
HTTP Adaptive Streaming and Access Router
Management: the Users’ and Network’s Perspectives

Sergio Livi, Lucile Sassatelli, Guillaume Urvoy-Keller
Université Côte d’Azur, CNRS, I3S - Sophia Antipolis, France

Emails: {first.last}@unice.fr

Abstract—The share of video streaming in the Internet traffic
is expected to reach 80% by 2019. To deliver these video
services in possibly strained settings and to meet with the users
requirement of anywhere and multi-screen experience, HTTP
Adaptive Streaming (HAS) is gaining momentum. However, TCP-
transport of HAS flows is known to entail a number of issues
both on Quality of Experience (QoE) and network metrics.
Thanks to testbed experiments, we examine the video streaming
performance in a home access scenario by exposing the interplay
between the video rate adaptation logic (Buffer-Based -BBA, or
Rate-Based -RBA) and the buffer sizes and policies (Droptail,
Active Queue Managements - AQMs). A main finding is that
AQMs move the bulk of TCP losses from the initial burst
and ACK-trailing phases, problematic to HAS flows, to the
more favorable ACK-clocking phase. We thereby show that
implementing AQM CoDel at the access router is a simpler
means, working for any family of client’s adaptation, to improve
QoE and network metrics than striving to smooth out the
HAS bursts by pacing at the client or middleboxes, as previous
approaches do.

I. INTRODUCTION

According to [1], “Globally, IP video will represent 80
percent of all traffic by 2019, up from 67 percent in 2014”.
To deliver Over The Top (OTT) video services in possi-
bly strained settings (variable and limited bandwidth due
to difficult wireless channels or congested access networks)
and to meet with the user’s requirement of anywhere multi-
device multi-screen experience, OTT and IPTV systems are
increasingly adopting HTTP Adaptive Streaming (HAS) (e.g.,
BT’s platform YouView [2]), now standardized as MPEG-
DASH (ISO/IEC 23009-1:2014). Videos are chopped into
segments of fixed duration. The goal is to choose the requested
video rate for each segment so as to ensure high user’s Quality
of Experience (QoE), meant to represent users’ perception of
the video playback (metrics are given in Sec. III). Different
video rate decision algorithms exist and consider different
decision criteria. We can isolate two main families: rate-based
(RBA) and buffer-based (BBA) algorithms, both of which try
to maximize the video bit rate - by fitting it to the estimated
network bandwidth for RBA, and to the buffer occupancy for
BBAs (to avoid stalls as much as possible) [3].

Furthermore, the main advantages that drove OTT video to
be carried through HTTP is that the transport protocol is TCP,
thereby assuring middlebox traversal (HTTP on TCP port 80
is seldom filtered out) and Internet stability by the very aim
of TCP. Owing to the peculiarities of HAS flows, their TCP
transport entails however a number of issues highlighted in

[4], [5], which have both showed that even a single HAS
flow can cause a router’s buffer overflow. The loss pattern
being critical to HAS performance [4], the queue management
policy at the bottleneck router is pivotal to QoE. In order to
combat the full buffer problem, known as bufferbloat, Active
Queue Management (AQM) policies have been designed to
limit the inflation of queuing delays. However, the deployment
of Random Early Detection (RED) and its adaptive version
ARED [6] has been hindered by the need for parameter tuning.
To remedy these problems, CoDel, has been designed to spare
from any knob tweaking [7] and addresses the excessive
available buffer size (e.g., todays access routers can hold tens
to hundreds packets [5]).

