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Part I
Introduction and Basic Concepts
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Clustering

● Cluster: a collection of data objects
– Similar to one another within the same cluster
– Dissimilar to the objects in other clusters
– Need a way to calculate object similarity/distance

● Cluster analysis
– Finding similarities between data according to the characteristics 

found in the data and grouping similar data objects into clusters

● Unsupervised learning: no predefined classes
● Typical applications

– As a stand-alone tool to get insight into data distribution 
– As a preprocessing step for other algorithms
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Clustering: Rich Applications 
and Multidisciplinary Efforts 

● Pattern Recognition
● Spatial Data Analysis 

– Create thematic maps in GIS by clustering feature spaces
– Detect spatial clusters or for other spatial mining tasks

● Image Processing
● Economic Science (especially market research)
● WWW

– Document classification
– Cluster Web log data to discover groups of similar access 

patterns
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Examples of Clustering 
Applications

● Marketing: Help marketers discover distinct groups in their customer bases, 

and then use this knowledge to develop targeted marketing programs

● Land use: Identification of areas of similar land use in an earth observation 

database

● Insurance: Identifying groups of motor insurance policy holders with a high 

average claim cost

● City-planning: Identifying groups of houses according to their house type, 

value, and geographical location

● Earth-quake studies: Observed earth quake epicenters should be clustered 

along continent faults
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What is a “natural” grouping for these objects?
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Clustering is subjective!

MalesFemales Simpson Family School Employees
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Quality: What Is Good Clustering?

● A good clustering method will produce high quality clusters with

– high intra-class similarity

– low inter-class similarity 

● The quality of a clustering result depends on both the similarity 

measure used by the method and its implementation

● The quality of a clustering method is also measured by its ability 

to discover some or all of the hidden patterns
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What is Similarity?
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Measuring the Quality of Clustering

● Dissimilarity/Similarity metric: Similarity is expressed in terms 
of a distance function, typically metric: d(i, j)

● There is a separate “quality” function that measures the 
“goodness” of a cluster.

● The definitions of distance functions are usually very different 
for interval-scaled, boolean, categorical, ordinal ratio, and vector 
variables.

● Weights should be associated with different variables based on 
applications and data semantics.

● It is hard to define “similar enough” or “good enough” 
–  the answer is typically highly subjective.
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Requirements in Data Mining 

● Scalability
● Ability to deal with different types of attributes
● Ability to handle dynamic data 
● Discovery of clusters with arbitrary shape
● Minimal requirements for domain knowledge to determine 

input parameters
● Able to deal with noise and outliers
● Insensitive to order of input records
● High dimensionality
● Incorporation of user-specified constraints
● Interpretability and usability
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Data Structures

Data matrix Dissimilarity (= distance) matrix
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Types of Data in Clustering

● Interval-scaled variables
● Binary variables
● Nominal, ordinal, and ratio variables
● Variables of mixed types
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Interval-Valued Variables

● Standardize data

– Calculate the mean absolute deviation:

                                         where

– Calculate the standardized measurement (z-score)

● Using mean absolute deviation is more robust than using 

standard deviation 
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Similarity and Dissimilarity

● Distances are normally used to measure the similarity or 
dissimilarity between two data objects

● Some popular ones include: Minkowski distance:

– where  i = (xi1, xi2, …, xim) and j = (xj1, xj2, …, xjm) are two m-
dimensional data objects (= rows), and q is a positive integer

● If q = 1, d is the Manhattan distance
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Similarity and Dissimilarity

● If q = 2, d is the Euclidean distance:

● Properties
● d(i,j)  0
● d(i,i) = 0
● d(i,j) = d(j,i)
● d(i,j)  d(i,k) + d(k,j)

● Also, one can use weighted distance, parametric Pearson 
product moment correlation, or other dissimilarity measures
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Binary Variables

● A contingency table

for binary data

(m variables/columns)

Distance measure for symmetric 

binary variables: 

● Distance measure for 

asymmetric binary variables: 

● Jaccard coefficient (similarity 

measure for asymmetric binary 

variables): 

Row i
Row j
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Binary Variables

● Example

– gender is a symmetric attribute
– the remaining attributes are asymmetric binary
– let the values Y and P be set to 1, and the value N be set to 0

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4
Jack M Y N P N N N
Mary F Y N P N P N
Jim M Y P N N N N
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Nominal Variables

● A generalization of a binary variable in that it can take more than 
2 states, e.g., red, yellow, blue, green

● Method 1: Simple matching

– h: # of matches, m: total # of variables

● Method 2: use a large number of binary variables

– create a new binary variable for each of the M nominal states
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Ordinal Variables

