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Abstract- In this paper, we propose to study and op-
timize a very general class of LDPC codes whose variable
nodes belong to finite sets with different orders. We named
this class of codes hybrid LDPC codes. Although efficient
optimization techniques exist for binary LDPC codes and
more recently for non-binary LDPC codes, they both ex-
hibit drawbacks due to different reasons. Our goal is
to capitalize on the advantages of both families by build-
ing codes with binary (or small finite set order) and non-
binary parts in their factor graph representation. The
class of hybrid LDPC codes is obviously larger than ex-
isting types of codes, which gives more degrees of freedom
to find good codes where the existing codes show their lim-
its. We give two examples where hybrid LDPC codes show
their interest.

I. INTRODUCTION
Binary LDPC codes are now well recognized as capacity ap-
proaching codes for various types of channels when the size of
the codeword tends to infinity, and various methods have been
proposed to optimize their irregularity profile with the help of
Density Evolution under Gaussian Approximation (DE-GA)
[2]. Other techniques based on EXIT charts [6] are also re-
lated to DE-GA and lead to the same analysis and optimiza-
tion algorithms. However there are several issues for which
the binary LDPC codes show their limits, we can cite for ex-
ample coded modulations and/or coding for small or moder-
ate block lenghts. For these contexts, it has been shown re-
cently that non-binary LDPC codes can be a good alternative.
They exhibit better performance than their binary counterparts
for coded modulations [3] and for code length typically in the
range N C [500, 2000] information bits [7, 8]. The main in-
terest of non-binary LDPC codes actually lies in the decoder:
good non-binary LDPC codes have much sparser factor graphs
(or Tanner graphs) than binary LDPC codes [10], and the Be-
lief Propagation (BP) decoder is closer to optimum decoding
since the small cycles can be avoided with a proper graph con-
struction, as proposed in [7]. In this paper, we propose to
study a class of hybrid LDPC codes which aims at combin-
ing the advantages of binary and non-binary LDPC codes in
the same coding scheme. The class of hybrid LDPC codes
is a generalization of existing classes of LDPC codes. For
hybrid LDPC codes, we allow the connectivity profile of the
factor graph to be irregular, but also the order of the symbols
in a codeword can be irregular, that is to say, the symbols can
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belong to finite sets with different orders. We depict in sec-
tion II the structure of hybrid LDPC codes and briefly describe
the decoding algorithm. In section III, we recall the existing
work on optimization of non-binary LDPC codes with DE-
GA, and introduce a specific modelization of the messages in
the factor graph which allow an efficient optimization of non-
binary LDPC codes on the binary input Gaussian channel (BI-
AWGN). In section IV, the DE-GA equations for hybrid LDPC
codes are derived and the optimization procedure is presented.
The analysis of hybrid LDPC codes is based on a detailed rep-
resentation of the factor graph of the code [1], together with
the introduction of extra parameters to describe the proportion
of irregular set orders in the codeword. The parameterization
of hybrid LDPC codes is therefore very rich. We have then de-
cided to optimize sub-classes of hybrid LDPC codes, and we
give two different examples that show their interest when com-
pared to the best known existing LDPC codes. The examples
and the simulation results are shown in section V.

IIT.THE CLASS OF HYBRID LDPC CODES

We define a non-binary hybrid LDPC code as an LDPC code
whose variable nodes belong to finite sets of different orders.
To be specific, this class of codes is not defined in a finite
field, but in finite groups. We will only consider groups whose
cardinality qk is a power of 2, that says groups of the type
G(qk) = ( 2 )Pk with Pk = loq)2(,q). Thus each element of
G(qk) has a binary map of Pk bits. Let us call the minimum
order of codeword symbols q,in, and the maximum order of
codeword symbols qmax The class of hybrid LDPC codes
is defined on the product group ( ).P .X ( 2g)Prrlax
Note that this type of LDPC codes built on product groups has
already been proposed in the literature [11], but no optimiza-
tion of the code structure has been proposed and its applica-
tion was restricted to the mapping of the codeword symbols
to different modulation orders. Parity check codes defined on
(G(q.ir) x x G(qf,ax)) are particular since they are lin-
ear in 2, but could be non-linear in the product group. Al-
though it is a loss of generality, we have decided to restrict
ourselves to hybrid LDPC codes that are linear in their prod-
uct group, in order to bypass the encoding problem. We will
therefore only consider upper-triangular parity check matrices
and a specific ordering of the symbol orders in the codeword,
which ensures the linearity of the hybrid codes. The structure
of the codeword and the associated parity check matrix is de-
picted in Figure 1. We hierarchically sort the different group
orders in the rows of the parity-check matrix, and also in the
codeword, such that qmin < ..T < qk < ... < qma To
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Figure I: Hybrid codeword and parity-check matrix.

