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Abstract—The surge of video traffic is a challenge for service
providers that need to maximize Quality of Experience (QoE)
while optimizing the cost of their infrastructure. In this paper, we
address the problem of routing multiple HTTP-based Adaptive
Streaming (HAS) sessions to maximize QoE. We first design a
QoS-QoE model incorporating different QoE metrics which is
able to learn online network variations and predict their impact
on representative classes of adaptation logic, video motion and
client resolution. Different QoE metrics are then combined into
a QoE score based on ITU-T Rec. P.1202.2. This rich score is
used to formulate the routing problem. We show that, even
with a piece-wise linear QoE function in the objective, the
routing problem without controlled rate allocation is non-linear.
We therefore express a routing-plus-rate allocation problem and
make it scalable with a dual subgradient approach based on
Lagrangian relaxation where subproblems select a single path for
each request with a trivial search, thereby connecting explicitly
QoE, QoE and HAS bitrate. We show with ns-3 simulations that
our algorithm provides values for HAS QoE metrics (quality,
rebufferings, variation) equivalent to MILP and better than QoS-
based approaches.

I. INTRODUCTION

IP video traffic will represent 82% of all consumer Internet
traffic by 2021, up from 73% in 2016 [1]. Therefore, delivering
high-quality video services is a key challenge for Internet
Service Providers (ISPs). In this context, this paper studies
the optimization of network resources in order to maximize
the QoE (Quality of Experience) perceived by end-users. Such
a QoE-based network optimization is also of high interest
to Content Distribution Networks (CDNs) for the overlay
network they operate [2].

The growing demand in video services has been enabled by
HTTP-based streaming. Specifically, HTTP Adaptive Stream-
ing (HAS) standardized into MPEG-Dynamic Adaptive HTTP
Streaming (DASH) [3], splits the video into temporal seg-
ments, each available in different qualities, i.e. encoding rates.
The quality of each segment (or chunk) to download can be
chosen based on the network and client state. The manifold of
existing DASH adaptation policies aim at providing the client
with the best QoE while absorbing the network variations. The
concept of QoE encompasses the metrics the viewer is directly
sensitive to, in particular, as defined in [4]: the visual quality
(for which metrics, possibly PSNR-based, exist such as SSIM
or VQM [5]), the frequency and duration of re-buffering events
(a.k.a. stalls or interruptions), the startup delay, the amplitude
and frequency of quality variations. These metrics can be

contradictory (e.g. a low startup delay may be achieved at
the expense of a low buffer level and hence incur more stalls),
and each adaptation logic has its own trade-off. These logics
can however be cast into two major categories, called Rate-
Based (RB) and Buffer-Based (BB, [6]) adaptations, which
base their decisions on the sensed throughput or the buffer
level. A number of hybrid approaches exist, possibly based
on an explicit formulation of the optimization problem [4].

In this paper, we address the problem of resource sharing
in routing for several unicast HAS sessions in an ISP or a
CDN overlay network, to maximize the sessions’ QoE while
taking into account the specifics of HAS flows. While the
problem of QoE-based routing has been investigated in some
works targeted at wireless mesh or ad hoc networks (e.g.,
[7], [8]), the QoS-QoE model was not fitted for HAS flows
in wired networks. In wired networks, the works aiming at
improving the routing of HAS sessions (e.g., [9], [10]) mostly
resorted to QoS-based optimization of path selection based on
Lagrange Relaxation Based Aggregated Cost (LARAC)-like
approaches [11].
• First contribution: We first design a QoS-QoE model
incorporating different QoE metrics which is able to take into
account the impact of network variations on HAS adaptation
logics. This model is able to learn online network variations,
and predicts their impact on three representative classes of
adaptation logics (RB, BB or hybrid), video types (cartoon,
low motion and high motion movies) and terminal resolutions
(360p, 720p and 1080p). Different QoE metrics (not only the
visual quality) are then combined into a QoE score based on
ITU-T Rec. P.1202.2 [12], [13].

Additionally, a number of works (see [14] and references
therein) have shown that the client-side adaptations are prone
to incur unfairness, under-utilization and instability when HAS
clients share a same bottleneck. Two main reasons for these
phenomena are (i) the intricate interplay between the HAS
and TCP control loops [15], and (ii) the fact that with a
perfect TCP, the best one can hope for is a perfect bandwidth
sharing, which does not correspond to a QoE fairness when
certain sessions (e.g., with higher resolutions and/or motion)
need more rate to achieve the same perceived quality [16].
Our model takes these two factors into account through the
modeling of the TCP performance under HAS into the QoE
function.
• Second contribution: We then consider the framework of