The goal of this article is therefore to investigate, through
testbed experiments, the impact on QoE and network metrics
of the interplay between the type of HAS algorithm (RBA and
BBA) and the buffer size and management policy. Our focus
is specifically of a access router handling a restricted number
of HAS flows. This scenario where the access router becomes
the bottleneck of HAS flows is even more realistic considering
the increase of video viewings per household and the content
being stored close to the user in CDN or in-ISP caches. Our
contributions are threefold:
• For a single client, the QoE metrics are not significantly
impacted by the buffer sizes and management. The network
metrics are however, and we unveil how AQMs help the HAS
flows to obtain a better link utilization. By analyzing the
loss location patterns, we identify that ARED and CoDel can
achieve the same pacing result as the approaches proposed in
the literature [5], [8] to mitigate the bad effect of the interplay
between TCP and HAS on QoE and link utilization.
• We show and analyze why large buffers with Droptail can
increase the re-buffering ratio of RBA and BBA, with static
and variable channels. In particular, we identify two major
issues they entail: to the TCP congestion window, and to the
HTTP request structure.
• With Droptail and moderate to large buffers, the quality
fairness degrades, specifically for BBAs which perform up to
150% worse than RBA in the 2-client constant and variable
bandwidth cases, which are typical household streaming con-
ditions. We explain why it is so, and show that the unfairness
decreases dramatically with AQM.



II. RELATED WORKS

Both Droptail (DT) and RED policies have shown incapable
of preventing HAS flows from saturating large buffers [5], [4].
To the best of our knowledge, neither ARED nor CoDel have
been evaluated for HAS performance. Only AQM policies
involving mainly service differenciation have been considered
so far for streaming flows, e.g., [9] and WiFi Multimedia
(WMM, based on IEEE 802.11e). The impact of losses on
TCP-carried HAS flows has been dissected in [4]. These flows
have indeed very specific features: (i) the ON/OFF behavior
generates regular bursty short-lived flows, corresponding to
successive segment transfers, similar to small web objects, but
(ii) the TCP connection is usually in persistent mode (no reset
of the TCP congestion window at each segment download).
We build on the analysis of [4] to investigate how the buffer
size and management impacts the clients’ QoE, depending on
the HAS algorithm and client contention.

Some solutions (such as [5], [10], [11]) have been designed
to alleviate these problems entailed by the peculiarities of HAS
flows. For example, Sabre [5] modifies the client application
so that it controls the rate at which the socket buffer is drained,
in turn controlling the TCP advertised receive window. It is
worth noting that, doing so, the downloading rate experienced
by the client gets modified and the RBA must be turned into
a simple two-level buffer-based. This reveals how the rate-
decision algorithm, TCP and the queue management policy
are entwined in the resulting QoE. Our goal is not to design
a better HAS algorithm or AQM, but instead to consider rep-
resentative classes of each and uncover the exact mechanisms
involved in their interplay. We consider these classes being
RBA of [12, Sec. 4.2], BBA of [3], DT, ARED and CoDel.

Complementarily to [3], [13], our work serves also as a
detailed evaluation on a controlled testbed of the performances
of BBA [3] in terms of QoE and fairness, on static and variable
channels, for different buffer sizes and managements.

III. EXPERIMENTAL SETUP

Testbed: We have made our testbed publicly available at
[14] for results reproduction. It is made of: (i) a Virtual
Machine (VM) for each client with VLC in which the HLS
implementation is used and the HAS algorithms of [12, Sec.
4.2] and [3] are coded; (ii) a VM for the HTTP server
which is a simple node.js instance serving static files; (iii)
two VMs emulate the network using the tc-netem Linux tool
from the traffic control suite to shape the traffic according to
the desired delay, bandwidth and buffer size. The servers use
TCP Cubic. The libcurl library is used to allow the reuse of
the TCP connection over the successive segment downloads.
We make the bottleneck link bandwidth vary from 600 Kbps
to 3Mbps, multiplied by the number of clients. Round Trip
Delay (RTD) denotes the round trip physical latency. Round
Trip Time (RTT) denote the total time between the sending
of a packet and the reception of the TCP acknowledgment
(ACK). RTT is the sum of RTD and queuing delay. RTDs
and Buffer Sizes (BS, in packets) are configured considering a
broadband copper access (DSL). We consider a total downlink