encode a redundancy symbol, we consider each symbol that
participates in the parity check as an element of the highest
group, which is only possible if the groups are sorted as in
Figure 1. This clearly shows that encoding is feasible in linear
time by backward computation of the check symbols.
In order to explain the decoding algorithm for hybrid LDPC
codes, it is usefull to interpret a parity check the hybrid code
as a special case of a parity check built on the highest order
group of the symbols of the row, denoted G(ql) and have a

look at the binary image of the equivalent code [8]. For codes
defined over Galois fields, the nonzero values ofH correspond
to the companion matrices of the finite field elements and are

typically rotation matrices (because of the cyclic property of
the Galois fields). In the case of hybrid LDPC codes, the
nonzero values have no linear representation and are indeed
nonlinear maps that have rectangular matrix equivalents. To
be more specific, the function that connects a row in G(ql)
and a column in G(qk) is a nonlinear function that maps the
qk symbols of G(qk) into a subset of qk symbols that belongs
to G(ql). This function has an equivalent binary representation
by a matrix of dimension (Pl X Pk). Note that with the above
mentioned constraints, we have necessarily Pk < Pl It is not
very difficult to generalize the Belief propagation decoder to
hybrid codes, and it has been shown that even for those very

particular structures, it is possible to derive a fast version of
the decoder using FFTs [9]. For lack of space reason, we do
not present in this paper the BP decoder for hybrid codes, and
we refer to the general algorithm described in [9] for which the
decoder for hybrid LDPC codes is a special case. In the rest
of the paper, we will call the message passing step through hij
extension when it is from G(qk) to G(ql) and truncation when
it is from G(ql) to G(qk) since the sizes for the messages in
the factor graph differ. The BP decoder steps can be followed
in the factor graph representation of a single parity check as

depicted in Figure 2. Let us now introduce parameters that de-
scribes the irregularity of group orders in the codeword. Let -k
be the proportion of symbol nodes in the hybrid graph which
belong to G(qk) and by definition, we take qmin = 2. The
code rate of an hybrid code with the specific structure pre-

sented in Figure 1 can be expressed as:

R- k=rmin k lo92 (qk)
maxz Yk 1092(qk)

xvc,F

FFT FFT FFT-1

Figure 2: A G(ql) check node of a hybrid decoder.

Note that this expression is completely general since if we fix
q, = q,+i, then both information and redundancy can share
the same group order qr. In order to optimize hybrid LDPC
codes, following the strategies used to optimize binary or non-

binary LDPC codes, we need to express the density evolu-
tion of the messages under Gaussian approximation along one

decoding iteration, with respect to the parameters to be opti-
mized. In our case, the parameters are the proportions of irreg-
ular connections in the graph and the proportions of irregular
group orders rky In the next section, we recall some required
properties of DE-GA for non-binary LDPC codes, that we will
use to make the generalization to hybrid codes.

