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Abstract—TCP Cubic is designed to better utilize high

bandwidth-delay product paths in IP networks. It is currently

the default TCP version in the Linux kernel. Our objective in

this work is to better understand the performance of TCP Cubic

for scenarios with a large number of competing long-lived TCP

flows, as can be observed, e.g., in cloud environments. In such

situations, Cubic connections tend to synchronize each other and

this synchronization is higher than with TCP New Reno. We

investigate this phenomenon in detail through experimentations in

a controlled testbed, measurements with Amazon EC2’s servers,

located in the US and simulations.

We demonstrate that several factors contribute to the appearance

of synchronization in TCP Cubic: (i) the rate of growth of the

congestion window when a Cubic source reaches the capacity

of the network (that it might over- or under-estimate) and its

relation to the RTT of the connection, (ii) the way the congestion

Cubic tracks the ideal cubic curve in the kernel (as the congestion

window grows in a discrete fashion in units of MSS while the

cubic curve assumes a fluid window), (iii) the competition among

the Cubic sources and the aggressiveness of the sources that did

not experience losses during the last loss episode.

We also propose and evaluate several modifications to the TCP

Cubic algorithm to alleviate the amount of packets lost during

the synchronization episodes.

I. INTRODUCTION

Massive data transfers are the norm in typical cloud sce-
narios, either within the data center itself or between the data
center and the customer premise. In such a scenario, the trans-
port layer, namely TCP, is put under pressure and might suffer
performance problem, e.g., the TCP incast problem observed
when a large number of storage devices simultaneously send
data chunks to a single machine leading to congestion at the
switch servicing the machine [1].

Cloud environments are characterized by plenty of band-
width. Modern versions of TCP such as Cubic, are designed
to work efficiently in such situations as they are able to probe
for available bandwidth in a non linear fashion, unlike TCP
New Reno, which inflates its windows by one MSS per RTT
in stationary regime. However, there is a price to pay for
being more aggressive: the fairness offered by Cubic and other
high speed versions of TCP is not as high as legacy TCP
versions [2]. Several studies also pointed out the appearance of
synchronization among competing Cubic flows [3]. The latter
means that Cubic flows, when competing for a bottleneck, tend
to loose packets at the time instant and the resulting aggregated
throughput time series exhibit a clear Cubic behavior as if a
single flow was active.

In this work, we investigate the issue of synchronization
among TCP Cubic sources in detail. As a motivating example
of the problem, consider the time series of an average conges-
tion window of 10 Cubic TCP flows established between the

same pair of sender/receiver that compete for a shared bottle-
neck, obtained with ns-2, in Figure 1a. The clear Cubic shape
that appears regularly indicates that the flows are synchronized
(for more details on TCP Cubic, see Section III). Note that the
code of Cubic in ns-2 is a fork of the one in the Linux kernel.
One can obviously argue that the simulations set-up does not
catch the complexity of a real operational IP network, and
thus synchronization might be the result of idealized simulation
conditions. This is why we present in Figure 1b the congestion
window evolution of 10 transfers in parallel between a server
in Amazon data center of Oregon and a server in our lab.
We have obviously no control on the path, but we can clearly
observe two periods highlighted by red rectangles where the
majority of flows are synchronized.
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(a) Average window size (ns-2): 10 TCP Cubic flows,sharing a
common bottleneck
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(b) 10 TCP Cubic transfers between I3S and Amazon EC2 data center
of Oregon

Fig. 1: Synchronization in TCP Cubic

We study the extent and the root causes of synchronization
using an experimental approach with a testbed hosted in
our lab combined with simulations. The former enables to
experiment with actual protocol implementation in a controlled
environment while the latter permits to explore a wider set of
network scenarios.

Our contribution to the study of the synchronization of TCP
Cubic are as follows:



• We experimentally establish the relation between the
existence and extent of synchronization with key pa-
rameters like RTT and buffer size. We demonstrate
the resilience of synchronization to background traffic,
and how the Fast Convergence option, which aims at
making Cubic more fair to fresh connections, catalyzes
synchronization. For this point and the subsequent
ones, we use New Reno as a reference point.