bandwidth and RTD of 10 Mbps and 80 ms. The corresponding
total Bandwidth Delay Product (BDP) is hence BDP = 67
packets. The home access router’s buffer sizes are set to
{6, 1, 0.5, 0.25}BDP . Note that the lower bandwidth per
client mentioned above are adapted to the test video (and can
account for cross-traffic). They would be scaled up and the
results would apply with, e.g, the new identified trend of 4K
videos, requiring at least 15 Mbps bandwidth. Let us specify
that we consider not artificially too high RTDs (similar to,
e.g., [4, Sec. 6] for DSL), which are typical of accessing a
content in a close-by (CDN) cache, as it is prominently the
case today. The variable bandwidth profile is: 4, 2.8, 1.5, 1,
0.6 and 4 Mbps, each for an equal share of the video duration.
Also, the number of simultaneous video clients we consider
is 1 to 3, based on 2.5 person per household [15].

Videos: The video clip we use unless otherwise spec-
ified, is the 10 minute-long movie Big Buck Bunny
(https://peach.blender.org/, same as in [16], [4]): eight bit
rates available, from 350 Kbps to 2750 Kbps, 300 2-second
segments with different sizes (corresponding to variable bit
rates). As a baseline, we also use a constant bit rate 30-minute
clip Apple’s BipBop (https://developer.apple.com/streaming
/examples/basic-stream.html): four bit rates available, from
232 kbit/s to 2 Mbit/s, 10 seconds fixed-size segments.

Algorithms: We consider the two most advanced flavors of
BBAs presented in [3]. BBA2 bases its rate decision on the
playout buffer state and the size of upcoming segments (to
account for variable bit rate), and ramps up the requested bit
rate in the startup phase (when the buffer level is low) based
on bandwidth estimation. BBA3 reins in the bit rate switches to
improve QoE, thanks to a lookahead parameter. We consider
two RBA versions. Classic1 is described in [12, Sec. 4.2] and
[12, Sec. 2]. The bit rate matches an exponential weighted
moving average of the downloading rate of each segment,
to a 0.8 margin. Classic2 proceeds the same way except the
downloading rate of a segment is computed by dividing the
segment size by the duration between the reception of the first
and last bit (while Classic1 considers the duration from the
sending of HTTP request to last bit delivery).

Metrics: Despite the intrinsic subjectivity of such experi-
ence, the multimedia community has agreed on three most im-
portant QoE metrics for video, as defined in [17]: rebuffering
ratio (representing the impact of playback stalls), video quality
(a log function of the video bit rate) and quality instability.
We consider the following metrics, the first three being usual
QoE metrics, the last three being in-network metrics. They are
referred by their acronyms in the next section.
• Re-buffering ratio (RBR): fraction of time spent in stall,
waiting for new data to arrive and resume playing (includes
the startup delay here).
• Average relative bit rate (ARB): bit rate averaged over all
segments normalized by the per-client bandwidth.
• Instability (INS): number of bit rate switches normalized by
the total number of segments [12].
• Quality unfairness (QU): absolute difference between the
averaged quality level of each client, where the bit rates



Fig. 1: Average relative bit rate, 1 client, static bandwidth.

Fig. 2: Average relative bit rate, 1 client, static bandwidth,
BipBop video.

are numbered from 0 then mapped to a percentage scale to
yield the quality levels. QU hence assesses the difference in
perceived visual quality, independently from INS.
• Link utilization (LU): time average (polling intervals are 10
ms) of the actual rate on the bottleneck link normalized by
the per-client bandwidth multiplied by the number of clients.
• RTT inflation (RTTi): time average of RTT seen by a TCP
connection divided by RTD (in percent).

IV. NUMERICAL RESULTS

Each experiment was run twice if one client was involved,
four times otherwise. The 95% confidence intervals are shown.
Apart from Fig. 2, all figures are obtained for Big Buck Bunny
video.