III. ANALYSIS OF NON-BINARY LDPC CODES OVER

GF(q)
Let us first present how one analyses non-binary LDPC codes
on the BI-AWGN channel using a gaussian approximation. We
must quote three works from which this approach is highly in-
spired. In [3], Bennatan et al. have proposed a density evo-

lution for LDPC codes on GF(q) on memoryless q-ary chan-
nels. They have derived a gaussian approximation of the den-
sities of messages, which leads to a quite easy optimization of
these codes, using EXIT charts [6]. Although very general,
their approach can be improved if the channel is BI-AWGN,
by choosing a more accurate initialization of the densities of
the LLR messages. In our work, we took a different initial-
ization of the decoder, which describes more precisely the BI-
AWGN output messages. The model for the LLRs is the same
as the one proposed in [4], where the authors analyse non-

binary LDPC codes on the BI-AWGN channel. Following well
known ideas, we will track the information content of the mes-
sages (here vector messages) under Gaussian approximation,
that is the mutual information of a discrete input channel with
additive Gaussian noise whose output is the message in the
graph. In [5], Li. et al. have also proposed a DE-GA approach
for non-binary LDPC codes, but the quantity they used to fol-
low the evolution of densities was the mean of the messages
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instead of the mutual information The first necessary prop
erty that must be fulfilled is a symmetry property for the vec-

tor messages. The symmetry of q-ary log density ratio (LDR)
vectorW is defined in [3]. Let v be the corresponding sym
bol sent and Wa the a-th component of W. An LDR-vector is
symmetric if and only ifW satisfies

p(Wv=va)e WP(wv 0), da C GF(q) (4)

In [3], the symmetry was defined for codes defined on fields,
but this definition clearly applies for finite Abelian groups. For
the BI-AWGN channel, the bitwise log likelihood ratios (LLR)
are symmetric in the sense defined in [2], which in turn, in-
duces the symbolwise symmetry of the LLR vector More
over, the symmetry property (4) is kept during the non-binary
BP decoder operations [5]. In the next section we discuss the
compatibility of the symmetry property with the specific op-

erations used in the hybrid decoder, that is the truncations and
extensions. We now define some useful notations, in concor-

dance with the previous quoted works, to express information
transfer functions. LLRb denotes the bitwise LLR of a re-

ceived BPSK modulated bit and mb, is the mean of LLRb.
LLR, denotes a symbolwise LLR vector of a GF(q) sym-

bol and rn its vector mean. If B is the (q -1) x p (with
p = 1092(q)) mapping matrix from vectors of p bits to GF (q)
symbols and lp is the all-one column vector of size p, then we
have m =-Tn Bi1 If we call oT2 the variance of the BI
AWGN channel, thanks to the symmetry of the channel, we

know from [2] that Mbc =2 and LLRb (Mrbc, 2mbc)
As said previously, the symbolwise LLRs are then symmet-
ric. According to [5], if the messages are symmetric and gaus-

sian distributed as flmm E), the covariance matrix E can be
uniquely determined by the mean vector m such that

Ei,j=mIn mr-m l i, jC GF(q)
Again, this property is defined in a Galois field, but remains
the same in a group of order q since it only requires the use

of the proper addition e in the Abelian group. The symmetry
allows to make the all-zero codeword assumption. If we make
the approximation that all the vector messages on the graph
are gaussian, then we can see on Equation (5) that we need
to track only the (q -1) components of the mean vector to
get full-description of the densities. If the nonzeros values in
the parity matrix H are choosen uniformly, it follows that the
components of the mean vector of any check node outcoming
message are equal to the same scalarmo The mean vector of

LDR-vectors going out from data nodes is entirely determined
by the variance of the BI-AWGN channel, the mapping B, and
the mean of check node outgoing LDR-vectors. Combining all
these results, one can show [3, 5] that only two scalar param-
eters entirely define the gaussian approximation of densities
of messages on the graph or2 and o, Since the channel is
known at each step of the optimization process, only one scalar
parameter remains to track vr, Using the one to one rela
tion between the scalar mean of a vector and its mutual infor-
mation given in equation 6, we can express the EXIT transfer
function of one iteration of the non-binary BP decoder.

IV 1-I E gq (I
q-I

E
I=1

-Vi)) (6)

Let us denote the two useful functions J7 and J (for variable
node decoder and check node decoder, respectively), deter-
mined as in [4]

J (m)

Jc (o)

/q-1 X

E. 19 (I +
,

-v)
i=1

with v -KAn(m, E)
Xq-1

1- tv(o9 (1+e U))VI yv nq( )
i=1

withlv -vA~Tnlq- ILE

(7)

(8)

where E is computed from m by the symmetry relation of
Equation (5). Note that J, is a particular case of J, where all
components of the vector m are equal to mo Finally we get
Equation (1) that expresses the extrinsic transfer function of
the non-binary BP decoder used on a BI-AWGN channel from
iteration number t to iteration number t+ 1. (A, p) are the usual
parameters that define the connectivity profile of a family of
GF(q) LDPC codes, and x(t) is the mutual information of
any check node incoming vector messages at the t-th iteration.
For more details about the derivation of these equations and
the associated proofs, please refer to the cited papers.

