

�

3.3 Fluid and Diffusion Approximations

The process {X(t), t ≥ 0} can be viewed either as a state-dependent queue [7]
or as a density-dependent Markov process [4]. We obtain the fluid and difusion
approximations for the process {X(t), t ≥ 0} by viewing it as a single-server
Markovian queue with state-dependent arrival rates, zero service rate and infinite
buffer, and then applying the framework of [7]. A brief informal background on
fluid and difusion approximations has been provided in the Appendix.

Consider the sequence M
(n)
X /M

(n)
X /1/∞/n, n = 1, 2, . . . , of state-dependent

Markovian queueing systems, where index n denotes the size of the population
from which the arrivals are drawn and X (n)(t) denotes the queue length at time
t of the n-th system. The analogy with our DTN is as follows. The quantities n
and X(n)(t) of the queueing system correspond to the quantities N0 and X(t),
respectively, in our DTN. In analogy with our DTN, we let the arrival and
departure rates for the n-th queueing system at state X (n) to be

λ(n)(X(n)) = λ(n−X(n)), and µ(n)(X(n)) = 0, (10)

respectively. First, we obtain the fluid limits of the process and measurement.

Lemma 2. (i) Consider the rescaling x(n)(t) := X(n)(t)/n. The limit of the
sequence {x(n)(t), t ≥ 0}, n = 1, 2, . . . , as n ↑ ∞, is given by

x(t) = 1− exp(−λt). (11)

(ii) The fluid limit {y(t), t ≥ 0} associated with the sequence {Y (n)(t)/n, t ≥ 0},
n = 1, 2, . . . , is given by

y(t) = µ

∫ t

0

x(u)du. (12)



Proof: Proof of (i): Applying Theorem 4.1 of [7] (or, Theorem 3.1 of [4]), the fluid
limit {x(t), t ≥ 0} is given by the unique solution to the Ordinary Differential

Equation (ODE) dx(t)
dt = λ(1 − x(t)), with initial condition x(0) = 0, where

λ = S0β. Whereby the result.
Proof of (ii): Consider the sequence of processes {Y (n)(t), t ≥ 0}, n = 1, 2, . . . ,
where, for each n, {Y (n)(t), t ≥ 0} is a doubly stochastic Poisson process [2] with
(stochastic) intensity function µX (n)(t), i.e., we have

Y (n)(t) = P
(

µ

∫ t

0

X(n)(u)du

)

, (13)

where {P(t), t ≥ 0} denotes a Poisson process of unit intensity. Consider the
rescaling y(n)(t) = Y (n)(t)/n and the mappings

φ1,n(t) =
P(nt)− nt

n
, φ2,n(t) =

µ

n

∫ t

0

X(n)(u)du = µ

∫ t

0

x(n)(u)du.

It is easy to see that y(n)(t) = (φ1,n ◦ φ2,n)(t) + φ2,n(t) where (f ◦ g)(x) denotes
f(g(x)). Note that, as n ↑ ∞, we have φ1,n(t) → 0 and φ2,n(t) → µ

∫ t

0
x(u)du,

almost surely. Applying the Continuous Mapping Theorem (CMT) (see Theorem
13.2.1 of [12]), we obtain the fluid limit {y(t), t ≥ 0}. �

Next, we obtain the diffusion limits of the process and measurement.

Theorem 1. (i) Consider the rescaling v
(n)
x (t) =

√
n(x(n)(t) − x(t)). The dif-

fusion limit {vx(t), t ≥ 0}, i.e., the limit of the sequence {v(n)x (t), t ≥ 0}, n =
1, 2, . . . , as n ↑ ∞, is given by

vx(t) =
√
λ

∫ t

0

e−λ(t−u/2)dB1(u) = e−λ(t−s)vx(s) +
√
λ

∫ t

s

e−λ(t−u/2)dB1(u) .