Network Utility Maximization [17] to formulate the routing
problem. Owing to the efficiency of solving techniques for
linear or integer linear programming, we aim at expressing the
routing problem linearly. We show that, even with a piece-wise
linear QoE function in the objective, the routing problem with-
out controlled flow allocation and assuming perfect TCP has
a non-linear expression. We therefore express a routing-plus-
flow allocation problem as a Mixed Integer Linear Program
(MILP). To ease the handling of massive video request arrivals,
a Lagrangian decomposition is devised so that each request
can be served immediately with a proper resource share.
The Karush Kuhn Tucker (KKT) conditions of each primal
subproblem allow to select a single path for each request as
well as the optimal bandwidth allocation found with a simple
dichotomic search based on the HAS representations. This
allows to make explicit the connection between bandwidth,
path delay, QoE and HAS bitrate.
• Third contribution: We carry extensive simulations with
a centralized controller deployed within ns-3. We compare
our QoE-based routing with MILP and Lagrangian relaxation
to QoS-based routing, namely congestion minimization, and
minimum delay routing. We show that our relaxed approach
provides values for HAS QoE metrics (quality, re-bufferings,
variation) equivalent to MILP and better than the QoS-based
approaches, while maintaining a fast solving time. We con-
sider both static and dynamic request arrivals, and study the
sensitivity to re-optimization frequency.

The novelty of this work lies in building a routing strategy:
• on a refined QoS-QoE model able to incorporate rebuffer-

ings, visual quality, TCP defects under HAS, and learning
of current bandwidth variations;

• which optimally computes the resource allocation instead
of using approximation path search techniques based on
reinforcement learning or QoS routing constraints.

• which is independent of fine-grained information of the
client state, thus seamlessly working with standard HAS
clients.

Relevant related works are discussed in Sec. II. The QoS
to QoE model is detailed Sec. III. Sec. IV formulates the op-
timization model and derives the low-complexity Lagrangian
relaxation explicitly connecting QoS metrics to path selection
and flow allocation. Numerical assessments are shown in Sec.
V. Sec. VI concludes this paper.

II. RELATED WORKS

QoE-based routing has been first investigated within wire-
less networks. For wireless mesh networks, Matos et al. in [7]
solve the problem of routing using reinforcement learning
(Q-learning) to choose progressively the best path based on
a mapping of downloading rate, loss rate and delay onto a
QoE score, which only accounts for visual quality. Quang
et al. in [8] consider ad hoc networks and a linearization
of the Pseudo-Subjective Quality Assessment (PSQA) score
to express QoE-based routing as a MILP and then derive
a heuristic. PSQA is based on Random Neural Network
predicting the mean opinion score.

More generally for wired networks, in [18] shortest path
routing is performed with edge weights set as a combination
of residual bandwidth and delay, to maximize the quality
obtained by Scalable Video Coding (SVC) flows. Within an
OpenFlow (OF) framework, different weights are used to route
the base or improvement layers. The same idea is leveraged
in [10], while [9], [19] and [20] consider constrained shortest
path routing under several QoS constraints (bandwidth, path
loss, delay, jitter), resort to LARAC path computations and
show that QoS-based routing outperforms best-effort routing
in terms of obtained bitrate and PSNR.

The above works however hardly take into account the
specifics of HAS flows and their complex competition ad-
ditionally impacted by their interplay with TCP. In [15], the
impact of losses on TCP-carried HAS flows has been dissected
to explain why the goodput TCP (Cubic) may be substantially
below the available bandwidth (or throughput). The authors
show that the ON/OFF behavior corresponding to successive
segment transfers, generates regular bursty short-lived flows.
Despite the connection is usually in persistent mode, the
impact of the starting and ending phase, i.e., initial burst and
ACK-trailing phase, can be substantial. Some solutions (such
as [21], [22]) have been designed to alleviate these problems.

Leveraging on the centralized control and easy switch
reconfigurations brought by the concept of Software Defined
Networking (SDN), network assistance has been investigated
to ensure quality-level fairness between contending HAS flows
in a single bottleneck. In [16], the authors express the rate
allocation problem to maximize the sum of the qualities over
the different requested resolutions and under link capacity
constraint. The SSIM metric is considered as quality and the
flow rate is enforced at the OpenFlow switch by a weighted fair
queuing. In [23], still assuming the bottleneck is the last access
router, the authors devise a controller able to track the clients’
buffers states and move the flow of the clients in danger of
stalling to a high-priority queue. In both strategies above, only
queuing is leveraged, without routing or client modification.

While the network has a general view and can provide band-
width reservation at routers, clients are in charge of the final
decision and can receive recommendations. Coupling network-
assistance with coordination from the client is proposed within
MPEG-DASH SAND. Examples of such proposals are [24]–
[26]. However, these approaches have major drawbacks of (i)
requiring client’s logic modification or (ii) fine-grained client’s
state disclosure to the network controller. Having (i) may be
difficult as the adaptation logic is often proprietary with the
content provider not necessarily eager to modify its client
application subject to several ISPs or telcos. Assuming (ii)
on the other hand may be tricky owing to the ubiquitous use
of HTTPS and encryption-based delivery (central in HTTP/2),
as recently outlined in [27]. With these obstacles in mind,
very recently, two major articles [28], [29] have investigated
the trade-offs of having different levels of network-assistance,
client state disclosure and client modification.