IV. ANALYSIS OF HYBRID LDPC CODES

In this section, we now explain how we can generalize the
equations of DE-GA of non-binary LDPC codes to hybrid
LDPC codes and how to introduce the extra parameters that
describe the irregularity in the group orders. To properly de-
fine a family of hybrid codes, it is usefull to adopt a detailed
representation of the factor graph, directly inspired from the
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A(i, k) is the proportion of edges linked to a symbol node of
degree iggiven that this symbol node is in G(qk) and (i k)
is the proportion of edges linked to a symbol node in G(qk),
given that this symbol node is of degree i. The analysis of hy-
brid non-binary LDPC codes is completely based on the pre-
vious approach that assumes the densities of vector messages
to be gaussian distributed, when transmitting on BI-AWGN
channel. We add two steps to the non-binary analysis de-
scribed in the last section, that correspond to truncation and
extension of messages when passing from a data node to a
check node in a higher order group and vice versa Thanks to
Equation (6), we easily obtain the expression between the mu-
tual information xl of an extended LDR message in G(q
built from a message in G(qk) whose mutual information is
Xqk'

(I - X:qk )1092(qk) = X1qyl j102(ql)

To get the relation giving the mutual information of a message
in G(qk) built by the truncation of an LDR message in G(ql),
we need to redefine the functions J, (m) and J (m) J (m q)
and J,(m, q) are defined in the same way as before, with q that
represents the order of the group of the vector messages whose
mean is m or r lq- i. With these new definitions of functions
JL and JC, if xq11 is the mutual information of the truncated
vector, we have:

k J,(J- (Xlq qli, qk)

which corresponds to the conservation of the mean of each
component after truncation. We also re-define m, by Mq

where q is the order of the group of the symbol node whose
LLR vector of size q -1 has mean M q. We have also shown
that the symmetry property of the messages holds for the spe
cific transformations of truncation and extension. We do not
present the proofs here and they will be reported in future pub-
lication. Following the different steps of one decoding itera-
tion, we can derive the EXIT function of one iteration of the
hybrid decoder. This EXIT function is expressed in equations

(i k) (t) (j I'()(2) and (3). This function expresses xj'ZJ (resp. x

which is the mutual information at the t-th iteration of a vec-
tor message going out of a data (resp. check) node of degree
i (resp. j) in G(qk) (resp. G(ql)) extended (resp. truncated)
to become input of a check (resp. data) node in G(ql) (resp.
G(qk)).

V. OPTIMIZATION AND RESULTS

As for the optimization of usual LDPC codes we want to find
the parameters of a hybrid family for a given code rate that
minimize the convergence threshold. In all the simulations
presented in this paper, we have considered all the check nodes
of same degree and in the same group. And hence the num-
ber of parameters to be optimized is reduced from four to two
(distribution T(i, k) of degrees and groups of variable nodes).
The ideal optimization procedure would be to jointly optimize
-y and A, i.e., the 2-variable function 7(i, k). In order to sim-
plify the optimization, we chose to fix one of these parame-
ters, and to optimize the other one. That says we tested two
directions of optimizing hybrid LDPC codes: either we look
for the optimal proportions -yk of different finite sets given a
fixed connectivity of the graph Ai, or we look for the optimal
proportions Ai given a fixed repartition k of the group orders
in the codeword. For both approaches, we choose to map all
the redundancy bits into symbols in the highest order group
G(qmax), and to prohibit information symbol nodes that are
in G(2) to be of degree 2 in order to mitigate the influence of
catastrophic cycles. First, we consider the optimization of A,
when -y(i, k) is fixed. From the above remarks, it follows that
we fix as a priori constraints y (2, 2) =0, yt 2 , 2) 1. The
other parameters (2 q) for q 2 are determined by the pro
portions of information symbols in the different groups. For
this simplified model, the code rate is defined by.