(14)

(ii) Consider the rescaling v
(n)
y (t) =

√
n(y(n)(t) − y(t)). The diffusion limit

{vy(t), t ≥ 0} is given by

vy(t) =

∫ t

0

√

µx(u)dB2(u) +
µ√
λ

∫ t

0

e−λu/2dB1(u)−
µ

λ
vx(t), (15)

where B1(t) and B2(t) are independent standard Brownian motions.

Proof: Proof of (i): Applying Theorem 4.2 of [7], the diffusion limit {vx(t), t ≥ 0}
associated with the sequence {X(n)(t), t ≥ 0}, n = 1, 2, . . . , is given by the unique
(strong) solution to the linear Stochastic Differential Equation (SDE)

dvx(t) = −λvx(t)dt+
√

λ(1− x(t))dB1(t), (16)

with initial condition vx(0) ∼ N (0, 0), where B1(t) denotes a standard Brownian
motion. Solving (16) (see page 354 of [3]), we obtain the result for all 0 ≤ t < ∞.

Proof of (ii): Defining the mapping φ3,n(t) =
P(nt)−nt√

n
, it is easy to see that

v(n)y (t) = (φ3,n ◦ φ2,n)(t) + µ

∫ t

0

v(n)x (u)du.



Noting that the diffusion limit associated with φ3,n(t) is a standard Brownian
motion B2(t) (which is independent of B1(t) on which vx(t) depends), and apply-
ing CMT (see Theorem 13.2.1 of [12]), we obtain the diffusion limit {vy(t), t ≥ 0}
associated with the sequence {Y (n)(t), t ≥ 0}, n = 1, 2, . . . , as

vy(t) = B2

(

µ

∫ t

0

x(u)du

)

+ µ

∫ t

0

vx(u)du.

Whereby the result. �

3.4 The Kalman Filter

Defining vx,k := vx(kT ), where T (> 0) is some periodic interval at which we want
to track the process X(t), we obtain from (14) the system dynamic equation as:

vx,k+1 = αvx,k + wk, k = 0, 1, 2, . . . , (17)

where α = e−λT , and

wk =
√
λ

∫ (k+1)T

kT

e−λ((k+1)T−u/2)dB1(u).

Defining vy,k := vy(kT ), we obtain from (15) the measurement equation as:

vy,k = γvx,k + zk, k = 0, 1, 2, . . . , (18)

where γ = −µ

λ
, and zk = rk + sk, where

rk =
µ√
λ

∫ kT

0

e−λu/2dB1(u), and sk =

∫ kT

0

√

µx(u)dB2(u).

Defining, nk := n1,k + n2,k, where

n1,k =
µ√
λ

∫ (k+1)T

kT

e−λu/2dB1(u), and n2,k =

∫ (k+1)T

kT

√

µx(u)dB2(u),

we obtain, rk+1 = rk + n1,k, sk+1 = sk + n2,k and zk+1 = zk + nk.
Notice that, the process noise w is white, but the measurement noise z is

colored. We whiten the measurement noise by defining v′y,k := vy,k+1 − vy,k, and
derive the modified measurement equation as:

v′y,k = vy,k+1 − vy,k = γvx,k+1 + zk+1 − γvx,k − zk (19)

= γ(αvx,k + wk) + zk+1 − γvx,k − zk = γ′vx,k + z′k, (20)

where γ′ = γ(α − 1) and z′k = γwk + nk. Notice that the modified measure-
ment noise z′ is white. The modified measurement noise z′ and the original
(unmodified) measurement noise z are both correlated with the process noise w.



However, the modified measurement noise at (the discrete) time k, z ′k, is uncor-
related with the process noise up to time k − 1, {wj}, j = 0, 1, . . . , k − 1. Thus,
Mk := E[wk−1z

′
k] = 0, and we can apply a standard Kalman filter (see page 187

of [9]) with the system dynamics and (modified) measurement equations

vx,k = αvx,k−1 + wk−1 (21)

v′y,k = γ′vx,k + z′k, (22)

where {wk, k = 0, 1, . . . } and {z′k, k = 0, 1, . . . } are white noise sequences with

wk ∼ N (0, Qk), Qk := E[w2
k], and z′k ∼ N (0, Rk), Rk := E[(z′k)

2].