• We demonstrate that several factors contribute to the
appearance of synchronization in TCP Cubic: (i) the
rate of growth of the congestion window when a Cubic
source reaches the capacity of the network and its
relation to the RTT of the connection, (ii) the way the
congestion Cubic tracks the ideal cubic curve in the
kernel, (iii) the competition among the Cubic sources
and the aggressiveness of the sources that did not
experience losses during the last loss episode.

• We propose and evaluate two approaches to reduce
the level of synchronization and hence the loss rate
of TCP Cubic transfers. Perhaps more importantly, we
provide hints that synchronization is the price to pay to
have a high-speed TCP version that needs to explore
the available bandwidth in the network in a super-
linear manner. It is probable that we can alleviate
synchronization, as our modifications of TCP Cubic
do, but eliminating it out completely will be a complex
task.

II. RELATED WORK

A. TCP Cubic

Various congestion control strategies for TCP have been
designed to meet the ever-changing networking requirements
of the Internet, especially Cubic TCP [4], which is the default
TCP version in recent Linux kernels, Fast TCP [5] or CTCP
[6].

The focus of this paper is on Cubic, which is characterized
by a Cubic window growth function [4]. The aim of Cubic
is to achieve a more fair bandwidth allocation among flows
with different RTTs (round trip times) by making the window
growth independent of the actual RTT.

In order to understand how Cubic behaves in data centers,
we designed a fluid model for Cubic, presented in [7], that
allows to predict various metrics, such as distribution of
the window sizes of N long-lived competing connections,
throughput, RTT, loss rate and queue size. The model is
validated against ns-2 simulations in typical cloud scenarios.
The fit is very good when Cubic operates in TCP mode, while
it is less satisfactory when in pure Cubic mode. The reason
behind this latter observation is that our model does not capture
the high synchronization among the competing flows.

B. Synchronization

In [3], Hassayoun and Ros found that high-speed versions
of TCP may be prone to strong packet-loss synchronization
between flows. The authors studied several high speed version
of TCP and observed, through simulation, the existence of
synchronization among sources for all flavors of high-speed
TCP.

In [8], the same authors evaluate the potential impact of the
Random Early Detection (RED) queue management algorithm
on high-speed TCP versions. They study the relation between
buffer size, active queue management and loss synchronization.
Their study focuses on several metrics: loss synchronization,
goodput, link utilization, packet loss rate, and convergence to
fairness for high-speed flows. For large buffers, RED strongly
reduces the synchronization rate as expected, whereas with
droptail, the fraction of synchronized sources is often close
to 100%. In contrast, with medium to small buffers, the loss
synchronization is roughly similar with both types of queue
management strategy.

III. BACKGROUND ON TCP CUBIC

A. Window variation in TCP Cubic

When in congestion avoidance, TCP Cubic features two
modes of operations, the so-called TCP and Cubic modes
[4]. The TCP mode is to be used in low bandwidth delay
products (BDPs), while the Cubic mode is triggered for high
BDPs. Each mode corresponds to a specific way of increasing
the window size and is determined by the following pair of
equations:

wc(t) = C(t− VCubic)
3 + wmax (1)

wtcp(t) = wmax(1− β) +
3β

(2− β)

t

R(t)
(2)

where wmax is the congestion window prior to the last loss
event1, R(t) is the estimated RTT of the connection, β and
C are constant values usually set to 0.2 and 0.4, respectively,
and VCubic =

3

�
βwmax

C . The congestion window size cwnd(t)
is set to max(wc(t), wtcp(t)) upon each ACK reception. TCP
Cubic is thus said to operate in Cubic mode (resp. TCP mode)
if the maximum is wc(t) (resp. wtcp(t)).

The equation of wc(t) is designed in such a way that
when a TCP Cubic connection is operating in the cubic mode,
it converges quickly to wmax. Then it plateaus for a while,
before increasing again to probe the link to sense whether
more bandwidth is available in the path (see Figure 2).

Upon detection of a loss, wmax is set to the last congestion
window cwnd(t), before the congestion window be reduced
by 20%. In case the last wmax was larger than the congestion
window when the loss is detected, and if the Fast Convergence
mechanism is applied, wmax is set to 0.9∗cwnd. This is what
happens in Figure 1a where we observe that the plateau is
sometimes at a lower level than the maximum.

