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Abstract— Unequal error protection is the key to future trans-
port of multimedia data. The paper presents an overview of some
new approaches realizing UEP properties in physical transport,
especially multicarrier modulation, or with LDPC and Turbo
codes. For multicarrier modulation, a UEP bit-loading method is
described allowing for an arbitrary number of classes, arbitrary
SNR margins between the classes and arbitrary number of
bits per class. In Turbo coding, pruning, as a counterpart of
puncturing is presented for more flexible bit-rate adaptations.
Pruning is also the tool that leads to a construction approach for
check-irregular LDPC codes with UEP properties.

I. INTRODUCTION

Source coded data, especially from scalable video and
audio codecs, come in different importance levels. Thus,
data has to be protected differently. We looked into different
means of achieving unequal error protection (UEP) properties
on the physical level and by different coding schemes. In
physical transport, we concentrated on multicarrier modulation
(OFDM, DMT), which leads to a new bit-allocation algorithm
as a modification of the one by Chow, Cioffi, and Bingham
[1]. This appeared to be the algorithm that allows for an easy
implementation of UEP.
In Turbo coding the typical approach for implementing UEP
properties as in standard convolutional codes would certainly
be puncturing [5]. Puncturing is simply omitting some of
the output bits according to some pattern, thereby changing
the denominator of the rate R = k/n, i.e., reducing the n.
Pruning as an alternative has not been discussed much except
in [6], [7] but would allow for changing the code rate in
the opposite direction, i.e., modifying k in the rate. In its
easiest form, pruning would just omit certain input bits to the
encoder, thereby eliminating some transitions in the trellis.
Some aspects of pruning as an additional tool for UEP Turbo-
code construction will be studied.
Pruning in an LDPC context would mean eliminating variable
nodes in the bipartite Tanner graph setting these variables to
known values, e.g., zero. This will in turn modify the check
degree of connected check nodes. This will serve as a tool for
designing check-node degree distributions for a given UEP
profile.
This paper gives an overview over recent new approaches for
unequal error protection. Some more details can also be found
in [3], [7], [8] and the companion paper [4].

II. ACHIEVING UEP WITH MULTICARRIER BIT LOADING

For non-UEP applications, there are manifold bit-allocation
algorithms, e.g., the ones by Hughes-Hartogs, Campello,
Chow-Cioffi-Bingham, Fischer-Huber, George-Amrani. Up to
now, there has been only one proposal for UEP bit loading
by Yu and Willson [2] based on the Fischer-Huber algorithm,
which is quite complex and not robust in case of non-stationary
channels with, e.g., impulse noise or fading. We selected the
algorithm by Chow et al. [1], which is based on an iteratively
modified margin γ in Shannon’s capacity formula for the
Gaussian channel to determine the bit load

bk = log2

(

1 +
SNRk

γ

)

. (1)

The quantization error

∆bk = bk − b̂k , (2)

when rounding to integer numbers of bits per carrier, is later
used as a criterion for brute-force bit addition or reduction,
when the iterative margin modifications do not yet lead to the
desired target rate.

The generalization to many protection classes is almost
obvious. γ is now made dependent on the protection level
j, i.e., we use

bk,j = log2

(

1 +
SNRk,j

γj

)

, (3)

with the quantization errors

∆bk,j = bk,j − b̂k,j , (4)

instead. The iterative modification of γj is performed in the
same way as in the original Chow et al. algorithm, namely
applying

γ0,new = γ0,old · 2
Btot−BT

N (5)

to one of the margins, e.g., to γ0. Btot =
∑

k,j bk,j is the total
actual number of bits, BT denotes the total target number. The
spacing between the margins is kept constant. This ensures a
constant SNR separation between all the classes, whereas the
absolute value is allowed to change.

The question arises, how the classes should be mapped
onto the carriers, i.e., which carriers should belong to which
protection class. In principle, there are two sorting approaches:
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• use the carriers with the highest signal-to-noise ratio for
the most important class,

• use the carriers with the lowest signal-to-noise ratio for
the most important class.

