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Andrea Tettamanzi

Equational grammars

1. Grammars & la Chomsky, rewriting and equations

In the theory of formal languages the well known notion of a grammar comes with a
four-tuple (N, T, P, S), where N is a set of variable or “non~terminal” symbols, T is an al-
phabet or a set of “terminal” symbols, S is a non-terminal symbol which stands for “sen-
tence” and finally P is a set of productions, that means a set of rules that can be used to
rewrite strings consisting of terminal and/or non terminal symbols.

Thus, strictly speaking, a grammar is a rewriting system; the objects that are rewritten
fall into two sorts N and T. One can think of arbitrary sequences of symbols from N and T
as terms constructed with an “invisible” concatenation two—place associative operator.

Because there is a well-studied and well understood class of rewriting systems, namely
term rewriting systems, it would be desirable, although not really necessary, to be able to
view a grammar as a term rewriting system.

This is easely achieved with the introduction of a “lexicon”. For the moment think of a
lexicon as a one-to—one function mapping each and every element in T into a new non—
terminal symbol, so that, given any string of terminal symbols, we can construct a corre-
sponding string consisting only of non-terminal symbols. Then replace throughout the
rules in P each occurrence of any terminal symbol with the relevant new non-terminal
symbol according to the lexicon.

After this transformation P is a rewriting system over terms having non-terminal sym-
bols for constants and the concatenation operator as their sole functor,

Now consider what happens if we replace the arrow in every rule of such a term re-
writing system: we obtain a finite set of equations which defines an equational theory
over the terms having non-terminal symbols as constants and concatenation as functor.
With respect to such a theory all terms which construe a sentence belonging to the lan-
guage described by the associated grammar form a unique equivalence class. This is be-
cause any term construing a sentence must eventually be equal to S in that theory.

It becomes evident at this point the analogy between derivation of a sentence in a
grammar and simplification of a term in an equational theory. This concept is central to
this paper: we will use it to suggest how to use techniques from equational logic theorem
proving in order to deal with the parsing and generation problems,

2. Adding an internal structure to non-terminal symbols

As far as grammars & la Chomsky are concerned, the parallel between grammar and
equational logic is not very exciting. It seems that there is little use in a theory which is
only able to prove that any legal sentence is equal to any other legal one. In fact this is
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due to the very nature of grammars like those, that have little concern on the internal
structure of a sentence: what matters is just if a sentence is in the language or not.

The need for a richer description of linguistic items was felt in two areas involved with
different kinds of languages. On one hand compiler designers turned their attention to at-
tribute grammars (Knuth 1968) and, on the other, computational linguists invented unifi-
cation grammars (Schieber 1986), which make use of objects called feature structures by
some authors and with several other names by others.

Those formalisms share the common idea that non-terminal symbols, instead of being
monadic entities, may feature an internal structure based on attributes and their values.

We have defined the concept of abstract attribute structure as a generalization of such objects.

2.1. Notation

Let f € Pfun(A, B) be a partial function: we will denote an elementa € A being
mapped intob € B by joining a and b with a horizontal slash:

a-b

Letai € A,i=1,..,nalland the only elements over which f is defined and bj € B,i=
1, .., nsuch elements that f(ai) = bi. The following will describe graphically the function f:

a1—b1
az—b2

an—bn

It is understood that f is undefined over elements in A other than those apppearing in
its description.

With a slight (but substantial) abuse of notation we shall use the same symbol L to in-
dicate both the undefined value and the function undefined everywhere.

2.2. Definition of abstract attribute structure

Let A and C be two sets. We speak of “abstract” attribute structures inasmuch as
these two sets are left undetermined; only when we specify their nature we are dealing
with some particular “concrete” attribute structure. Nevertheless the algebra of attribute
structures does not depend on the choice of A and C.

Let us suppose, without loss of generality, that T is not an element of C;let {Si}bea
succession of sets defined as follows:

So = Pfun(A,C U {T})

S1 = Pfun(A,SouC U {T})
A; = Pfun(A,S1US U C U {T})

S: = Pfun(A, SiUSi1U..US1USoUC U{T})
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Let S be the limit of this succession and let V = 8 U C U {T}. The elements in A
will be called attributes, the elements in V attribute structures, which are divided into
atomic, that is, contained in C, and complex, that is, contained in S U {T}.

The attribute structure L€ S is undefined over the whole set A. This means that for
each a A, L(a) = L. The attribute structure T may be thought as the equivalence class
containing all the “inconsistent” attribute structures. For T too it holds that for any a €
A, T(a) = T. In addition we assert the following

Postulate: Dx €V, DaceAx(a) =T=>x=T

Meaning that if an attribute structure maps even one attribute into the inconsistent at-
tribute structure, then it is to be considered inconsistent on its whole.

2.3. The structure of V
Definition: given x, y € V, we say that x is less defined than y, written x = y, iff:

e x = 1ory= Torboth;
e [In the general case:
Da€A, x(a)=y(a) withx,y €S

X=y withx,y € C

If neither x sy nor y =x, we say that x and y are not comparable.
It is easy to verify that the “<” (lesser definition) relation enjoys the reflexive, transi-
tive and antisymmetric properties, and thus is an order relation.