Another major difference between Cubic and previous
TCP versions is that the congestion window increase is not
correlated to the RTT. Indeed the amount of packets by which
the congestion window must be increased depends only on
the time elapsed since the last congestion event. In contrast,
with standard TCP, flows with very short RTTs increase their
congestion windows faster than flows with longer RTTs.

Concerning the TCP mode, we can note that wtcp(t)
depends both on the RTT of the connection and the time

1Note that wmax is varying over time but is constant between two loss
events. This is also the case for VCubic.



elapsed since the last loss event. Thus, in practice, when the
RTT is low, wtcp(t) ensures that the window increase of TCP
Cubic is not slower than one of New Reno.

B. TCP Cubic mode of operation

TCP operates either in TCP or Cubic modes. The Cubic
mode depends on the bandwidth delay product of the path,
through the value of wmax, while the TCP mode depends on
the RTT. The net result, for a given path with a minimum
latency RTTmin, is that TCP Cubic operates either in TCP
or in Cubic mode. We can observe an alternation of modes if
RTTmin is below the threshold that triggers Cubic while it is
above when the buffer starts filling up and the RTT increases.
At 100 Mb/s, the latency of the path that ensures that TCP is
always in Cubic mode is 39 ms, while at 1Gb/s, it is 18 ms.

To find those values, one needs to consider the difference
D(t, RTT,wmax) = wc(t)−wtcp(t). We can see in Figure 2
that this difference first increases with t, then decreases and
increases again. We set RTT to RTTmin as wtcp(t) decreases
with an increasing RTT. The minimum of the function is
obtained for:

t0(RTT,wmax) =

�
β

C(2− β)RTT

� 1
2

+ VCubic .

One next finds RTTmin such that D(t, RTTmin, wmax) is
positive, which ensures that the Cubic mode dominates.

Fig. 2: Congestion window growth of TCP Cubic in Cubic and
TCP modes.

IV. EXPERIMENTAL SET-UP

A. Testbed

We have created a set of experimental scenarios in our
laboratory using the testbed presented in Figure 3. It consists
of 3 multi-core Dell servers, 2 acting as TCP client or server
and one as router. All links are 1 Gb/s links. The router uses
netem 2 to control the path latency and capacity, and also the
buffer size at layer 3. We use the default FIFO/droptail as
server scheduling/queue management policy at the bottleneck.

Various scenarios are created by varying the latency and
buffer size. We set the buffer size at the router to {10%,
30%, 50%, 100%} of the bandwidth delay product BDP (i.e.,
the product of the minimum latency and the capacity of the
path). For each scenario, we compare the performance of
Cubic with the ones of NewReno. NewReno is used here as a

2http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

baseline for comparison as it is known to be less sensitive to
synchronization than any high speed TCP version.

Fig. 3: Experimental network setup

B. Scenarios

We consider, similarly to [7], several typical cloud net-
working scenarios:

• Scenario A - Cloud-clients. We consider here a set
of clients that simultaneously download content from
a data center (DC). We assume that they share the 1
Gbps access link of the DC and that they have a low
path latency to the DC, 20 ms (a typical latency for
FTTH clients in France).

• Scenario B - Intra-DC. We consider a set of transfers
within a data center (DC) where the path capacity is
set to 1 Gbps while the latency is low, 1 ms, reflecting
the small physical distance between the servers.

• Scenario C - Inter-DC. This scenario is similar to the
previous one, except that the path latency is one order
of magnitude higher. We consider 50 ms of latency.

Links between machines in our testbed are at 1Gbps.
However, we cannot operate netem at such a high speed when
controlling both the capacity and the buffer size. We thus
constrain the capacity to 100 Mb/s and we inflate the latency
of the path in such a manner that the bandwidth-delay product
of the path be the same or similar to the consider scenario.

V. SYNCHRONIZATION IN TCP CUBIC

A. Cloud center scenarios

1) Scenario A (Cloud-clients): Table I contains the targeted
(ideal) parameters of the scenario, as well as the ones used in
our testbed due to our technical constraints. Note that we define
hereafter the bandwidth-delay product of a path (BDP) as the
product of the capacity of the bottleneck and the minimum
latency of the path.