The first would be very intuitive, but fails under non-stationary
disturbances, e.g., impulse noise in wireline transmission.
Nevertheless, the first is more efficient in the stationary case.
Note that under non-stationary disturbances not taken into
account during the bit-loading process, carriers with previously
high SNR may experience severe degradation, whereas those
with previously low SNR may not see much of a difference.
Thus, the second choice is more robust against non-stationary
disturbances. This results in extremely low usage of bad-
SNR carriers, allocating them with just a few bits or not
at all. This is, of course, very inefficient in the stationary
case. Those carriers could still be used for the less important
data. This leads to a possible third scheme, representing a
compromise between both extremes. One may initially go for
the second, more robust approach, filling up unused carriers in
a second step with less important data. One could even allow
for mixed allocation of different priority data on the same
carrier, realizing that the quantization error determined before
according to (4) allows for an additional placement of lower-
priority data. This leads to hierarchical modulation schemes
similar to the ones proposed in the DVB-T standards.

For both ordering schemes, we require an SNR sorting, i.e.,
the carriers need to be ordered according to their SNRs. In the
more robust second alternative, we will usually start allocating
the highest priority data to the lowest SNR carriers, moving
the carrier number limit to the following classes in, e.g., a
binary search until the desired rate is obtained, then the next
class follows. We allow for a slight deviation in the lower-
priority rate due to the discrete alphabets (integer number of
bits per carrier) loaded onto the carriers. This will, however,
only move some data bits into the better protected neighboring
classes.

In Fig. 1, we show the performance curves of three classes
originally spaced by 3 dB under the effect of non-stationary
noise. For this example we used DMT transmission with
almost ADSL2plus parameters and a NEXT environment with
E1 and HDSL disturbers. The additional non-stationary noise
was derived from real measured impulses. We observe that
the ‘robust’ UEP bit loading with SNR sorting (high-priority
class at low SNR carriers) still shows the BER curves in the
desired sequence, whereas the more ‘intuitive’ bit allocation
(high-priority class at high SNR carriers) turns the sequence
upside down, i.e., suddenly, the most important data receives
the lowest protection.

III. ACHIEVING UEP WITH CONVOLUTIONAL CODES FOR

APPLICATIONS IN “TURBO” CODING

In this section, we describe methods of achieving unequal
error protection with convolutional codes which can later be
applied in Turbo codes. A straightforward approach of varying
the performance of a convolutional code is puncturing, i.e.,
excluding a certain amount of code bits from transmission and,
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Fig. 1. The SER performance for UEP bit allocation with SNR-sorting,
without SNR-sorting, and the non-UEP performance for a total target bit rate
of 2304 bits per DMT symbol with 511 data carriers with real measured
impulse noise as an additional disturber (bit allocation with T1/HDSL NEXT,
only)

thus, increasing the code rate R = k/n, where k and n are
the numbers of information bits and code bits. Another method
called pruning was presented in [6] and [7] for convolutional
codes and Turbo codes, respectively. Pruning is based on
modifying the number of input bits to the encoder k, i.e., the
numerator of the code rate instead of the denominator. This
approach will be revised and improved in the following.

A. Pruning - Conventional Approach

In [7], the authors presented a method called pruning
for achieving low complexity variable rate convolutional and
Turbo codes. The aim was to find a code family consisting
of codes with code rates Ri = ki/n. In order to keep the
decoding complexity low, it was desired that the individual
codes should have certain properties such that decoding can
be performed by similar decoders. This requirement led to the
construction of several sub-codes from a given mother code.
The sub-codes of rates Rs,i = ks,i/n, 1 ≤ ks,i < km were
constructed by multiplying the polynomial generator matrix
of the mother code of rate Rm = km/n, denoted by Gm(D),
by another polynomial generator matrix Gp(D) called pruning
matrix.