It can be shown that

E[w2
k] = (1− α)αk+1, and E[(z′k)

2] = γ2E[w2
k] + 2γE[wknk] + E[n2

k], where

E[wknk] = µTαk+1 and E[n2
k] = µT − γ (1− γ) (1− α)αk.

Let v̂−x,k and v̂+x,k denote the estimates for vx,k before and after taking into

account the measurement, respectively, at time k. Let P−
k and P+

k denote the
covariances of the corresponding estimation errors. Let v̂′y,k = v̂y,k+1 − v̂y,k,

where v̂y,k =
√
N0((Ŷ (kT )/N0) − y(kT )), and Ŷ (kT ) and y(kT ) denote the

actual measurement (i.e., observer count) and the value of y(t), respectively, at
time t = kT . Starting with v̂+x,0 = 0 and P+

0 = 0, we apply the following Kalman
filter equations (see Equations 5.17-5.19 of [9]) repeatedly at all time k:

v̂−x,k = αv̂+x,k−1 (23)

P−
k = α2P+

k−1 +Qk−1 (24)

P+
k =

(

(P−
k )−1 + (γ′)2/Rk

)−1
(25)

Kk = γ′P+
k /Rk (26)

v̂+x,k = v̂−x,k +Kk(v̂
′
y,k − γ′v̂−x,k) (27)

where Kk denotes the Kalman filter gain at time k. We obtain the estimates
for the process as X̂(kT ) = N0x(kT ) +

√
N0v̂

+
x,k, where

√
N0v̂

+
x,k provides an

estimate of the fluctuation of the process about its mean, at time t = kT .

4 Performance of Analytical Prediction and

Estimation based on Measurements

In this section, we evaluate: (i) the quality of estimation provided by the MMSE
estimator and the Kalman filter, and (ii) the accuracy of the predictions about
the level-crossing times based on the estimation. We also comment on the pre-
diction effectiveness of the fluid model of the process. We simulate a DTN as
described in Section 2 for the following scenarios: (1) Scenario 1: N0 = 50,
β = 0.02, T = 1.0, µ = β, (2) Scenario 2: N0 = 50, β = 0.02, T = 0.1,
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Fig. 1. Performance of MMSE estimation
and Kalman filter estimation of the process
for Scenario 1.

0 50 100 150 200
−4

−3

−2

−1

0

1

2

3

4

Time t

Actual process fluctuation
MMSE estimate of fluctuation at t = kT
Kalman estimate of fluctuation at t = kT

Fig. 2. MMSE estimation and Kalman fil-
ter estimation of the process fluctuations
for Scenario 1.

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

Time t

Actual process at t = kT
MMSE estimate at t = kT
Kalman estimate at t = kT

Fig. 3. Performance of MMSE estimation
and Kalman filter estimation of the process
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Fig. 4. MMSE estimation and Kalman fil-
ter estimation of the process fluctuations
for Scenario 2.

µ = 10β, and (3) Scenario 3: N0 = 50, β = 0.02, T = 0.01, µ = 100β, (4)
Scenario 4: N0 = 200, β = 0.02, T = 1.0, µ = β, (5) Scenario 5: N0 = 1000,
β = 0.02, T = 1.0, µ = β. In all scenarios, we have S0 = 2.

In Figure 1 we depict the performance of the MMSE estimator and the
Kalman filter for Scenario 1. We note that the estimations by both the MMSE
estimator and the Kalman filter are very close to each other and indeed close to
the fluid approximation N0x(t) of X(t). In Figure 2, we show the estimations of
the fluctuations about the fluid limit for Scenario 1, and notice that neither the
MMSE estimator nor the Kalman filter is able to successfully track the fluctua-
tions in this scenario. We suspect that the inability to track the fluctuations in
Scenario 1 is primarily due to the insufficiency of measurement data.

