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Abstract: This paper suggests the opportunity of taking advantage of genetic
techniques in order to approach Portfolio Selection following conceptual models
that handle risk in a non-trivial way.

We investigate the possibility of applying genetic techniques to this problem.
It turns out that Portfolio Selection lends itself to a distributed genetic implemen-
tation.

Finally we illustrate an implementation of some of the ideas presented in this
paper and give some preliminary experimental results supporting the feasibility
and the advantages of the proposed approach.
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1. Introduction

Choosing an optimal portfolio weighting of assets when their future rate of
return is uncertain may be seen as a problem of minimizing the uncertainty for a
given level of the portfolio expected return. Modern Portfolio Theory (MPT) calls
this uncertainty risk and measures it as the standard deviation or the variance
of the probability distribution of future returns. In this framework the Portfolio
Selection Problem (PSP) is solved using quadratic programming methods.

Other more recent approaches that require less simplistic assumptions, such as
those based on the idea of “downside-risk”, are not very easy to deal with using
deterministic combinatorial optimization methods.

The notion of risk as the variance of returns is at the foundation of MPT. Yet,
Harry Markowitz, acknowledged as one of the first developers of MPT, pointed out
[9] that variance

. often leads to unsatisfactory predictions of [investor| behavior.
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Realizing that the investor perceives risk only on the downside part of the return
distribution, he proposed the use of “semivariance”, defined as the weighted average
of the squared distances of the returns below the mean of the distribution, as an
index of risk. In mathematical notation:

Semivar = Z P:‘(Rx' = E[R])z

R;<E[R]

where R; is one of the elements of the portfolio return distribution, p; its attached
probability and E[R] the expected (mean) return. However, because of the inherent
difficulties in carrying out the necessary calculations, he built his mode] on variance.
Choosing an optimal portfolio became a question of variance minimization for a
given level of expected return. Markowitz showed that as the level of risk increases,
the expected return attached to optimal portfolios draws a convex non-decreasing
curve (efficient frontier). That is, to attain a grater expected return, an investor
must accept a higher exposure to risk.

Minimizing variance is equivalent to minimizing semivariance if the return dis-
tribution is symmetric around the mean. Distributions of returns, though, are more
often skewed than symmetric: if, for example, a distribution is highly skewed to
the left, variance will greatly underestimate the risk of realizing a return below the
mean.

1.1. Other indices of risk

Variance has the advantage of lending itself naturally to analytical treatment,
but shows serious drawbacks when used as an index of risk. As Domar and Mus-
grave remarked in a seminal article [6]:

Of all the possible questions which the investor may ask, the most
important one, it appears to us, is concerned with the probability of a
loss. This is the essence of risk.

Thus semivariance might be regarded as an alternative candidate, but its reliance
on the concept of distance from the mean (the mean changes from distribution to
distribution) may lead to the unwanted result of discarding an asset which should
be preferred to others because it could offer with certainty higher realized returns
even if it shows a relatively higher semivariance.

A new approach, which only recently has been partially explored by the litera-
ture in the field, defines risk as a measure related to the part of a return distribution
below a certain target of return. Adapting the formula of semivariance to the con-
cept of “subjective threshold below which the investor judges risky the investmen”
leads to the target semivariance expression:

i Z pi(T — Ri)2.
R;<T
This measure of downside risk [3], [8] is usefully generalized as
DSR(r) = Z pi(T — Ry)%.
R;<t

The parameter ¢ may be seen as a coefficient of risk aversion in the sense that if
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e g = 0, the above expression equals the probability of realizing a return below
the target (shortfall probability); :

g = 1, it shows the expected value of the returns below the target (target
shortfall);

e g = 2, it is equivalent to the farget semivariance;

¢ > 2, the formula attaches increasing weight to the returns below the target,
i.e. the higher the parameter, the more the investor dislikes downside-risk.

A straightforward substitution of DSR in place of variance within the MPT con-
text raises computational problems: this formula does not lend itself to analytical
treatment and the classic deterministic algorithms used for optimization purposes
are no longer suitable.