In our work, we design a refined QoE model incorporating
different QoE metrics and able to learn the network variations
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in order not to require client/network active cooperation yet
accounting for the behavior of other clients sharing bottle-
necks.

III. QOS-QOE MODEL

Our goal is to optimize routing so that HAS sessions get
the best QoE. Two fundamental questions therefore arise: (i)
How to define the QoE score of a session, and (ii) How is
QoE expressed as a function of the QoS parameters.

As we want to avoid the need for fine-grained knowledge of
the clients’ states (either bitrate decisions or buffer levels), we
do not work with an optimization where the objective is only
a function of the visual quality while the other metrics such
as re-bufferings are considered as constraints (e.g., [28, Eq.
10]. Instead, we need a function incorporating the different
QoE metrics into a score, to be truly reflective of the user
experience of watching an HAS video stream. The QoE score
must be a function of the optimization variable, i.e., the
allocated bandwidth over the selected path. This function must
be parameterized based on the characteristics of the video
streams that we can assume accessible.

Fig. 1 presents an overview of the QoS-QoE model we used
in the QoE-based routing algorithm we developed in Sec. IV.
The next paragraphs describe all the steps in details.

Fig. 1. QoS-QoE model

Disclosure assumptions: In this work, we assume the video
type (cartoon, low motion or high motion), player adaptation
(RB, BB or hybrid) and resolution can be known upon the
session launch. Owing to the generalized use of HTTP over
TLS [30], a network operator not providing the content itself
is blind to these data, except for the adaptation which we
assume can be inferred from the provider. Then we assume
a system such as cDVD [27] to provide the network with
this information. When we consider the problem of overlay
routing in a CDN however, the CDN is the physical provider
of the content, therefore has visibility into the HTTPS content
established with one of its own servers.
From the QoE metrics to the QoE score: First, the concept
of QoE for streamed videos has been investigated in numer-
ous works, both in the networking community [31] and in
the multimedia community (within the Video Quality Expert
Group - VQEG [32]). A number of user studies have aimed
at determining a QoE score (like Mean Opinion Score - MOS)
from these QoE metrics (stated in Sec. I). For instance [24],
[31] considers a weighted linear combination. More refined
QoE models have been proposed in the multimedia com-
munity, often based on supervised machine learning models.

However, to carry out a network optimization based on such a
model, a strong constraint is that we need an explicit function
connecting the decision variables with the end QoE score,
therefore preventing from using, e.g., artificial neural networks
or decision trees [31], [33]. We have therefore chosen the
reference model of ITU-T Rec. P.1202.2 [12], [13], which
incorporates the exponential relations of QoE to stalls and
encoding rate into an explicit log-logistic regression model.
The QoE for each user n, given the allocated bandwidth, writes
as follows:

QoEn =
1

1 + α
(
acnz

bc1
cn x

bc0
cn + afnz

bf1
fn
x
bf0
fn

)β (1)

where xc and xf are respectively the average compression
of the video and the total freezing duration (i.e., main factors),
zc is the content unpredictability, zf is the motion homogene-
ity (i.e., two co-factors), and a, b, α, and β are parameters used
to maintain the logistic shape of the curve. These parameters
are calculated using a set of pre-distorted videos (see [13]).
From the QoS metrics to the QoE metrics: Second, the
QoE metrics, namely the average compression and freezing
duration, must be expressed from the decision variable, that
we choose as the average bandwidth allocated to the session.
We make two main observations: (i) for the streaming of
stored videos, the major factor impacting QoE is the variations
of available bandwidth during the streaming [4], and (ii)
the QoE metrics obtained depend on the player’s adaptation
mechanism, which mainly aims at absorbing the bandwidth
variations. Predicting the QoE metrics obtained from allocat-
ing a certain average bandwidth therefore requires a network
variation model, detailed below. Once the variation model is
learned, each point on the QoE score versus average bandwidth
curves is obtained by modeling the performance of a 100
chunks video session undergoing the bandwidth variation
generated from the learned model, for each combination of
video type (e.g., high motion, slow motion), client resolution
(e.g., 720p, 1080p) and HAS adaptation logics (e.g., RB, BB).
Fig. 2 depicts such curves for adaptation logics from the
extended version of LibDASH 1 of the Adaptive Multimedia
Streaming Simulator Framework (AMust) [34] and 3 reference
videos.

More details on the calculation of the QoE score and QoE
metrics can be found in the following technical report [35].
The reader can find how we calibrated the model on 3
open movies commonly used for testing video codecs and
recommended by the DASH Industry Forum. The technical
report also describes how we linearize QoE functions for the
sake of the optimization in Sec. IV.
Learning the bandwidth variation model: Estimating the
network parameters to optimize multimedia transmission has
been investigated in different contexts. For instance, the se-
lection of the right Forward Error Correction (FEC) overhead
under varying path dynamics was studied in [36], while in [37]
path selection strategies are shown to be best for QoE (VQM)

1https://github.com/ChristianKreuzberger/AMuSt-libdash

3



Fig. 2. Examples of QoE extracted for 3 videos (namely BBB, TSA
and RBPS - see Sec. V) and 2 adaptation logics, Rate Based (RB) and
Buffer Based (BB) at resolution 1080p under high bandwidth variations
(±20% around the mean).
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Fig. 3. TCP Cubic performance in ns-3 with FTP transfers and
HAS flows, for several bottleneck capacities and end-to-end one-way
latencies.

when the considered bandwidth is the 10th percentile rather
than the time average.