A. General QoE features of the HAS algorithms

We first discuss the ARB and INS QoE metrics in the case
of a single client, to highlight the general properties of the
HAS algorithms considered. Both in the constant and variable
bandwidth cases, there is no re-buffering events (RBR= 0).
Fig. 1 shows that ARB is higher with BBAs than with Classic1,

1000

2000

3000

4000

5000

6000

7000

8000

9000

2750k

2040k

1520k

1130k

845k

630k

470k

350k

segment index

bi
t r

at
e 

(k
bi

t/s
)

Fig. 3: Instantaneous rate of each nominal-rate representation
for Big Buck Bunny video.

Fig. 4: Instability, 1 client, variable bandwidth.

Fig. 5: Link utilization, 1 client, static bandwidth.

but the difference with Classic2 is small, especially for BBA3.
In contrast, it can be verified on Fig. 2 that BBAs consistently
reach a higher ARB than Classics for a constant bit rate
movie. This reflects the basic idea of BBAs: it acts as an
integrator of the excess rate by accumulating on the periods
where the requested bit rate is lower than the downloading
rate, to allow to move up the requested rate from time to time,
thereby increasing the time average ARB, something Classics
are incapable of. This behavior is fully enabled with a constant
bandwidth and constant bit rate video. However with a variable
bit rate-encoded video, the periods where this accumulation
can occur are in some extent balanced out with periods where
the instantaneous rate is higher than the nominal rate of the
segment, thereby reducing the margin between BBAs and
Classics. The instantaneous segment rates for each nominal
rate are represented in Fig. 3. As a direct consequence of the
above observation, Fig. 4 (for variable bandwidth, qualitatively
similar as static bandwidth) shows instability is much higher
with BBA2 than with Classics. As BBA3 strives to limit the
rate switches, its INS gets closer to that of Classics, but
consequently its aggressiveness in ARB is lower. More in
detail, we observe that in the constant bandwidth (single client
case), Classic2 performs as well as BBA3 in terms of ARB,
and better in INS.

Fig. 6: RTT inflation (in %), 1 client, static bandwidth.



Fig. 7: Distribution of loss phases, 1 client, static bandwidth.

B. Single client: QoE and network metrics

Fig. 5 and 6 show the network metrics link utilization (LU)
and RTT inflation (RTTi), respectively. First it can be observed
that the LU (by a single flow here) remains between 85% and
90% for all buffer sizes, queue managements and almost all
HAS algorithms. This is to be related to the results presented in
[4, Fig. 1], where utilization is shown to decrease with RTD
and drop below 80% for RTD> 140ms. Esteban et al. [4]
dissect the download of a segment by breaking it down into
three phases: initial burst, ACK-clocking and ACK-trailing.
If the segment is small enough so that the transfer can be
completed in one or only few RTTs, then the losses in the
startup phase may prevent cwnd (TCP congestion window)
from reaching the optimal value, entailing a low utilization
of the bottleneck link. The losses in the ACK-trailing phase
are very detrimental as the fast-recovery mechanism cannot
be triggered by lack of packets to transmit, the last cwnd
being consequently spuriously shrinked for the next segment.
The extra RTTs needed for the transfer to complete are also
detrimental to the accuracy of the rate estimation (see Sec. III,
Classic1). Hence, despite the sizable increase in RTT depicted
in Fig. 6 (with DT and ARED, due to big buffers), utilization
remains high in our case of RTD= 80ms. Correlating with
[4], we conclude it is the increase in RTD and not in RTT
which is responsible for a low link utilization by HAS flows,
despite the Cubic-transport (meant to handle high RTTs).
Indeed, losses may occur in the burst phase if cwnd>BS,
a necessary condition to maintain high utilization is hence
BS>BDP= bwRTD, which is the case in most samples
considered to average LU (a sample correspond to a per-
client bandwidth): we get lower LU for BS= 25%BDP (total
BDP, see Sec. III) for which case BS= 17 packets, while
RTD.bw = 20 packets for maximum per-client bandwidth of
bw = 3Mbps. The distribution of losses between the three
phases is shown in Fig. 7. The higher number of losses in the
ACK-trailing phase with CoDel explains the utilization slightly
lower than with DT and ARED, though this is mitigated by
the low maintained RTT of CoDel, compared with DT and
ARED. In particular, it is important to observe that CoDel is
able to move the losses from the detrimental burst and ACK-
trailing phases to the ACK-clocking phase, where they are best
corrected (with fast-retransmit, and fast-recovery is possible)
[4]. This important phenomenon has further implications on
QoE, as we shall see for 2 and 3 clients. CoDel is indeed
designed to let pass the initial flow bursts (considered as “good