R j j 1og2 (qmax)
R = 1 -

Ei k=min-y(i, k)1092 (qk)

According to this expression, the code rate maximization is
equivalent to the maximization of the denominator of the sec-
ond term Moreover since T(i k) = Ay(i k) equation
(3) corresponds to the convergence criterion equivalent to a

strictly increasing information content x >fJ £ ) a> .
Thus the cost function and all constraints are linear with re
spect to A and the optimization problem can be efficiently
solved using linear programming.
The hybrid code solution of the optimization problem is rela-
tively dense since it has an average row weight of 14 3 ones
but it comes frorm the fact that a rate 1/2 hybrid code is ob-
tained with a graph with higher rate. Indeed, the hybrid LDPC
codes are adapted for rather low rates. In Figure 3, we give the
simulation results for a code with target rate R- 1/2 The
hybrid code is compared to existing good codes The irregular
binary code has been chosen from the distributions in [2] and
the distribution of the irregularity for the GF(8) code has been
optimized with the equations of section III. All graphs have
been designed with the PEG algorithm that has been widely
accepted as a good finite length code construction. First, we
can see that the error floor is lowered by going from GF(2) to
GF(8), and that the regular (3, 6) code in GF(8) has a worse
convergence than the irregular codes, but a much lower error
floor. Those results are in accordance with the usual observa-
tions on binary LDPC codes. Our hybrid LDPC code with 2
group orders G(8) -G(2) is as expected a good compromise
of the joint problem convergence/error floor. The convergence
region has been slightly degraded compared to irregular LDPC
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Figure 3: Frame Error Rate comparison of hybrid LDPC codes
with other good codes, R = 1/2, Nbit = 3008, the maximum
number of iterations has been fixed to 500.

codes but with the effect of no observed error floor up to a

FER5-5 10-6 We expect even better results by allowing more

degrees of freedom in the optimization procedure.
In the second example, we optimized Y, with A(i, k) fixed. In

this case, we look for the best proportion of group orders for a

regular hybrid graph defined by the connectivity of data nodes
and check nodes (d, = 2, d, = 3). According to the code rate
expression

R1I
- 192 ( 0ma q)dc

dt, -k=min k 1092(qk)

the cost function is still the denominator of the second term.
We aimed with this example at designing good codes for a

rather low rate of R- 1/6. We obtained the optimized hybrid

code with three different group orders G(256) -G(16) -G(8)
and we have compared our hybrid code with varnous good

codes presented in the literature. In Figure 4, we can see that
the irregular binary LDPC code is not a good solution for such
low rate and moderate block length, as it is the worst code
simulated The regular code over GF(256) designed with
the methods presented in [8] is better with 0.5dB gain, but is
outperformed by a very specific construction of binary quasi-
cyclic LDPC codes especially designed for low rates found

in [12]. Our hybrid code shows the best performance and is to
our knwoledge the best perfornmance observed at this rate and
codelengths. This confirms the fact that hybrid LDPC codes
appear to be a good solution for low rate applications. Note
that the error floor of our hybrid code is likely to be lowered
with similar techniques as presented in [8]. We plan to address
this issue in a future work.

VI. CONCLUSION

This paper aims at combining advantages of having variable
nodes in different order finite sets, in a bipartite graph, to
build non-binary hybrid LDPC codes. First, we have presented
the structure and the decoding of the class of hybrid codes.

Figure 4. Frame Error Rate comparison of hybrid LDPC codes

with other good codes, R = 1/6, Nbit = 6144, the maximum
number of iterations has been fixed to 500.

We have then explained how to optimize irregular non-binary

LDPC codes over GF(q) for the BI-AWGN channel, and we

have described how to generalize this technique for the opti-
mization of hybrid codes. Finally, the most interesting results
are ohtained for quite low target code rates (R /6. our
hybrid code outperforms the best known codes for this code
rate Future work will address the problem of the finite length
optimization for this class of codes.
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