Ideal parameter Testbed parameter
Throughput 1 Gbps 100Mbps
RTT (ms) 20 200
Buffer size (packet) 50 [0.1, 0.3, 0.6, 1]* BDP
BDP (packet) 1667 1667

TABLE I: Cloud clients scenario

We vary the buffer size at the bottleneck from 10% of the
BDP to 100% of the BDP for both Cubic and New Reno. We
report results only for 100% BDP owing to space constraints.



Time series of the total window size of one of our
experiments taken at random (which were all quantitatively
and qualitatively similar), summed over all the connections, is
presented in Figure 4, for both Cubic and TCP New Reno.
From this figure, we note that:

• The congestion window for Cubic reaches larger val-
ues compared to New Reno. This means that the
number of packets above BDP + BS is larger in
Cubic than in New reno, which causes more losses
with Cubic.

• Cubic flows are more synchronized than New reno.
This is indicated by the window reduction during loss
episodes closes to 20%. Indeed, a reduction of 20% of
the aggregated congestion window is only possible if
all sources experience packet looses simultaneously.
In contrast, in the New Reno case, flows are less
synchronized giving an overall window decrease after
loss clearly smaller than 50% (NewReno decreases its
congestion window by 50% upon loss detection).
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Fig. 4: Total window size

2) Scenario B (Intra-DC): Table II contains the targeted
(ideal) parameters of the scenario, as well as the ones used in
our testbed.

[7] parameter Testbed parameter
Throughput 1Gbps 100Mbp
RTT (ms) 1 10
Buffer 50 1000
BDP 84 84

TABLE II: Intra-DC scenario

The BDP for this scenario is equal to 84 packets. If one
adds to it a buffer size equal to the BDP, it gives an average of
1 packet per flow which is low for our 100 flows in parallel.
In such a scenario, the Linux kernel reduces automatically the
MTU to values as low as 40 bytes. This phenomenon leads to
different congestion window sizes to obtain a fixed bandwidth,
making the analysis of results more complex. To work around
this issue, we used a larger buffer of 1000 packets.

We report in Figure 5 the time series of the average
congestion window of both Cubic and New Reno. Note that
in this case, Cubic operates in the TCP mode, and therefore,
a smaller synchronization is detected. Indeed, the reduction of
the total congestion window is less than 20%. Figure 6 shows

clearly that the number of losses per congestion event and
synchronized flows approaches the one of New Reno TCP.
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Number of synchronized flows

Number of lost packets at every loss event

(a) Cubic, BS = 1000 packets
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(b) New Reno, BS = 1000 packets

Fig. 6: Number of synchronized flow and lost packets at each
congestion epoch

3) Scenario C (Inter-DC): Table III contains the targeted
(ideal) parameters of the scenario, as well as the ones used in
our testbed.

For large BDP, the congestion window growth for New
Reno is much slower compared to Cubic, so we double the
simulation time for New Reno to 200 seconds instead of 100.
For the sake of space, we only we present the results for BS
= 0.6 BDP.

With the larger BDP of this scenario, Cubic TCP operated
in its cubic mode and we observe again a high synchronization



[7] parameter Testbed parameter
Throughput 1Gbps 100Mbp
RTT (ms) 50 500
Buffer 500 [0.1, 0.3, 0.6, 1]* BDP
BDP 4167 4167

TABLE III: Inter-DC scenario

of Cubic sources – see Figure 7, where the number of
synchronized flows for Cubic is close to 100 while it is below
30 for NewReno.

(a) Cubic, BS = 0.6 BDP

(b) New Reno, BS = 0.6 BDP

Fig. 7: Number of synchronized flow and lost packets at each
congestion epoch

B. Synchronization vs. background traffic

A well-known mechanism to combat synchronization con-
sists in introducing randomness into the network. This can be
done by introducing background traffic or inducing random
drops through an appropriate buffer management mechanism
such as RED [9].

It is known that RED can indeed break synchronization
among Cubic sources [8], even though the results in [8] where
obtained purely through simulation. We tested in our tesbed
the resilience of synchronization to background traffic. We
thus performed again experiments with Scenario C, where
synchronization was highly pronounced, adding 100 short
flows during the experiment. These flows are short scp transfer.
They form a Poisson process with mean inter-arrival time of
1s. The files sent through scp have a size equal to 2MB.