● An ordinal variable can be discrete or continuous
● Order is important, e.g., rank
● Can be treated like interval-scaled 

– replace xik  by their rank 
– map the range of each variable onto [0, 1] by replacing i-th 

object in the f-th variable by

– compute the dissimilarity using methods for interval-scaled 
variables
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Ratio-Scaled Variables

● Ratio-scaled variable: a positive measurement on a nonlinear 
scale, approximately at exponential scale, such as AeBt or Ae-Bt 

● Methods:

– treat them like interval-scaled variables—not a good idea! 
(why?—the scale can be distorted)

– apply logarithmic transformation

yik = log(xik)

– treat them as continuous ordinal data

– treat their rank as interval-scaled
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Variables of Mixed Types

● A database may contain all the six types of variables
● One may use a weighted formula to combine their effects

– Column k  is binary or nominal:
dij(k) = 0  if xik = xjk, dij(k) = 1 otherwise

– Column k  is interval-based: use the normalized distance
– Column k  is ordinal or ratio-scaled

● compute ranks rik and  
● and treat zik as interval-scaled
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Vector Objects

● E.g.: keywords in documents, gene features in micro-arrays, 
etc.

● Broad applications: information retrieval, biologic taxonomy, etc.

● Cosine measure

● A variant: Tanimoto coefficient
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Major Clustering Approaches

● Partitioning (iterative construction of partitions)
– K-Means, k-Medoids, etc.

● Hierarchical (construct a dendrogram of instances)
– Diana, Agnes, BIRCH, ROCK, CAMELEON

● Density-Based (based on connectivity and density function)
– DBSCAN, OPTICS, DenClue

● Grid-Based
– STING, WaveCluster, CLIQUE

● Model-Based
– expectation maximization
– Self-organizing maps

● Frequent-Pattern-Based
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Typical Alternatives to Calculate the 
Distance between Clusters

● Single linkage:  smallest distance between an element in one cluster and 

an element in the other, i.e.,  d(Kp, Kq) = min d(xi
(p), xj

(q))

● Complete linkage: largest distance between an element in one cluster 

and an element in the other, i.e.,  d(Kp, Kq) = max d(xi
(p), xj

(q))

● Average linkage: avg distance between an element in one cluster and an 

element in the other, i.e.,  d(Kp, Kq) = avg d(xi
(p), xj

(q))

● Centroid: distance between the centroids of two clusters, i.e.,  d(Kp, Kq) = 

d(Cp, Cq)

● Medoid: distance between the medoids of two clusters, i.e.,  d(Kp, Kq) = 

d(Mp, Mq)

– Medoid: one chosen, centrally located object in the cluster
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Centroid, Radius and Diameter of 
a Cluster (for numerical data sets)

● Centroid:  the “midpoint” of a cluster

● Radius: square root of average distance from any point of the cluster to its 

centroid

● Diameter: square root of average mean squared distance between all 

pairs of points in the cluster
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Part II
An Overview of Popular Clustering Methods
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Partitioning Algorithms: Basic Concepts

● Partitioning method: Construct a partition of a dataset D of n objects into a set 
of k clusters, minimizing the sum of squared distances

● Given a k, find a partition of k clusters that optimizes the chosen partitioning 
criterion
– Global optimal: exhaustively enumerate all partitions
– Heuristic methods: k-means and k-medoids algorithms

● k-means (MacQueen ’67): Each cluster is represented by the centroid 
of the cluster

● k-medoids or PAM (Partition around medoids) (Kaufman & 
Rousseeuw ’87): Each cluster is represented by one of the objects in 
the cluster  
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The K-Means Clustering Method 

● Given k, the k-means algorithm is implemented in four 

steps:

1) Partition objects into k nonempty subsets

2) Compute seed points as the centroids of the clusters of 

the current partition (the centroid is the center, i.e., 

mean point, of the cluster)

3) Assign each object to the cluster having the nearest 

seed point  

4) Go back to Step 2, stop when no more new assignment
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The K-Means Clustering Method 
Example 
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Comments on the K-Means Method

● Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t 

 is # iterations. Normally, k, t << n.

● For comparison: PAM: O(k(n – k)2 ), CLARA: O(ks2 + k(n – k))
● Comment: Often terminates at a local optimum. The global optimum may be 

found using optimization methods such as: simulated annealing and 

evolutionary algorithms
● Weaknesses

– Applicable only when mean is defined, then what about categorical data?