We therefore need a model generating bandwidth samples
for each average bandwidth value, that reflects enough the
current dynamics in the network while being simple enough to
be learned easily. We consider as generating Markov model, as
various studies (e.g., [38]) showed that the pattern of Internet
packet loss can be captured by Markov models. If other
studies have shown that more refined or other models are more
accurate [39], to keep our model simple we opt for a two-state
hidden Markov model (HMM) for the bandwidth variations,
with states C (Congestion) and NC (Non-Congestion). In each
state, we consider 2 percentile thresholds plow and phigh.
We leverage network monitoring to periodically analyze the
bandwidth obtained for the download of chunks in different
video sessions, each sample being replaced by 1, 2 or 3
depending on its position w.r.t. plow and phigh The complete
parameters of the corresponding HMM are then learned with
a classical HMM training method (we use the Baum-Welch
algorithm) on the aggregate of the collected traces.

Modeling TCP performance with HAS: It has been shown
in [15] that HAS TCP flows behave as short-lived TCP flows
(with some specificities, such as no systematic reset of the
window). The TCP throughput formula is not accurate to
model (i) this behavior and (ii) Cubic (as it was designed for
AIMD versions of TCP). The ratio of goodput-to-throughput
obtained by a single HAS flow has been shown to depend
heavily on the RTT (owing to the prominence of the losses
in the initial and ending phase) [15, Fig. 1]. In order to
estimate this ratio in a bandwidth reservation setting we are
considering, the TCP Cubic code from [40] has been ported
in ns-3 (the simulator used in Sec. V), and the downloading
rates simulated for various reserved bandwidth and end-to-
end latencies (one-way), both for long-lived FTP transfers
and HAS transfers, as depicted in Fig. 3. Let us specify that
the drop in utilization after a certain latency threshold cannot
be accounted for by the Linux TCP Cubic algorithm, but

is rather due to this specific implementation. We therefore
model the goodput yd served by TCP to a HAS demand d
as a ratio of the available bandwidth xd. This ratio decreases
proportionally with the path round trip delay RTDp. We
therefore model this relationship as yd = αp (RTDp) · xd,
where αp (RTDp) is a coefficient (between 0 and 1) computed
from the RTD of path p (the smaller the RTD is, the closer
to 1 α is). Specifically, we extract for this ns-3 platform
(can be extracted from measurements on any other platform):
αp = −1.279.10−3 + 1.0011RTDp.

IV. CONTROL PLANE FOR QOE-BASED ROUTING

We formulate the problem of routing several HAS demands
to maximize the sum of their QoE (additional inclusion of a
fairness function is straightforward [28]). We first show that
the problem, named Maximal HAS QoE-based Routing (Max-
HQR), where the flow rates are not controlled but determined
by a perfect TCP fair-share of bottleneck capacity is not linear.
It hence cannot be efficiently solved with Mixed Integer Linear
Programming (MILP) solvers. We therefore first propose a
MILP reformulation by introducing the bandwidth allocation
decisions. To make the problem scalable, we then derive a
Lagrangian relaxation based on a dual sub-gradient approach,
which we thoroughly analyze and which allows to make
explicit the connection between QoS and QoE in path selection
and bandwidth allocation.

A. System assumptions

Let G(N , E) be a network graph, where N is the set of
nodes and E is the set of unidirectional links. The capacity of
link e ∈ E is ce traffic units (i.e. Mbps). We denote by D the
set of all (unicast) video HTTP Adaptive Streaming (HAS)
demands d, served from source node a(d) to end node b(d).
Each d ∈ D has a Quality of Experience (QoE) (or utility)
function Ud (yd), parameterized by the video type, resolution
and adaptation logic of d and depending on the goodput yd
TCP effectively serves HTTP with. We assume that the utility
function Ud(.) is strictly concave in yd, for all d ∈ D (see
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TABLE I
INPUT PARAMETERS

Name Description
adk ∈ R≥0 Slope of utility piece k ∈ Kd of demand d ∈ D
bdk ∈ R≥0 y-intercept of piece k ∈ Kd of demand d ∈ D
rmin
d ∈ R≥0 Min. rate of DASH manifest for d ∈ D
rmax
d ∈ R≥0 Max. rate of DASH manifest for d ∈ D
ce ∈ R≥0 Capacity of link e ∈ E
C ∈ R≥0 Reference link capacity

TABLE II
DECISION VARIABLES

Name Description
ud ∈ R≥0 Utility value (QoE) of demand d ∈ D
xd
p ∈ R≥0 Bandwidth on path p ∈ P to serve d ∈ D

zdp ∈ {0, 1} 1, if path p ∈ P serves d ∈ D. 0, otherwise.
zdpi ∈ {0, 1} 1, if i ∈ Z>0 competitive videos share the path

p ∈ P serving d ∈ D. 0, otherwise.
ne ∈ Z≥0 N of competitive videos sharing link e ∈ E

Sec. III). The set of candidates paths p is denoted as P . The
set of paths traversing a link e ∈ E is denoted as Pe. The
set of paths between a(d) and b(d) is denoted as Pd, for all
d ∈ D.