Background traffic starts at time t = 200 seconds in Figure
8. We can notice that the overall window is reduced and
reaches a value lower than 2BDP, but the Cubic shape of
the average window persists, meaning that all flows are still
synchronized.

Fig. 8: Time series of window size (packets) with and without
background traffic, BS= 1 BDP

C. The impact of Fast Convergence

Fast convergence (FC) is designed to make Cubic more fair
as it leaves a chance to fresh flows to grab some bandwidth.
It is thus not advisable to unset this option in the general
case. Still, when focusing on the issue of synchronization,
FC becomes a potential suspect of synchronization. Indeed,
when performing FC, a source sets its wmax to a value lower
than the estimated available bandwidth (the congestion window
at the moment where loss occurs). As a consequence, when
the number of flows is constant, as it is the case in our
experiments, when a source performs FC, it will reach the
available throughout (its share of BS+BDP ) in an aggressive
manner –see for instance Figure 1a. This aggressive behavior
around the equilibrium point can make all sources (even the
ones that would plateau at this level) loose some packets and
thus enforce their synchronization.

To test the relation between FC and synchronization, we
performed again experiments with Scenario C with an without
FC for a typical run. We report in Figure 9 the average window
time series and its distribution, with and without FC. As the
extent of window oscillations remains similar, we can conclude
that FC is not the only factor behind synchronization.

Fig. 9: Time series of total window size (packets) with and
without FC, BS= 1 BDP

VI. ROOT CAUSE OF SYNCHRONIZATION

As observed in Section V, TCP Cubic experiences more
losses than standard TCP per congestion event. Therefore,
Cubic senders have a higher probability to be synchronized.

Intuitively, high speed TCP variants are more aggressive
and therefore, lead to a higher drop rate as compared to the
legacy New Reno approach, where the congestion window
grows linearly. While this is true for other high speed TCP
protocols, like High Speed TCP, in the case of Cubic, if the



flat part of the cubic function matches the optimal network
capacity, then we can expect to have (at least for this optimal
scenario) a low drop rate. Indeed, Cubic is supposed to slowly
enter and exit the flat part.

In fact, several key reasons explain why TCP cubic flows
synchronize each other:

• First, the way TCP cubic reaches the capacity of the
network, which might correspond to its equilibrium
point (when the cubic curve becomes flat) or not,
depending on the accuracy of the estimate made.

• Second, the way the congestion window actually
tracks the cubic curve in the actual implementation can
worsen the synchronization phenomenon by letting
the source remains a smaller amount of time on its
plateau.

• Third, the competition among TCP Cubic flows where
the aggressive nature of their probing process far
from the equilibrium point can lead to losses for all
competing flows.

We discuss each of these points in details in the remainder
of this section.

A. Behavior of TCP Cubic around the equilibrium point

Let epochstart be the time right after a congestion event
(i.e. t0 = epochstart). Hence, at t0, the Cubic window will
be equal to 0.8 ∗ last cwnd. Using Eq. (1), we can see that
theoretically, whatever the value of wmax and the experienced
RTT are, wc(t) will reach wmax at tmax = epochstart +
VCubic. Furthermore wc(t) will reach wmax + 1, wmax + 2,
wmax+3 and wmax+4 at tmax+1.35s, tmax+1.7s, tmax+
1.95 and tmax+2.15. Therefore, while there is 0.35s between
wmax+1 and wmax+2, there is only 0.2s between wmax+3
and wmax + 4. Indeed, as wc(t) moves aways from wmax, it
increases faster. Figure 10 provides a graphical description of
the period length between 2 successive expected increases of
the congestion window.

Fig. 10: Target Evolution

Consequently, three different scenarios can be drawn, based
on the relative positions of the flat region and the total network
available capacity, i.e. BDP+BS. We seek to understand when
a source is going to send more than one packet in an RTT when
reaching the network capacity. Indeed, if each source adds a
single packet, like in New Reno, synchronization should be

mild. If they send two packets or more, synchronization will
be high.