To verify if the inability to track the fluctuations in Scenario 1 is indeed due
to the insufficiency of measurement data, we examine Scenario 2 (Figures 3 and
4) and Scenario 3 (Figures 5 and 6). In Scenario 2 (resp. Scenario 3), we increase
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the rate µ at which measurements are taken by the observer by a factor 10
(resp. 100). To make better use of faster measurements and avoid smoothening
of measurement data over longer time intervals, we also decrease the monitoring
interval T by the same factor. We observe that the performance of the Kalman
filter is much improved in Scenario 2 with faster measurements during the later
phase of spreading (compare Figure 4 with Figure 2). Comparing Figure 6 with
Figures 4 and 2, we observe that tracking of the fluctuations by the Kalman filter
is extremely accurate in Scenario 3. This accurate tracking of the fluctuations
results in extremely accurate tracking of the process itself (see Figure 5).

In Figures 3-6, we observe that the MMSE estimator fails to make use of faster
measurements. In fact, it stays very close to the fluid approximation. This can be
explained as follows. The MMSE estimation differs from the fluid approximation
N0x(t) (which is equal to mx(t)) by the term Vxy(t)Vyy(t)

−1(Y (t)−my(t)). From
the expressions for Vxy(t) and Vyy(t) in Section 3.2, it can be seen that Vxy(t)
initially increases sublinearly, but then quickly decreases exponentially with t
(see Figure 7), and Vyy(t) increases superlinearly with t (see Figure 8). Thus,
except for an initial phase, the effect of the measurement (Y (t) − my(t)) is
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Fig. 10. Performance of MMSE estimation
and Kalman filter estimation of the process
with Scenario 5.

diminished by the factor Vxy(t)Vyy(t)
−1. Increasing µ by a factor K increases

Vxy(t) by a factor K, but also increases Vyy(t) by a factor K2. Thus, increasing
µ by a factor K results in an overall attenuation of the measurement (Y (t) −
my(t)) by a factor K (see Section 3.2). Furthermore, the difference between the
measurement Y (t) and its mean my(t) also decreases with t. In summary, we
can expect the performance of the MMSE estimator to get worse with time.

Next, we examine the situations in which the fluid approximation itself can
be used as a good predictor. Suppose that we increase the area of the network
by a factor K keeping the density of nodes constant. Then, we increase both
S0 and N0 by K, but decrease the source-relay meeting rate β by K. Then, the
net rate at which meetings occur in the network increases from S0N0β = λN0

to KS0N0β = λ(KN0). This scaling is equivalent to increasing only N0 by a
factor K keeping S0 and β constant as in (10). Thus, if the area of the network
is large so that N0 is large, then the fluid model can be a good predictor. We
demonstrate this by Figures 9 and 10 which correspond to Scenarios 4 and 5,
respectively. Note that Scenarios 4 and 5 are derived from Scenario 1 by scaling
as above with a scaling factor K = 4 and K = 20, respectively. Comparing
Figures 1, 9 and 10, we observe that the process becomes smoother and closer
to the fluid approximation with increase in the number of nodes N0.

Level-Crossing Times: Next, we compare the accuracy of the MMSE and the
Kalman estimators in estimating the level crossing times by computing the per-
centage error w.r.t. the level crossing times of the actual process and averaging
over 100 runs. Fixing the threshold levels atXL = 0.15N0, 0.25N0, 0.50N0, 0.75N0,
and 0.90N0, we obtained average percentage errors for estimates of level cross-
ing times by the MMSE and the Kalman estimators for Scenario 3. We summa-
rize the results as follows: XL = 0.15N0, e(MMSE) = 25.32%, e(Kalman) =
23.72%; XL = 0.25N0, e(MMSE) = 22.63%, e(Kalman) = 16.07%; XL =
0.50N0, e(MMSE) = 14.98%, e(Kalman) = 8.32%;XL = 0.75N0, e(MMSE) =
12.71%, e(Kalman) = 7.33%;XL = 0.90N0, e(MMSE) = 14.80%, e(Kalman) =



9.94%. We conducted similar experiments (not reported here due to lack of space)
with different parameter settings and observed similar trends. The Kalman fil-
ter shows a slightly better performance than MMSE during the initial phase
of spreading when the threshold level is small (say, XL ≤ 0.15N0). However,
the Kalman filter strictly outperforms the MMSE estimator for higher thresh-
old levels (say, XL ≥ 0.25N0) because it takes into account all previous sample
measures.