Gs(D) = Gp(D) · Gm(D) (6)

Choosing different pruning matrices and especially varying
its dimensions, leads to different sub-codes Gs(D) of the
mother code. The dimensions of the pruning matrix are defined
as [kp×km] in order to guarantee proper matrix multiplication,
leading to a sub-code generator matrix of dimensions [kp×n].
Thus, varying the number of rows of the pruning matrix varies
the code rate of the sub-code. For a mother code, one can
obviously construct sub-codes with km − 1 different code
rates 1/n, . . . , (km −1)/n. Given that the number of memory
elements of the sub-encoder ms is equal to (or smaller than)
the number of memory elements in the mother encoder, the
influence of building a sub-code from a mother code can
directly be depicted in the trellis diagram of the convolutional
codes. Figure 2 shows a trellis section of a mother code
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Fig. 2. Trellis sections of mother code (left) and sub-code (right)

(left) and a sub-code (right) given by the following generator
matrices.

Gs(D) = Gp(D) · Gm(D) (7)

= (1 D) ·

(

1 1 + D 1 + D
1 + D D 1 + D

)

=
(

1 + D + D2 1 + D + D2 1 + D2
)

The labels to the left of the states denote the input and
output of the transitions leaving the states.

When comparing the two trellis sections, one can see that
the set of paths in the right trellis is a subset of the set of
paths in the mother trellis. This means that one does not have
to store a separate decoder for all codes of a family but the
decoder structure stays basically the same. When switching
between different decoders, only the transition probabilities
between the states have to be adapted. With this procedure,
we are able to construct a code family consisting of codes
with km different code rates.

B. Pruning - Improved Approach

In this section, we improve the concept of pruning for
convolutional and Turbo codes. A drawback of pruning is the
low number of available code rates in a code family, especially
for small mother codes, i.e., mother codes with small km.
Particularly, the number of available code rates is dependent
on the dimensionality of the mother code. For example, a
mother code of rate Rm = 2/3 only allows for one sub-
code rate, namely Rs = 1/3. For applications like multimedia,
where unequal error protection is desired, usually more levels
of protection are required. This calls for an approach, where
the number of available code rates is independent of the code
itself.
This leads to the idea of time variant pruning. The correspond-
ing measure in the field of puncturing is employing puncturing
matrices defining a pattern of successive puncturing rules. The
same can now be done for pruning, such that for each time
instant, a sub-code is chosen according to some pattern. Let
us define the pruning period Lp to be the length of such a
pattern which is repeatedly applied. Let the code applied at
time instant l be denoted by Gl(D) ∈ {Gm(D), Gs,i(D)},
1 ≤ i ≤ km − 1, 0 ≤ l ≤ Lp − 1 and kl be the number of
encoder input bits corresponding to Gl(D). The overall code

rate of the scheme is then defined by

R =
1

Lp · n

Lp−1
∑

l=0

kl , (8)

which is bounded by 1/n ≤ R ≤ km/n.
Imagine a rate R = 2/3 mother code. A very easy case of
such an above proposed 1 × 2 pruning matrix can be defined
by choosing one component of the pruning matrix to be 0 and
the other to be 1. This would select only one of the inputs as
active in order to construct a sub-code. Switching between the
mother code and the sub-code then means switching between
code rates R = 1/3 and R = 2/3. This procedure can also be
described as simply ’switching off’ one of the inputs of the
mother encoder according to the pruning pattern. Switching
off one input is equivalent to feeding the corresponding input
with zeros1 at these predefined positions. Consequently, one
does not even have to switch between the two encoders, but
only has to feed the mother encoder with zeros where the
pruning pattern specifies to use the sub-code. The code rate
can now be given as

R =
Lp · k − n0

Lp · n
, (9)

where n0 denotes the number of digits fixed to 0. Thereby,
we have found a very simple way to adapt the overall code
rate of the scheme by just fixing some encoder input digits.
At the receiver, the pruning pattern is known such that the
reliability of the fixed zeros can be set to infinity (or equiv-
alently, the probability of a 0 can be set to 1) and may help
decoding the other bits reliably.
In the case of systematic convolutional encoders, switching off
a certain input also fixes the corresponding output to be 0. In
this case, the denominator of the code rate is also modified
and leads to the overall code rate

R =
Lp · k − n0

Lp · n − n0
. (10)