B. Combinatorial problem formulation

We first express Max-HQR as Eq. 2 where we assume that
TCP fairly shares the bandwidth between demands on the same
bottleneck, i.e., xd = ce/i, where ce is the capacity of the
bottleneck link e and i ∈ Z>0 is the number of competing
TCP flows. Hence we define a set of QoE values normalised
with respect to C = min ce, such as Udpi = Ud (αp · (C/i))
for each triplet (d ∈ D, p ∈ Pd, i ∈ Z>0). Tables I and II
gather the notations.

max
{zzz,nnn}

∑
d∈D
p∈Pd
i∈Z>0

Udpi · zdpi (2a)

s.t.
∑
p∈Pd

zdp = 1, d ∈ D (2b)∑
d∈D
p∈Pe

zdp = ne, e ∈ E (2c)

zdp · ne ≤
ce
C
·
∑
i∈Z>0

i · zdpi, d ∈ D, p ∈ Pd, e ∈ Ep (2d)∑
i∈Z>0

zdpi = 1, d ∈ D, p ∈ Pd (2e)

zdp ∈ {0, 1}, d ∈ D, p ∈ P (2f)

ne ∈ Z≥0, e ∈ E (2g)
zdpi ∈ {0, 1}, d ∈ D, i ∈ I (2h)

Constraints (2b) force path uniqueness, (2c) count the
number of competing videos flows in each link, (2d) and (2e)
identify the number of flows on the bottleneck of demand d.
Constraints (2d) are not linear since we need to know the exact
routing of d to compute its bottleneck load. A classical Integer
Linear Programming (ILP) solver is therefore not suitable to
address this problem.

C. MILP problem formulation

This subsection reformulates the Max-HQR problem as a
MILP model (3) by adding the bandwidth allocation to the
routing decisions. The QoE utility Ud(.) is approximated by

a piecewise-linear function made of a set Kd of pieces (see
Sec. III).

max
{xxx,zzz,uuu}

∑
d∈D

ud (3a)

s.t.
∑
d∈D
p∈Pe

xdp ≤ ce, e ∈ E (3b)

adk

∑
p∈Pd

αp · xdp

+ bdk ≥ ud d ∈ D, k ∈ Kd (3c)

∑
p∈Pd

αp · xdp ≥ rmind · zdp d ∈ D (3d)∑
p∈Pd

αp · xdp ≤ rmaxd · zdp d ∈ D (3e)∑
p∈Pd

zdp = 1 d ∈ D (3f)

xdp ∈ R≥0, d ∈ D, p ∈ P (3g)

zdp ∈ {0, 1}, d ∈ D, p ∈ P (3h)

ud ∈ R≥0, d ∈ D (3i)

Constraints (3b) ensure that link capacities are not violated,
(3c) model the utilities linearization, (3d) and (3e) limit the
allocated bandwidth to a range depending on TCP performance
(αp) and the minimum and maximum bitrates of the DASH
representations, and (3f) force path uniqueness. This MILP is
a Single Path Allocation problem, proven to be NP-complete
in [41], and therefore not tractable for large instances. To
remedy this limitation, we propose a Dual subgradient based
on Lagrangian relaxation (DGLR) algorithm to devise an
online control procedure able to scale with the problem size.

D. Dual subgradient based on Lagrangian relaxation (DGLR)

We consider the partial Lagrangian function obtained by
relaxing constraint (3b).

L(xxx,uuu,λλλ) = −
∑
d∈D

ud +
∑
d∈D
p∈Pd

λp · xdp −
∑
e∈E

λe · ce (4)

where λe, e ∈ Ep are the Lagrangian multipliers associated
to Eq. (3b) and λp =

∑
e∈Ep λe, for all p ∈ P , are the

“synthetic” Lagrangian multipliers associated to path p ∈ P .
The dualization of Eq. (3b) yields the so-called Lagrangian
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Relaxed Problem (5) where the Lagrangian function is mini-
mized subject to the non-dualized constraints:

D(λλλ) = min
{xxx,uuu}

s.t. (3c),(3d),(3e),(3f)

L(xxx,uuu,λλλ) (5)

where D(λλλ) is the dual function, with the dual problem
expressed as:

max
{λλλ}

D(λλλ) (6a)

s.t. λe ∈ R≥0, e ∈ E (6b)

The exploration of the dual variable space can be carried
out through a heuristic subgradient optimization method (the
dual function is concave, see Sec. IV-D2). Therefore, the
overall method is based on successive iterations consisting
of a minimization step of the Lagrangian Relaxed Problem
(primal step), and a maximization step of the Dual Problem
via a subgradient optimization (dual step).