Fig. 8: Link utilization, 2 clients, static bandwidth.

queue” in [7]), while cutting back belatedly on queue and
hence on cwnd involved in next bursts. Let us finally mention
that CoDel yields more losses than DT and ARED (which
unsurprisingly has similar ability as CoDel to move loss onto
the ACK-clocking phase) in order to better rein in the RTT
inflation. It is also very interesting to observe that, even with
no multiplexing (one HAS alone is considered here), AQM
and CoDel in particular achieve the pacing mechanisms which
used to require client [5] or middlebox [11] modifications.

Furthermore, it is worth noting that, for this 1-client case,
the observed differences in network metrics do not necessarily
reflect on QoE. For instance, utilization of BBA2 and BBA3
is pretty much the same for CoDel 25%, while the obtained
ARBs are significantly different. As shown in the literature,
this highlights that the relation between network metrics and
QoE is not straightforward. Here, we observe that ARB is
more related to the losses than to utilization: the ARB patterns
distinguishing the different HAS algorithms (Fig. 1) are also
found in the total loss levels (Fig. 7). Indeed, unlike Classics,
BBAs do not base the requested rate on the experienced
downloading rate: requesting rates higher than the bandwidth
yields more losses but maintains utilization to a level similar
to that of Classics.

C. Two clients: re-bufferings and large buffers

We now analyze the competition between 2 clients, first for
static per-client bandwidth, as showed in Fig. 8, 9 and 11.
Only DT and CoDel are considered for two clients. We notice
that the differences between the different algorithms are more
pronounced than with a single client. The case DT 600% is
interesting as it corresponds to the case of over-dimensioned
buffer, and yield specific problems. In this case, compared
to BBA3, BBA2 has a lower utilization because, as it can
be seen in Fig. 10, it has a higher number and fraction of
losses in the ACK-trailing phase. BBA2 however gets a higher
ARB because it keeps being more aggressive than BBA3. In
this same case, Classic2 exhibits both a higher utilization and
ARB, despite an even larger number and fraction of losses in
the ACK-trailing phase. This comes however at the cost of
a high re-buffering ratio, shown in Fig. 11 (note that startup
buffering is included, and the log scale).

Remark: The buffer size from which Classic2 is likely to
produce re-bufferings can be estimated as follows. A segment
download is not possible if the duration from the sending of the
HTTP Get to the receiving of the last data packet is higher than



Fig. 9: Average relative bit rate, 2 clients, static bandwidth.

Fig. 10: Distribution of loss phases, 2 clients, static bandwidth.