First scenario: wmax = BDP +BS. If cwnd = wmax+1
leads to a congestion, since between wmax +1 and wmax +2
there is a period equal to 0.35s, flows with a total RTT (i.e.
propagation delay plus buffering time) smaller than 0.35s will
detect the congestion at wmax + 1. Flows with RTTs larger
than 0.35s can potentially detect the congestion only when
at wmax + 2 (i.e., in a single RTT, such a Cubic flow will
increase twice its congestion window). Note that whatever the
RTT experienced by New RenoTCP, this last protocol is able
to detect a congestion when the congestion window exceeds
the total network capacity by only 1 packet, since it increases
its window by at most one MSS per RTT.

Second scenario: wmax = BDP + BS − 1. When
wc(t) = wmax + 2, congestion occurs but since between
wmax+2 and wmax+3 there is a period equal to 0.25s, if the
total RTT is larger than 0.25s, the connection will potentially
increase its congestion window twice (or more depending on
the experienced RTT) ending with a congestion window equal
to wmax + 2 or more.

Third scenario: wmax = BDP+BS+1. If wc(t) = wmax

already exceeds the total network capacity by one packet, since
between wmax − 1 and wmax there is a period equal to 1.35s,
theoretically, only flows with an RTT larger than 1.35s will
increase twice their congestion windows before detecting a
congestion. Hence, after a congestion event, wmax will be set
again to wmax = BDP + BS + 1 and the number of losses
will be small. We want to highlight that the theoretical Cubic
target is able to converge to a wmax = BDP +BS + 1 from
any wmax value, like shown in Figure 11.

Fig. 11: Converge properties of the optimal congestion window
(BDP +BS = 80).

To sum up the three above scenarios: (i) overestimating
the bottleneck is not a big issue as there is little chance
that the sources increases several times its congestion window
when entering the flat region (it should be larger than 1.35s);
(ii) precisely estimating the bottleneck precisely means that
the source will be too aggressive if the RTT is larger than
0.35 s and (iii) if the source underestimates the capacity, the
RTT for which it becomes too aggressive is 0.25s. The latter
scenario is thus the more dramatic one. We can note that Fast
Convergence, that forces to set its wmax equal to 0.9 ∗ wc(t)



upon a loss leads exactly to the latter scenario. FC is thus a
net contributor to the too high aggressiveness of a TCP Cubic
source.

As an illustrative example, the Amazon EC2 experiment
presented in Figure 1b was a case where the base RTT
(measured by ping) was 190 ms. Hence, when adding the
buffer size along the path (which we do not know), being
above 250 ms is clearly an option. This RTT combined with
the use of Fast Convergence explains why we observe episodes
of synchronization.

The above analysis assumes a perfect source in isolation. In
practice, the actual implementation as well as the competition
among Cubic flows worsen the situation as we discuss below.

B. Tracking of cubic function in the actual implementation of

TCP Cubic

In the real life, the tracking of the target window is not
perfect. We have extracted the algorithm used by TCP Linux
from ns-2, which is supposed to be the same as the one in
some Linux kernels, to build our own simulator and be able
to trace the several variables used inside. We have found that,
assuming a constant reception of ACKs and a total RTT of
one second, when the congestion window reaches wmax, it
will stay in the flat region for period shorter to 1.35s (around
0.8s as we can see in Figure 12). Such a result was confirmed
by ns-2 assuming the same RTT. Staying a shorter period on
the plateau can lead to have too many losses when getting
above the network capacity.

Fig. 12: More real Cubic congestion window evolution.

C. Competition around the equilibrium point

Let us suppose that during a given congestion event, the to-
tal capacity was exceeded by n packets only (where n is equal
to the number of flows) as the legacy New Reno version of
TCP does, and that the congestion window of each Cubic flows
was equal to the actual share that each connection deserves.
In this scenario, it is highly likely that not every flow would
experience a packet loss. Put differently, the synchronization
between flows would be low. However, those Cubic flows
that did not experience losses will enter their convex region,
and thus their congestion window will grow faster and during
the next congestion event, the number of dropped packets
will increase. This will finally lead to a high synchronization
between flows. Figure 13 illustrates graphically our arguments
provided in this paragraph by zooming on a specific moment in
time of one simulation we performed. We observed a first loss

event where only two flows are affected. We next observe that
the flows that experience losses will soon again plateau around
the equilibrium point. In contrast, the ones that did not loose
enter the aggressive probing part of the cubic curve. Even, if
they are just leaving their plateau as it is the case here, the
number of losses that they induce in the buffer is such that all
four sources losse packets at the same time instant, i.e., they
become synchronized.
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Fig. 13: Cubic leading a to a high synchronization