1) Primal step: Problem (5) can be clearly separated into a
set of independent subproblems for each video demand d ∈ D
which can be computed in parallel:

max
{xdxdxd,zdzdzd,ud}

ud −
∑
p∈Pd

λp · xdp (7a)

s.t. (3c) to (3i) applied to d only (7b)

where xdxdxd =
{
xdp, p ∈ P

}
and zdzdzd =

{
zdp , p ∈ P

}
is the set of

bandwidth allocations and routing path selection, respectively,
among the paths p ∈ P to serve demand d. These subproblems
are still modeled with ILP, but they can be trivially solved
without resorting to an ILP solver (like CPLEX) as shown
below.

Let us consider the path selection. Let p∗ ∈ Pd be an
optimal path for demand d (then, xdp = zdp = 0, p ∈ Pd \ p∗).
By multiplying objective (7a) and constraints (3c), (3d), (3e)
by a constant Q = λp∗/αp∗ , and making the variable change:
u′d = Q · ud and x′dp = λp · xdp, p ∈ Pd, we see that
any path p ∈ Pd \ p∗ candidate to be optimal with a ratio
λp/αp > Q worsens the solution. Therefore, the optimal
path(s) p∗ ∈ Pd correspond(s) to that (those) with the smallest
quotient Q = λp∗/αp∗ .

Let us now consider the bandwidth allocation. To find the
optimal flow value x∗dp for the optimal path p∗, we introduce
the solution xdp = zdp = 0, p ∈ Pd \ p∗ in the subproblems (7),
leading to a simpler Linear Programming (LP) problem. Then,
we carry out an analysis of the optimal basis of this LP
problem. The standard form of the problem adds |Kd| + 2
slackness variables to the constraints (3c), (3d) and (3e) to
get equality constraints. The overall number of variables is
hence |K|+4 (one ud variable plus the non-null x∗dp variable
plus |Kd| + 2 slackness variables) and the number of basic
variables corresponds to the number of constraints: |Kd|+ 2.
If the optimal flow value is neither at the minimal bit rate
rmind nor at the maximal bit rate rmaxd , it is at the middle
of the piecewise linearization between rmind and rmaxd . In
such a case, at least four variables are larger than zeros (i.e.

they are in the basis): the two slackness variables associated
to constraints (3d) and (3e), the ud variable and the x∗dp
variable, which implies still room for |Kd|+ 2− 4 = |K| − 2
basic variables. From the piecewise linearization, we know
that optimum has to be either in the intersection of two
straight-line sections (|Kd| − 2 non-null slackness variables
associated to constraints (3c)), or at the middle of a straight-
line section (|Kd|−1 non-null slackness variables associated to
constraints (3c)). Obviously, only the first situation is possible.
Therefore, in this case, optimal bandwidth allocation and path
routing is at one of the intersection points between straight-
line sections.

From the study of the dual problem of these LP problems
and the KKT optimality conditions, we can draw the same
conclusions about their optimality, that we sum up here:

1) Path selection. One optimal path is a path p∗ with the
smallest quotient Q = λp∗/αp∗ .

2) Bandwidth allocation. The optimal flow can be found
by comparing the minimal ratio Q = λp∗/αp∗ with the
slopes ak, k ∈ Kd.

These conclusions are the basis to build the trivial Algorithm 1
that optimally solves the independent subproblems.
QoS-QoE connection: Therefore the allocated bandwidth
allowing to reach, under the learned bandwidth variations, a
certain encoding rate while ensuring a certain level of QoE
(hence rebufferings) is chosen at the point where the ratio
between congestion and delay can be the tangent’s slope of
the QoE curve. The lower the ratio, the higher the allocated
bandwidth.
Path Selection: In classical networking algorithms where the
optimal λe multipliers are used as edge weights, any efficient
Shortest Path Algorithm is able to find the shortest (lightest)
path, without knowing the whole path set. Unfortunately, we
cannot use this strategy since our optimal path is the path p
with the smallest ratio λp/αp, which means that αp must be
known in advance. We resort to a K-shortest paths algorithm
with link RTDs as edge weights to find the paths with highest
αp. Among the K paths, the one with the smallest ratio λp/αp
is selected. If several paths have the same ratio λp/αp, the path
with the highest αp is selected. While this approach does not
guarantee finding the optimal path, it is likely to be sufficient
in practical networking scenarios where link congestions (λe)
and RTDs (αp) are correlated.
Bandwidth allocation: The key is to compare the minimal
ratio Q = λp∗/αp∗ with the slopes ak, k ∈ Kd, as detailed in
Algo 1. The exploration of the |Kd| straight line sections re-
quires O(log2(|Kd|)) comparisons with the dichotomic search.
For comparison, standard Simplex algorithm will perform: (i)
an initial phase to build an initial feasible basis composed by
at least one Simplex iteration, and (ii) a main phase composed
by [1, |Kd|] Simplex iterations. The complexity order of a
Simplex iteration can be estimated as O(mn) = O(|Kd|2)
(where m = |Kd| + 2 is the number of constraints, and
n = |Kd| + 4 is the number of variables in standard form).
Therefore, a classical dichotomic search for this problem
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(when optimal path p∗ is known) is more efficient than the
Simplex method.