the segment duration (S seconds), i.e., segment size/bw > S
− RTT . Considering the maximum RTT = bwRTD+ BS,
BS = (1 + α)bwRTD and that the maximum requested rate
by Classic2 is 0.8bw (see Sec. III), we get that a re-buffering
occurs when α > 0.2S/RTD − 1. For bw = 2Mbps, S = 2s
and RTD = 80ms, we get α > 4. Let us mention that no re-
buffering occurred in the single-client case because the buffer
was likely big enough to support the overload incurred by
Classic2. However in the case of two clients, the per-client
bandwidth keeps the same as in the single case (see Sec.
III) but the buffer size does not increase. This produces more
losses, as verified by Y-axis scale in Fig. 10 compared with
Fig. 7. �
The above remark underlines how serious an issue big buffers
handled with DT can be for HAS algorithms. Indeed, for
rate-based decision algorithms such as Classic2, this can
readily incur re-bufferings owing to the underestimation of
the segment download duration. For Classic1, big buffers lead
conversely to an underestimation of the available bandwidth,
hence not making the most of the available resources owing
to protocol design (persistent need of 1 RTT for the HTTP
request). Buffer-based algorithms only partially dodge the
problem as they still work with HTTP request at each segment.
This can be observed in Fig. 11 where, for big buffer and DT,
re-bufferings appear for BBA2 too.

D. Several clients: unfairness

Fig. 12 and 13 show that quality unfairness (QU) is high
for high buffer size for DT. First, for 2 clients and static band-
width, BBAs have a significantly worse QU than Classic2 for
large buffers. Still for DT, increasing the number of clients to 3
worsens QU and blurs the difference between the algorithms.
With variable bandwidth and 2 clients, unfairness gets much

Fig. 11: Re-buffering ratio, 2 clients, variable bandwidth.

Fig. 12: Quality unfairness, 2 clients, static bandwidth.

worse with BBA2 from moderate buffer size (50%BDP), aas
well as with BBA3. This setting is however very important
as it corresponds to a typical home setting where 2 devices
are simultaneously streaming. Why BBAs are more unfair
than Classic2 for large buffer managed with DT (and low
multiplexing) can be explained as follows. As demonstrated
in [8], the players requesting higher bit rates observe a higher
bandwidth. Unlike the RBAs, the BBAs react to a bandwidth
change only through the buffer state, therefore later than a
RBA. The losses in the ACK-trailing phase yield an unfair
bandwidth share. Hence, if a client experiences a loss in the
ACK-trailing phase, the other gets a higher bandwidth share
for several RTT, therefore filling up its playout buffer and
keeping requesting high bit rates. This is illustrated in Fig.
15. We note in passing that BBA3 has not necessarily a better
fairness than BBA2 (e.g., static bandwidth), which means that
a lower instability does not imply a better fairness.

Second, these figures consistently show a significantly better
fairness with CoDel, for all HAS algorithms and buffer sizes.
The reason for having CoDel allowing for a better fairness than
DT lies in the fundamental difference of their respective loss
patterns (see Fig. 10): there are almost no more initial burst
losses and the vast majority of the losses occur in the ACK-
clocking phase. This phase allows to perform a fast-recovery
along with the fast-retransmit upon loss, and hence the TCP
rate is maintained and can ramp up again, thereby ensuring
that the sender does not lose ground against a contender.
The opposite happens when losses occur in the ACK-trailing
phase, and this explains why QU worsens when buffer size
increases with DT. The loss patterns therefore impact the
quality unfairness through the bandwidth share they yield:
a fairer bandwidth share is favored by losses in the ACK-
clocking phase, and hence by AQM.



Fig. 13: Quality unfairness, 3 clients, static bandwidth.

Fig. 14: Quality unfairness, 2 clients, variable bandwidth
(profile 2).

V. CONCLUSION

Thanks to testbed experiments, we have examined the mul-
timedia streaming performance in a home access scenario. We
have exposed the interplay between the video rate adaptation
logic and the buffer sizes and policies (DT, ARED, CoDel),
and the impact on the QoE metrics (video rate, re-bufferings,
instability, unfairness) and network metrics (utilization, RTT
inflation and loss patterns).

First, for a single client, the QoE metrics are not signif-
icantly impacted by the buffer sizes and management. The
network metrics are however, and we unveil how AQMs help
the HAS flows to obtain a better link utilization. A main
finding is that AQMs (and CoDel in particular), move the bulk
of TCP losses from the problematic initial burst and ACK-
trailing phases to the more favorable ACK-clocking phase.