2. The Case for a Genetic Approach

When deterministic algorithms for optimization fall short, stochastic methods
may become attractive; they are even more interesting if they can be guided by some
heuristics. Genetic Algorithms (GA) [7], [5] bring together a stochastic background
and a heuristic search strategy.

The well-known ability of GAs to explore enormous search spaces, together with
their flexibility with respect to the problem to be solved, make a genetic approach
to the problem stated above look promising and interesting.

In the following section we propose a reformulation of PSP suitable for a GA
implementation.

3. Problem Reformulation

The Portfolio Selection Problem can be viewed as a convex combination para-
metric programming problem [12], in that we want to minimize risk while maximiz-
ing expected return; on the efficient frontier a larger expected return corresponds
to a greater risk. This can be expressed as a two-objective optimization problem:

rré‘irn{Risk(w)}

mvex{Retum(w)}

subject to

Ry |

w320

These two objectives can be parametrized to yield a convex combination parametric
programming problem with objective

nilgrn{,\Risk(w) — (1 = A)Return(w)}
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where parameter ) is a trade-off coefficient ranging between 0 and 1. When Ke=10
the investor disregards risk and only seeks to maximize expected return; when
A = 1 the risk alone is being minimized, whatever the expected return.

Since there is no general way to tell which particular trade-off between risk
and return is to be considered the best, solving a PSP means finding a whole
range of optimal portfolios for all the possible values of the trade-off coefficient;
the investor will thus be able to choose the one he or she believes appropriate for
his/her requirements.

4. Encoding and Operators

Three different approaches to the constraint problem in genetic algorithms have
been proposed [10]:

1. using penalty functions;
2. using appropriate decoders and/or repair algorithms;
3. designing a GA with new data structures and operators to suit the problem.

The most effective strategy for handling constraints in GAs consists, as long as this
is feasible, in choosing an appropriate encoding and reproduction procedure such
that illegal solutions are never generated or, even better, such that any possible
chromosome encodes for a legal solution (case 3 above). This relieves the algorithm
from having to check new individuals for constraint satisfaction.

The encoding we propose is intuitive and has the advantage that only legal so-
lutions can be represented: the share of each asset is encoded as an integer between
0 and a positive constant gma.. The actual weight of each share is computed as
the ratio of its encoded value to the total sum of all the encoded values in the
chromosome.

We propose a variation. of uniform cross-over as a genetic cross-over operator
suitable for the problem: let v and x be two parent chromosomes and TOT,
and TOT, the total sums of all the genes that make up, respectively, ¥ and &;
furthermore suppose that the i-th gene in v, g; has been chosen to be passed onto
the offspring: then the value of the ¢-th gene in the offspring is:

T TOTK)

:‘z,- = min (grrmm: gi 2TOT
p

We propose a mutation operator which alters a gene either by incrementing or
decrementing it by one. This ensures that a chromosome undergoing a mutation
will not experience abrupt changes (mutation should not disrupt schemata).

While preserving schemata, this mutation strategy still involves a certain ran-
domness, for it implies that a chromosome with a high total sum is less sensitive
to mutations, whereas a chromosome with a small total sum feels the effect of a
mutation more strongly.
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5. Guidelines for a GA for PSP

The structure itself of PSP suggests the global architecture of a suitable GA:
many solutions being actually needed—one for each trade-off coefficient considered.
A natural way to achieve that in a genetic setting is to have several distinct popu-
lations evolve for a number of trade-off coefficient values. The greater this number
is, the higher will be the resolution with which the investor will be able to explore
the efficient frontier.

Because it is likely that slight variations in the trade-off coefficient do not sig-
nificantly worsen a good solution, a straightforward way to speed-up the evolution
process is to allow migration or cross-over between individuals belonging to adjacent
or neighbouring populations, though occasional exchanges of genetic information
over longer distances should not be ruled out.

The above approach lends itself quite naturally to a parallel or distributed
machine implementation [11]; moreover it appears to be “scalable” with respect
to the resolution required by an investor, that is the amount of detail in efficient
frontier exploration.

While this population topology has often been suggested for performance pur-
poses [13], in the PSP case it can be viewed as the most natural way to keep control
over species differentiation in an evolving population where different species are ex-
plicitly requested by the problem.