5 Conclusion

In this paper, we tackled the problem of estimating file-spread in DTNs with
two-hop routing. Apart from providing solid analytical basis to our estimation
framework, we also provided insightful conclusions validated with simulations.
Some of the important insights are: (i) the deterministic fluid model cam indeed
be a good predictor with a large number of nodes, (ii) the Kalman filter can track
the spreading process quite accurately provided that measurements as well as
updates are taken sufficiently fast, (iii) during the initial phase of spreading when
the amount of sample measures is still low, the MMSE estimator can be used for
estimating the level crossing times of sufficiently low threshold levels, and (iv)
as time progresses, the MMSE estimator becomes less useful, but the Kalman
filter would be available at later phases to provide accurate estimates. Applying
the real-time estimations for online adaptive control of the spreading process is
a topic of our ongoing research.

Appendix

In this appendix, we provide a brief informal background on fluid and diffusion
limits and approximations. Please refer to [6], [7] and [12] for more details.

Intuitively speaking, the fluid approximation provides the first-order deter-
ministic approximation to a stochastic process and represents its average be-
havior. The diffusion approximation provides the second-order approximation
to a stochastic process representing its average behavior added with random
fluctuations about the average (usually, in terms of a Brownian motion).

Consider a sequence {Z(n)(t), t ≥ 0}, n = 1, 2, . . . , of stochastic processes.
Index n represents some quantity which is scaled up to infinity in order to study
the sequence of processes at the limit, as n ↑ ∞. For queueing systems, n might
represent “the number of servers” (as in infinite server approximations) or “a
multiplying factor of one or more transition rates” (as in heavy-traffic approxi-
mations) or some other quantity w.r.t. which the scaling is performed.

Consider the Strong Law of Large Numbers (SLLN) type rescaling z(n)(t) :=
Z(n)(t)/n. Under certain conditions, as n ↑ ∞, the sequence of rescaled processes
{z(n)(t), t ≥ 0}, n = 1, 2, . . . , converges almost surely to a deterministic process
{z(t), t ≥ 0} (see, for example, Theorem 4.1 of [7]). Then, the limit {z(t), t ≥ 0} is
called the fluid limit associated with the sequence {Z (n)(t), t ≥ 0}, n = 1, 2, . . . ,



and the approximation

Z(n)(t) ≈ nz(t), ∀t ≥ 0, (28)

is called the fluid approximation for the n-th system.

Consider now the Central Limit Theorem (CLT) type rescaling v
(n)
z (t) =√

n(z(n)(t)−z(t)), which amplifies the deviation of the rescaled process {z(n)(t), t ≥
0} from the fluid limit {z(t), t ≥ 0}. Under certain conditions, as n ↑ ∞, the se-

quence of rescaled processes {v(n)z (t), t ≥ 0}, n = 1, 2, . . . , converges weakly to a
diffusion process (or a continuous-time Markov process with continuous sample
paths) {vz(t), t ≥ 0} (see, for example, Theorem 4.2 of [7]). Then, vz(t) is called
the diffusion limit associated with the sequence {Z(n)(t), t ≥ 0}, n = 1, 2, . . . ,
and the approximation

Z(n)(t)
d≈ nz(t) +

√
nvz(t), ∀t ≥ 0, (29)

is called the diffusion approximation for the n-th system, where
d≈ means “ap-

proximately distributed as”. In particular, if vz(0) is a Gaussian random variable,
then {vz(t), t ≥ 0} is a Gaussian process and it is completely characterized by
its mean and auto-covariance functions.
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