The “<” relation induces a partial ordering over V. Note that, by the definition of
“=”, 1 is the bottom element in V and T is the top element. Thus V is a complete lattice
with respect to lesser definition, with the usual two operations “A” (meet) and “V” (join)
obeying the usual lattice laws of idempotency, commutativity, associativity and absorption
(see any text on Algebra).

In addition x =y is equivalent to each of the conditions

xAy =x e xVy =y (Consistency)
and therefore

5) XAL=1 XVL =x
6) XNT =5 oV = T

The following theorems allow to actually calculate the meet and join of any two given
attribute structures.
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Theorem I. Given f, g €5,a €A,
1) [fAg](a) = f(a)Ag(a)
2) [fvg](a) = f(a)vg(a)

Proof. 1) By definition of meet, fAg=<f and fAg=<g. This implies, by definition of “<~,
that [fAg](a)=f(a) and [fAg](a)=g(a); thus [fAg](a) is a lower bound for f(a) and g(a).
Now, for [fAg](a) to be the meet of f(a) and g(a), any lower bound b for f(a) and g(a)
must satisfy the condition b<[fAg](a). Suppose on the contrary that there exists a b such
that b > [fAg](a); but then there would exist a lower bound h for f and g, defined thus:

h(a) = b
h(2’) = [fAg)(’)  for any attribute a'# a,

such that h>fAg, contradicting the fact that fAg is the most definite of all the lower
bounds for f and g. Therefore [fAg](a) is the meet of f(a) and g(a).O
The proof of 2) is analogous.

Theorem II. For any t € C, T covers t and t covers L.

Proof. Since T is the top element of V, t<T. Also 1 <t because L is the bottom ele-
ment of V. Besides, by definition t=s iff t = s, so there can be no attribute structure s#t
between L and t or between t and T.O

As a consequence of the above proposition, we have that

1) tAt’ = 1 for t#t’

2) tvt’ = T for t#t’

and it is easely verified that, for any t€C, x€S, x= L, x=T,
3) tAx = L

4) tvx =T

It can be shown that V is a modular non—distributive lattice. Since the proof is long
and little interesting, it will be omitted.

2.4, Concrete attribute structures

As it was said before, we can speak of concrete attribute structures only when the set
A of attributes and the set C of atomic attribute structures are defined.

A suitable definition for A in most practical cases consists of choosing an alphabet =
and setting A = A | e i {a, b, ¢, .., z}, A will contain meaningful sequences of let-
ters. Another interesting assignment to A is the set N of natural numbers, suggesting an
interpretation of attribute structures as infinitary functors. According to this interpreta-
tion, a complex attribute structure is a term constructed by the functor symbol Sa with an
infinite arity; every attribute i is the place marker of one argument of SA: the attribute
structure mapped into by i is the i—eth argument of Sa.

Given a set S, define the bijection @: S —» C, which maps every element s€S into
one atomic attribute structure @(s). If S features an algebraic structure, for each oper-
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ator fs of arity n defined over elements in S define an operator fc of same arity over C
such that, with si, ..., sn€S, fc[@(s1), ..., @(sn)] = @[fs(s1, ..., Sn)], thus establishing an
isomorphism between S and C.

Of course, nothing forbids to define C on the basis of several sets, each having pos-
sibly an algebraic structure, provided that the operators be properly defined.

3. Equational grammars

Attribute structures are, in a broad sense, representations of linguistic knowledge. In
fact, what we expect a grammar should do is to model linguistic knowledge, much alike a
theory in Physics models knowledge about physical world. So it seems quite reasonable to
say that a theory defined by a set of equational axioms over the universal algebra
Ge= <VF> (see e.g. Burris, Sankappanavar 1981), with at least (A, 2), (v, 2)EF, is a
grammar. Such an equational theory satisfies by construction the hypotheses of the Birk-
hoff theorem (Burris, Sankappanavar 1981) and thus is complete.

Provided we are able to associate at least an expression of GE to any sentence of a
given language, the parsing (or generation) of a sentence according to a theory E is a (fi-
nite) chain of equalities t1 = ... = tn, such that, for each step, E | = ti = ti+1.

In order to do that, define a lexicon as follows:

Definition: A lexicon for a language L is a binary relation A CS X V, where Z is the
alphabet of L.

We can now find, for each word in a sentence, an associated attribute structure; the at-
tribute structured thus obtained shall be connected with appropriate operators in F yield-
ing an expression of GE as we wanted.

In general there can be more than one attribute structure associated with a given
word, but sometimes it happens that for any wEZX there exists one and only one x€V such
that A(w, x). In this case we are authorized to use a function “”: T— V, such that “w” =
x whenever A(w, x).

Once an expression s over GE is associated with an object language sentence, the pars-
ing of such a sentence is achieved by determining the normal forms of s with respect to
the rewrite system obtained by orientation of the equations that make up the grammar;
these normal form represent the possible parses of the sentence with respect to the given
grammar,
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