One possible problem of the above proposed scheme
might arise, when the number of fixed zeros is not negligible
compared to the overall number of uncoded data. Especially
for Turbo codes, the information bits are assumed to be
equally distributed since the Turbo decoder suffers from
statistical dependencies otherwise. If many zeros are fixed in
the uncoded sequence, the probabilities of occurrence of a 0
and a 1 are not equal any more.
A possible solution for this problem is to not only insert zeros
at the specified positions but also ones. This can be done in a
predefined manner such that the receiver knows where zeros
and ones are fixed. A very straightforward manner would
be to choose the fixed digits to be 0 and 1 in an alternating
fashion. This would directly preserve the equal distribution
of zeros and ones.

1Ones would, of course, work in the same way.
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Fig. 3. Bit-error rate curves of a mother code and two sub-codes of rates
R = 2/3, R = 1/2, and R = 1/3

In the following, we will give a small example in order
to illustrate the proposed schemes. We will both show the
insertion of fixed zeros only and of fixed zeros and ones.
Assume an application that requires a code rate of R = 0.4 and
the available codes are a mother code of rate Rm = 2/3 and a
sub-code of rate Rs = 1/3. A possible pruning pattern would
specify the following succession of employed codes leading to
the desired code rate: Gm(D) Gs(D) Gs(D) Gs(D) Gs(D).
This sequence would encode 6 input bits and output 15 code
bits, thus R = 0.4. When employing the mother code only
and fixing the specified digits to zeros, the corresponding input
sequence would be

u =

(

u1 0 0 0 0
u2 u3 u4 u5 u6

)

. (11)

When inserting not only zeros but zeros and ones in an
alternating fashion, the encoder input sequence is given by

u =

(

u1 0 1 0 1
u2 u3 u4 u5 u6

)

. (12)

These small examples show how a code rate other than
that of the mother code or one of the sub-codes can easily
be achieved by the proposed method. Figure 3 shows a set
of bit-error rate curves of a rate R = 2/3 mother code and
two sub-codes of rates R = 1/2 and R = 1/3 constructed by
fixing appropriate amounts of information bits to zero.

When performing a computer search for a suitable pruning
scheme, it is usually not sufficient to study pruning patterns
alone. Additionally, it has to be ensured that at interval
boundaries, the states at joint trellis segments are the same as
already required in rate-compatible punctured convolutional
codes [5]. With the improved approach shown above, this
problem does automatically not arise any more since the
decoder is operating on one and the same trellis, namely the
mother trellis, only varying certain a-priori probabilities. Thus,
trellis structures do not change at transitions between different
protection intervals at all.
Concerning the minimum distance of the sub-code, it is in
either case greater than or equal to the minimum distance of
the mother code since, as stated above, both codes can be
illustrated by the same trellis. Fixing certain probabilities of a

zero to one, means pruning those paths corresponding to a one.
Either if the minimum weight path is pruned, the minimum
distance of the code is increased or if it is not pruned, the
minimum distance stays the same.
The proposed technique is an alternative to puncturing with
comparable complexity and, as well, theoretically infinite
range of achievable code rates. However, we see an advantage
of pruning over puncturing when dealing with Turbo schemes.
Whith puncturing, bits from the transmitted sequence are
erased, such that there’s now knowledge about them any
more. When pruning, we add perfect knowledge about certain
bits and may enhance the decoding performance in iterative
decoding through increased extrinsic information.

IV. ACHIEVING UEP WITH LDPC CODES WITH AN

IRREGULAR CHECK-NODE PROFILE

UEP properties of LDPC codes have been studied in the
literature, capitalizing on the unequal speed of convergence
of the iterative Belief Propagation decoder. When a certain
variable node has very high connection degree in the Tanner
graph of the code, it collects a lot of information in a
small number of iterations, and is thereby very well protected
against the additive noise - some authors name bits with high
connection elite bits. Generalizing this behavior to design
specific UEP properties is feasible, although with growing
number of iterations, the difference of protection between
the bits diminishes. However, the UEP that comes from the
irregular connection profile can also be solved on the other
side of the Tanner graph, that is, with an irregular check node
connection profile.