– Need to specify k, the number of clusters, in advance

– Unable to handle noisy data and outliers

– Not suitable to discover clusters with non-convex shapes
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The K-Medoids Clustering Method

● Find representative objects, called medoids, in clusters

● PAM (Partitioning Around Medoids, 1987)

– starts from an initial set of medoids and iteratively replaces one of the 

medoids by one of the non-medoids if it improves the total distance of 

the resulting clustering

– PAM works effectively for small data sets, but does not scale well for 

large data sets

● CLARA (Kaufmann & Rousseeuw, 1990)

● CLARANS (Ng & Han, 1994): Randomized sampling

● Focusing + spatial data structure (Ester et al., 1995)
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PAM (Partitioning Around Medoids) (1987)

● PAM (Kaufman and Rousseeuw, 1987), built in Splus

● Use a real object to represent the cluster

1) Select k representative objects arbitrarily

2) For each pair of non-selected object h and selected object i, 

calculate the total swapping cost TCih

3) For each pair of i and h, 

● If TCih < 0, i is replaced by h

● Then assign each non-selected object to the most similar 

representative object

– Repeat steps 2-3 until there is no change



Andrea G. B. Tettamanzi, 2017 35

A Typical K-Medoids Algorithm (PAM)
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What Is the Problem with PAM?

● Pam is more robust than k-means in the presence of noise and 

outliers because a medoid is less influenced by outliers or 

other extreme values than a mean

● Pam works efficiently for small data sets but does not scale 

well for large data sets.

– O(k(n – k)2) for each iteration 

where n is # of data,k is # of clusters

Sampling based method,

CLARA(Clustering LARge Applications)
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Fuzzy Sets

● A classical set is completely specified by a characteristic 
function χ : U → {0, 1}, such that, for all x ∈ U,
– χ(x) = 1, if and only if  x belongs to the set
– χ(x) = 0, otherwise.

● To define a fuzzy set, we replace χ by a membership function 
μ : U → [0, 1], such that, for all x ∈ U,
– 0 ≤ μ(x) ≤ 1 is the degree to which x belongs to the set

● Since function μ completely specifies the set, we can say 
that μ is the set

● A classical (or crisp) set is a special case of a fuzzy set!
● U is the universe of discourse of fuzzy set μ
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C-Means Method

● A fuzzy extension of the k-means algorithm (w/ fuzzy clusters)

● A record can belong to more than one cluster to a degree

Objective Function:

Prototype of the kth cluster
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Hierarchical Methods

● Input: distance matrix Output: a dendrogram (tree of clusters)

● This method does not require the number of clusters k as an 
input, but may need a termination condition

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative

divisive
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Linkage Algorithms
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Density-Based Clustering Methods

● Clustering based on density (local cluster criterion), such as density-
connected points

● Major features:

– Discover clusters of arbitrary shape

– Handle noise

– One scan

– Need density parameters as termination condition

● Examples of density-based methods:

– DBSCAN, OPTICS, DENCLUE, CLIQUE
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Density-Based Clustering: Basic Concepts

● Two parameters:

– ε: Maximum radius of the neighbourhood

– MinPts: Minimum number of points in an Eps-neighbourhood 
of that point

● Nε(p): {q belongs to D q belongs to D | d(p,q) ≤ ε}

● Directly density-reachable: A point p is directly density-reachable 
from a point q w.r.t. ε, MinPts if 
– p belongs to Nε(q)

– core point condition:

              |Nε(q)| ≥ MinPts 
p

q
MinPts = 5

ε = 1 cm
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Density-Reachable and Density-Connected

● Density-reachable: 

– A point p is density-reachable from a point q 

w.r.t. ε, MinPts if there is a chain of points p1, 
…, pn, p1 = q, pn = p such that pi+1 is directly 
density-reachable from pi

● Density-connected

– A point p is density-connected to a point q 

w.r.t. ε, MinPts if there is a point o such that 
both, p and q are density-reachable from o 

w.r.t. ε and MinPts

p

q
p1

p q

o



Andrea G. B. Tettamanzi, 2017 44

EM — Expectation Maximization

● A popular probability-based iterative refinement algorithm
● An extension to k-means

– A cluster is a probability distribution over the object features

– Membership of an object to a cluster is a probability

– New means are computed based on these probabilities
● General idea

– Starts with an initial estimate of the parameter vector

– Iteratively rescores the patterns against the mixture density produced by the 
parameter vector

– The rescored patterns are used to update the parameter updates

– Patterns belong to the same cluster, if they are placed by their scores in a particular 
component

● Algorithm converges fast but may not be in global optimum
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The EM (Expectation Maximization) Algorithm

● Initially, randomly assign c cluster centers
● Iteratively refine the clusters based on two steps 

– Expectation step: assign each data point Xi to cluster Cj with 
the following probability

– Maximization step: 
● Estimation of model parameters
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