2) Dual step: The solution space of the Dual Problem (6)
is explored using a subgradient descent algorithm as:

λe(t+ 1) =

λe(t) + γ

∑
d∈D
p∈Pe

x∗dp (t)− ce



0

(8)

where t is the iteration index of the primal-dual iteration.
These multipliers reflect the link congestions: λe increases if
the link load exceeds the nominal link capacity.
Dual-primal iterations: the multipliers update (8) (i.e. the
dual step) is traditionally only performed after solving all
the |D| primal step subproblems, that is after finding the
bandwidth allocation for all demand d ∈ D. In this work,
we run multipliers update between two primal subproblems
corresponding to two consecutive video demands (sorted by
their arrival times). The rationale behind that is to promote that
demands with common source-destination pairs (i.e. the same
set Pd) but different utilities Ud take different optimal paths
(the minimal Q = λp∗/αp∗ trivially changes between two
consecutive primal step subproblems). We therefore consider
a main iteration as |D| alternations between a primal step and
a dual step.
Stopping criterion: after a minimal number of main iterations
(Nmin), iterations are stopped if the ratio of change over the
last Nlast iterations is below a pre-defined threshold. If not,

Algorithm 1: Bandwidth allocation for demand d
Data: Path set Pd with ratios λp/αp

Straight line sections Kd with slopes ak and the bandwidth
corresponding to the intersection points.
Bandwidth rmin

d and rmax
d corresponding to minimum and

maximum bitrates, respectively.
Result: Optimal value of x∗dp
Path selection: Find the path p ∈ Pd with the minimum ratio
λp/αp;

Bandwidth allocation: Explore the linear pieces Kd:
if λp/αp ≥ a0 then

x∗dp = rmin
d ;

else if a|Kd|−1 ≥ λp/αp then
x∗dp = rmax

d ;
else

t = 1;
i(t) = 0;
j(t) = |Kd| − 1;
while i(t) 6= j(t) do

if ai(t) ≥ λp/αp ≥ aj(t) then
i(t) = i(t− 1);
j(t) = floor{j(t− 1)/2};
x(t)dp is the bandwidth at the intersection of the

pieces i(t) and j(t) ;
t = t+ 1;

else
i(t) = ceil{j(t− 1)/2)};
j(t) = j(t− 1);
t = t+ 1;

x∗dp = x(t)dp;

the algorithm is stopped after a maximal number of iterations
(Nmax).
Complexity: Each main iteration of the DGLR algorithm (|D|
primal-dual alternations) has complexity O

(
|D|2|N |2K

)
,

where the complexity, for each demand, of one primal-
dual alternation is dominated by the dual step and equal to
O
(
|N |2|D|K

)
. The path selection of the primal step in a

primal-dual alternation, consisting of finding the path out of
K = |Pd| with minimum ratio

∑
e∈p λe

αp
, requires at most

O (|N |K) operations (where the longest path in the network
has |N | − 1 edges). Once such a path has been found,
the flow allocation requires O(log2(|Kd|)) comparisons. In
contrast, the dual step, consisting of the Lagrangian multiplier
update for each edge of the network according to Eq. (8),
requires the sum over all demands and over all pre-computed
paths of the allocated flow: O (|E||D|K) operations. Since
K, Kd are constants, and |E| ≤ |N 2|, the complexity of one
primal-dual alternation is basically the dual step complexity:
O
(
|N |2|D|K

)
.

V. SIMULATION RESULTS

This section presents extensive simulations results produced
in a fully controllable simulation environment at network and
HAS streaming levels.

Evaluation methodology. Our simulation platform is based
on the Adaptive Multimedia Streaming Simulator Framework
(AMust) [34] in ns-3 which implements an HTTP client and
server for LibDASH, one of the reference software of ISO/IEC
MPEG-DASH standard. We extended the simulator with SDN
capabilities to finely control routes for each video session. The
routing module is implemented in Matlab and called when a
video session starts or the network needs to be re-optimized.
The source code of our simulation platform is available in [42].

We compare our Lagrangian relaxation based algorithm
(DGLR) to the MILP solved with CPLEX. As QoS routing
benchmark against these QoE-based routing algorithms, we
have used LARAC [11], a widely used algorithm to efficiently
compute constrained minimum delay paths under QoS con-
straints (e.g., packet loss, jitter).

To compare the different approaches, we measure the fol-
lowing QoE metrics:
• Average video bitrate of the downloaded chunks.
• Average video quality: Average on all downloaded chunks

of a normalized quality index indicating to which repre-
sentation they belong. It evolves between 0 and 1 for
rmin and rmax, respectively (see values in [35]).