D. Discussion

From the analysis presented above, it is clear that the
RTT of the connection plays a key role to determine the
level of synchronization we might expect. Referring back to
the methodology presented in Section V, it becomes clear,
in light of what we discussed in this section, that increasing
the RTT to obtain the same BDP as in the ideal cloud
scenarios that we devised, was introducing a bias towards more
synchronization. For the intra data-center scenario (scenario B)
where the ideal RTT was 1ms, synchronization is likely not
to occur. This is confirmed by our experimental results (see
Figure 6a) because the RTT in the experimental testbed is still
low (10ms). It should be the same in the inter data-center
case (scenario C) where the ideal RTT is 50 ms, while we
observed synchronization by working at 500 ms. It is even
highly possible that Cubic operates in the TCP mode and
not the Cubic mode in such a scenario, in which case the
means-field model that we proposed in [7] demonstrated that
no synchronization should be present.

As illustrative examples of the above points, we report in
Figure 14a a typical experiment made between a pair of servers
in the Oregon data center of Amazon where the RTT was in
the order of a ms. We never observed any synchronization in
this case (out of the numerous trials we made). While Figure
14a reports the congestion window of each individual flow,
Figure 14b reports the aggregate congestion window and we
can observe that it never decreases by 20% (as 80% of 1200
is 960 and we are always above this line).

The previous experiment was obtained with 10 flows. With
100 flows between the pair of servers, we observe in Figure
15 that the flows now operate in the TCP mode of Cubic with
no synchronization.

However for the case of a remote client or distant data
centers transfers, synchronization is likely to pop up. The
Amazon EC2 experiment in Figure 1b is a good illustration
of this point. Additionally, since flow synchronization leads
to a reduction of around 20% of the total traffic, buffer sizes
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smaller than 20% of the expected average BDP can lead to an
under utilization of the available bandwidth, specially if the
maximum experienced RTT of the traffic exceeds 250ms.

VII. ALLEVIATING SYNCHRONIZATION

In this section, we aim at investigating solutions to work
around the problem of synchronization faced by TCP Cubic.
As the root of the problem lies in behavior of TCP around
the equilibrium point, we investigated the two following ap-
proaches:

• First, we linearize TCP Cubic when it operates close

to its plateau. More precisely, we enforce TCP to
increase by one MSS per RTT in the range [wmax −
2, wmax + 2]. We call this modification LinCubic.

• Second, as we observed that the actual implementa-
tion was not accurately tracking the cubic curve, we
devised a version that fulfills this goal. We call this
modification AccuCubic.

To evaluate the impact of those different modifications, we
implemented them in ns2 and started observing their behavior
in the case of a single flow. We consider a link capacity equal to
1Mbps, a latency equal to 500ms and a buffer size equal to one
BDP (41 packets). The network capacity is thus wmaxideal =
BDP +BS = 82 packets. In Figures 16a and 16b, we report
the evolution of the congestion window.

We can observe that FC indeed plays a significant role. It
globally worsens the situation for Cubic and LinCubic, but not
for AccuCubic. We observe that LinCubic performs very well
by precisely tracking the network capacity with or without FC.
We have no clear explanation why AccuCubic prefers that FC
be turned off.

We further tested the potential benefit of those modifica-
tions in the case of 100 flows competing for the bottleneck.
We consider various scenarios by varying the RTT from 100 to
500 ms and considering different buffer sizes from 0.1×BDP
to 1 BDP. For each scenario, we performed 10 runs. We report
the number of synchronized flows in the case of 500ms and a
buffer size equal to one BDP in Figure 17 for a typical run.
Results are consistent with the case of a single flow: LinCubic
noticeably decreases the number of synchronized flows as well
as AccuCubic when FC is turned on.