On the other hand, a single population, comprising a number of species (one
for each value of the trade-off coefficient), might be let evolve and select spon-
taneously optimal recombination strategies. This could be achieved by inserting
additional genetic material into the genotype to implement restricted mating tech-
niques. These additional genes would undergo genetic operators just like other
genes. Likewise one could attach to each genotype other “meta-” informations
such as a mutation probability or a cross-over proneness coefficient, to name just
two possibilities. ¥

The idea of giving each chromosome complete control over itself instead of
using global, centralized parameter settings, leads to the design of what is called
an evolution strategy [2], [1]. Since the investor could actually be interested in
concentrating the search efforts for values of the trade-off coefficient that lead
to better results (with respect to some decision criterion), each genotype of the
initial population could be generated belonging to a given species with a probability
proportional to the investor’s interest in that species. As spontaneously selected
recombination strategies do not gnarantee the size of each species to stay constant
during the evolution, some action should be taken in order to prevent some species
from eventually disappearing. This can be achieved by allowing new genotypes to
replace in the population only genotypes of their own species.

6. Applications and Experimental Results
A decision support system for portfolio selection in a downside-risk framework

which implements most of the ideas presented in this paper is being developed by
two of us (Loraschi and Tettamanzi) on behalf of SIGE Consulenza S.p.A. of LM.L,
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a prominent italian financial group. The system, named DRAGO (for Downside
Risk asset Allocation by means of Genetic Optimization), is based on Whitley’s
GENITOR system [14], which uses a steady-state breeding strategy and elitist
selection.

6.1. Implementation

One subpopulation (a species) is allocated for each value of the trade-off coef-
ficient; individuals from a species are allowed to mate only with individuals from
the same or an adjacent species, and new individuals always replace the worst in-
dividual of their own species, but under all other respects the population is treated
as a single entity.

The fitness of an individual is computed as a distance from the best individual
of its species, following the convention of the GENITOR system in which the most
fit individual has the lowest worth, so that every individual that is best with respect
to each trade-off coefficient gets the same worth of zero.

The worth is used to rank the population so that the reproduction probability
for an individual is assigned on the basis of its ranking. Note therefore that these
probabilities are neither proportional to the raw fitness of genotypes, nor to their
worth. As noted in [4], since this results in a reduced selection pressure it seems to
prevent premature convergence. It should also be pointed out, for what concerns
this topic, that experiments have given strong evidence that DRAGO performs best
(in speed as well as in accuracy) when reproduction probability is made uniform
over the whole population. In this case all the selection pressure derives from
discarding the worst individuals at each generation.

The user can specify the risk aversion coefficient ¢ that is to be used for com-
puting the downside risk function, the number of different values for the trade-off
coefficient and the investment time horizon over which risk and return are to be
estimated.

The downside risk can be computed either against a benchmark or against a
fixed threshold supplied by the user; optionally, an upper constraint can be placed
on the number of assets that are to make up the final portfolios.

6.2. Experiments

We tested DRAGO on a small PSP with 15 assets plus a benchmark, all
expressed in Italian Lire, using monthly historical series from January 1985 to
March 1993 (amounting to 98 monthly returns for each asset and the benchmark)
to estimate expected returns and risks with an investment horizon of one month.

Fig. 1. shows four snapshots of the evolution of a population of 200 individuals
over 10000 “generations” (here generation means the birth of a new individual and
the death of the worst one). The population is segmented into 20 species, the
mutation rate is set to 0.5 and the risk aversion coefficient g is set to 2 (Target
Semivariance is the measure of risk).

Note that the space of risk and return is not the original problem space (which
in this case has 15 dimensions), but only a convenient space to view solutions; thus,
although the initial population is uniformly distributed over the original problem
space, it does not look so in Fig. 1.
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Fig. 1. Ewolution of a population of size 200: a) initial population; b) after 300
generations; ¢) after 2000 generations; d) after 10000 generations (final popula-

tion). Individuals are plotted accordi

(y-azis).

ng to their downside risk (v-azis) and return
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