• Average quality fairness: Jain’s index over the average
quality index of all video sessions. The index evolves in
the interval [0; 1] with 1 indicating perfect QoE fairness.

• Average quality variation: the standard deviation of the
quality index which quantifies quality changes over the
different downloaded chunks.

• Re-buffering ratio: freezing (or stalling) time over the
duration of the video session.

Simulation setup. As streaming content, we have chosen 3
representative open movies commonly used for testing video
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Fig. 4. Static traffic scenario on Geant.

codecs and streaming protocols: Big Buck Bunny (BBB), a
cartoon with a mix of low and high motion scenes, Swiss
Account (TSA), a sport documentary with regular motion
scenes and Red Bull Play Street (RBPS), a sport show with
high motion scenes. More details on all the representations we
used in simulations can be found in our technical report [35].

Our simulations are based on GEANT [43], an academic
network composed by 22 nodes and 36 links. As packet-
based simulations in ns-3 take a long time, we downsized the
capacity of links to 10 Mbps. One-way latency of links are
uniformly distributed in [1, 10] ms. Regarding DASH clients,
we set the video buffer size to 30s and picked at random the
resolution in [360p, 720p, 1080p], the video type in [BBB,
TSA, RBPS] and the adaptation logic in [BB, RB, hybrid].
We select one node as the HAS server and attach randomly
clients to other nodes. All points in the following results are
average over 5 simulation runs.

Simulation results. Fig. 4 shows results for static scenarios
with a varying number of demands. The network is optimized
once at the beginning and all streaming sessions start at the
same time for a duration of 100s.

We observe that QoE-based approaches significantly im-
prove user experience with respect to LARAC that considers
only QoS metrics. Specifically, Fig. 4(a) shows that MILP and
DGLR increase the average bitrate of HAS connections by up
to 27% and 26%, respectively. The higher bitrate results in
higher quality gains: up to 15% for MILP and 15% for DGLR
as illustrated in Fig. 4(b). Furthermore, even without explicitly
considering QoE fairness in our optimization, Fig. 4(c) shows
improvement up to 6% and 5% of the average quality fairness.
While QoE-based routing increases the video quality, it also
helps to stabilize the quality as depicted by Fig. 4(d). All
these results also show that our DGLR finds paths, almost as
good as for MILP, which carefully load balance demands over
the network considering the different representations that HAS
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Fig. 5. Dynamic traffic scenario on Geant.

clients can select.
We turn now our attention to the dynamic traffic scenarios

with arrivals and departures of video sessions, which call for
periodic re-optimization of the network. To this end MILP
and DGLR are executed periodically by ns-3. We neglect the
execution time of algorithms to accurately measure the QoE
gain. For a fair comparison, the path selected at each session
arrival is computed using LARAC (before re-optimization). In
practice, we can use dual variables as link weights to compute
a minimum cost path, but we leave this improvement for
future work. We generated 60 demands with mean duration
of 30s according to a Poisson process for a total simulation
time of 160s. Fig. 5 shows performance results for different
re-optimization intervals. We can observe that reconfiguring
the network more often improves average video bitrate and
quality (Fig. 5(a) and Fig. 5(b)). The re-buffering ratio is
also improved but starts to increase when the configuration
interval is set to 1 s (Fig. 5(d)). Indeed, modifying the routing
for (potentially) all demands at a high frequency can lead
to harmful throughput variations for DASH clients. As for
the static scenario, MILP and DGLR improves also fairness
although our QoE function does not handle it (Fig. 5(c)).

Convergence speed of DGLR. The constant stepsize γ
used by DRLG accelerates the convergence but causes the
oscillation around the optimal lower bound. Therefore, in order
to shed light on the computational speed, we have analysed the
number of iterations required to reach the neighborhood of the
optimal lower bound (1%). Specifically, we varied the number
of streams in {20, 40, 60, 80}, obtaining {8.6, 12.8, 5.4, 3.2}
iterations in average over 5 experiments. In practice, we can
quickly stop DRLG after the very first iterations without
incurring any significant performance loss.

VI. CONCLUSION

We addressed the problem of routing several HAS sessions
to maximize QoE by taking into account the specific nature
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of each video stream. We first design a QoS-QoE model
incorporating different QoE metrics and able to take into
account the impact of network variations on HAS adaptation
logics. This model is able to learn online network variations,
and predicts their impact on considered three representative
classes of adaptation logic, video motion and client resolution.
We express a routing-plus-rate allocation problem and make it
scalable with a dual subgradient approach based on Lagrangian
relaxation so that each request can be served immediately with
a proper resource share. We show with ns-3 simulations that
our relaxed approach provides values for HAS QoE metrics
(quality, rebufferings, variation) equivalent to MILP and better
than the QoS-based approaches.

We conjecture that DGLR and MILP can further improve
QoE in networks where a minimum bandwidth can be guaran-
teed to each stream. Indeed, we did not enforced the bandwidth
allocations decided by the algorithms and leave this extension,
more complicated to deploy, for future work.
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