At this stage, we believe that even if the behavior of
TCP Cubic can be improved, as exemplified by LinCubic
and AccuCubic, the solution to combat synchronization might
not be only sought in the TCP implementation itself. Indeed,
those improvements might always be partly mitigated by the
competition among Cubic flows outlined in Section VI-C.
Solutions to the problem of synchronization should thus also
be looked for outside TCP itself, e.g., through the use of buffer
management mechanisms like RED or Codel [10].

VIII. CONCLUSION

In this work, we have explored in detail the root causes
behind the synchronization of TCP Cubic flows that can be
easily observed through simulations for instance. We made
use of a combination of experiments in a testbed, simulations
and some experiments in the wild to analyze the extent of the
phenomenon.

The controlled nature of our testbed enabled us to precisely
analyze the phenomenon of synchronization and discover its
root causes. Simple experiments in the wild (with a distant
EC2 datacenter) confirmed that the phenomenon can affect real
world transfers.

We discovered that while TCP cubic is known to provide a
form of fairness by making the window growth independent of
the RTT of the connection (which TCP NewReno is unable to
do as the window growth is tightly coupled to the RTT of each
connection), synchronization is a subtle result of the interaction
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between: (i) the way TCP Cubic reaches the capacity of the
network, (ii) the relation between the RTT of the connection
and the window growth of the cubic function that occurs
at specific time instant. In addition, Fast Convergence, that
biases the estimate of the capacity made by TCP Cubic to
give a chance to other connections to grab some bandwidth,
significantly increases the synchronization phenomenon. Last
but not least, even with a perfect estimation of the bottleneck

capacity, synchronization can occur starting from an unsyn-
chronized situation where some flows loose while some others
do not. Indeed, the sources that did not loose are likely to start
probing aggressively (due to the shape of the cubic function)
which can result in massive losses for all flows later on. This
can be observed especially if the RTT is large. When the
RTT is low for all connection, TCP Cubic is quite immune
to synchronization.

We proposed and evaluated two modifications to the TCP
Cubic algorithm that aim at combating synchronization. They
improved noticeably the situation and we intend to explore
how they can combined with advanced queuing mechanisms
like CoDel, to further reduce synchronization.

We also want to explore data center scenarios with a high
dynamics in the number of flows and especially a competition
between short and long flows. Due to the noise induced by
short flows, long flows are likely to underestimate the network
capacity, which, as we have seen, can lead to too many packets
sent when reaching the actual capacity, and thus possibly,
synchronization.

ACKNOWLEDGMENT

This work was parly supported by AWS in Education Grant
award.

REFERENCES

[1] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-
grained tcp retransmissions for datacenter communication,” SIGCOMM

Comput. Commun. Rev., vol. 39, no. 4, pp. 303–314, Aug. 2009.
[2] Y.-T. Li, D. Leith, and R. Shorten, “Experimental evaluation of tcp pro-

tocols for high-speed networks,” Networking, IEEE/ACM Transactions

on, vol. 15, no. 5, pp. 1109–1122, Oct 2007.
[3] S. Hassayoun and D. Ros, “Loss synchronization and router buffer

sizing with high-speed versions of TCP,” in IEEE Infocom Workshops,
2008, pp. 1–6.

[4] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant.” Operating Systems Review, vol. 42, no. 5, pp. 64–74, 2008.

[5] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: motivation,
architecture, algorithms, performance,” IEEE/ACM Trans. on Netw.,
vol. 16, no. 6, pp. 1246–1259, 2006.

[6] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound tcp
approach for high-speed and long distance networks,” in IEEE Infocom,
2006.

[7] S. Belhareth, L. Sassatelli, D. Collange, D. L. Pacheco, and G. Urvoy-
Keller, “Understanding tcp cubic performance in the cloud: A mean-
field approach,” in CLOUDNET, 2013, pp. 190–194.

[8] S. Hassayoun and D. Ros, “Loss synchronization, router buffer sizing
and high-speed tcp versions: Adding red to the mix,” in IEEE LCN,
2009, pp. 569–576.

[9] J. Lee, J. P. Hespanha, and S. Bohacek, “A study of tcp fairness in
high-speed networks,” Tech. Rep., 2005.

[10] K. M. Nichols and V. Jacobson, “Controlling queue delay,” Commun.

ACM, vol. 55, no. 7, pp. 42–50, 2012.