We consider a check node to belong to a certain bit-node
(priority) class Ck if there is at least one edge of the Tanner
graph connecting the check node with one bit node of that
class. By studying the mutual information at the output of a
check node of a priority class compared to the average mutual
information, we get a measure of unequal protection of the
priority class: the higher the difference, the more the class is
protected compared to other bits in the codeword. It is also
possible to link this difference in mutual information to the
average check connection degree of class Ck,

ρ(Ck) =

d
(Ck)
max
∑

d=d
(Ck)

min

ρ(Ck)(d)d , (13)

ρ(Ck)(d) being the fraction of edges connected to degree-d
check nodes belonging to class Ck. To maximize the UEP
property of class Ck, ρ(Ck) has to be minimized. In other
words, the most protected classes have the lowest average
check-node degrees.

Using a detailed representation of the LDPC code [9], we
have optimized the irregular check node profiles for each
priority class with Density Evolution. Once the irregularity
profile has been optimized, there are some specific parity-
check matrix constructions that allow to follow the fixed
profile, and we depict in the following a method based on the
pruning approach, which has the advantage of being efficient
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Fig. 4. Pruning in the Tanner graph to exhibit UEP properties

and flexible. We use the pruning approach discussed in Section
III also to control the check-node distribution of the classes.
Let (N0, K0) be the length and the number of information
bits, respectively, of the mother code. Pruning in Section III
meant either applying a pre-coder to reduce the number of
information dimensions or simply to omit information bits
according to some pruning pattern. We do not discuss the
first option for LDPC codes in here. The latter means the
elimination of a bit node and replacing it by a known value,
e.g., by zero. A subcode of dimension K1 is obtained by
eliminating K0 − K1 columns from the parity-check matrix
Hm. The subcode has length N1 = N0 − (K0 − K1).
Thus, the length is reduced in a similar way as in (10) for
the case of systematic convolutional encoders when pruning
the information bits. We use systematic LDPC codes, that
is, LDPC codes for which the parity-check matrix has an
upper triangular structure. The pruning is then performed
by just omitting an information bit of the mother code, or
equivalently, by removing the corresponding column in the
information part of the parity-check matrix (the part which
is not upper triangular). By doing so, the dimensions of the
subcode matrices HS and GS will be M0 ×N0 − (K0 −K1)
and K1 × N0 − (K0 − K1), respectively. The code rate is
obtained as

R1 = 1 −
rank(HS)

N0 − (K0 − K1)
=

K1

N0 − (K0 − K1)
. (14)

Only the indices of the pruned columns of the mother code
need to be known at the transmitter and receiver in order to
be able to encode and decode the pruned code. Thus, there
is almost no complexity increase for realizing different UEP
configurations with the same mother LDPC code. This shows
that the specific matrix construction that we advise, based on
a mother code and the pruning, is very flexible and can be
implemented in practice with low complexity.

Figure 4 illustrates the pruning in the graph of a short code.
Note that the protection level is determined by the average
connection degree of the check nodes connected to the variable
nodes of a certain class. For simulation examples with N0 =
2000, see [8].

V. UEP IN PHYSICAL TRANSPORT OR IN CODING?

This paper has pointed out options for realizing unequal
error protection, especially new concepts developed recently.
UEP in multicarrier physical transport is very easy to realize
and the design is very flexible allowing for arbitrary SNR
margins. In UEP Turbo or LDPC coding, the coding scheme

has to be optimized in advance, i.e., a code search is necessary
and the performances have to be investigated beforehand
(EXIT charts, simulations). Pruning and puncturing also offer
quite some flexibility in choosing the code rate, but the actual
performances are only obtained after the code-design and
evaluation steps. However, in digital transport without access
to the physical channel, the only option is UEP coding.
When the channel changes its frequency characteristic (cor-
relation properties for the equivalent binary channel), the
margins between the priority classes will be modified in UEP
bit allocation, even if the more robust SNR sorting is used. In
UEP Turbo or LDPC coding, the margins will more or less
be preserved due to the large interleaver.
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