Second, we have identified why large delays entailed by
large DT-buffers are harmful: (i) the extra RTTs spent without
data transfer but required to carry out the HTTP exchange

Fig. 15: Time series of both clients’ bit rates, BBA2, DT-
100%. Pink dashed line is the per-client bandwith, green and
red crosses are the rates requested by each client.

(not yet solved for HAS but partly addressed in HTTP/2) may
lead to a wrong rate estimation (specifically detrimental for
Classic), and (ii) cwnd gets higher hence more harmful bursts
and larger delay, hence more harmful trailing phases.

Third, we have showed that, with DT and moderate to
large buffers, the quality fairness degrades, specifically for
BBAs which perform up to 150% worse than Classic in the
2-client constant and variable bandwidth cases, which are
typical household streaming conditions. Again, CoDel is able
to alleviate the problem for the different HAS algorithms.

A take-away message is therefore that implementing AQM
(CoDel does not require tuning, unlike RED) at the access
router is a simpler means to improve QoE and network metrics
than striving to smooth out the HAS bursts by pacing at
the client [5] or middleboxes [11]. Finally, we point out
that these results also fit within the current trend of UDP-
transport of video flows owing to their need of congestion
control. In particular, QUIC [18], being deployed globally by
Google, encompasses HTTP/2 and Forward Error Correction
mechanisms along with Cubic congestion control.

REFERENCES

[1] Cisco, “VNI Global IP Traffic Forecast, 2014 - 2019.”
[2] Over the Top GStreamer, YouView TV. GStreamer Conference 2014,

“http://gstreamer.freedesktop.org/conference/2014/speakers.html.”
[3] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A

buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” in ACM SIGCOMM, Aug. 2014.

[4] J. Esteban, S. A. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac,
“Interactions between HTTP adaptive streaming and TCP,” in ACM
NOSSDAV, Jun. 2012.

[5] A. Mansy, B. Ver Steeg, and M. Ammar, “SABRE: A client based
technique for mitigating the buffer bloat effect of adaptive video flows,”
in ACM MMSyS, Feb. 2013.

[6] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm
for Increasing the Robustness of RED’s Active Queue Management,”
Tech. Rep., 2001.

[7] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, no. 5, May 2012.

[8] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in http-based adaptive video streaming with FESTIVE,” in ACM
CoNEXT, Dec. 2012.

[9] H. Luo, “Improve delay performance of wireless video streaming with
active queue management,” in IEEE Int. Conf. on Software Eng. and
Service Sc. (ICSESS), Jun 2012, pp. 777–780.

[10] X. Liu, A. Men, and P. Zhang, “Enhancing TCP to Improve Throughput
of HTTP Adaptive Streaming,” Int. J. of Future Generation Comm. and
Netw., vol. 7, no. 1, 2014.

[11] C. Ben Ameur, E. Mory, and B. Cousin, “Evaluation of gateway-based
shaping methods for http adaptive streaming,” in IEEE ICCW, Jun. 2015.

[12] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What
happens when HTTP adaptive streaming players compete for band-
width?” in ACM NOSSDAV, Jun. 2012.

[13] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP,” in ACM
SIGCOMM, Aug. 2015.

[14] Article’s Testbed, “https://github.com/serl/hls-bba-testbed.”
[15] US Census Bureau, “https://www.census.gov/hhes/families/files/graphics/HH-

6.pdf.”
[16] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation

of rate-adaptation algorithms in adaptive streaming over HTTP,” in ACM
MMSyS, Feb. 2011.

[17] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP,” in ACM
SIGCOMM, 2015, pp. 325–338.

[18] J. Iyengar and I. Swett, “QUIC: A UDP-Based Secure and Reliable
Transport for HTTP/2,” in IETF draft, Jun 2015.


