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Ideal characteristics of standard filters

• As seen in Section 2.8, the relationship between H(ejω) and h(n) is given by the
following pair of equations:

H(ejω) =

∞∑

n=−∞

h(n)e− jωn (2)

h(n) =
1

2π

∫π

−π

H(ejω)ejωndω (3)

• In what follows, we determine H(ejω) and h(n) related to ideal standard filters.
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Lowpass, highpass, bandpass, and bandstop filters

• The ideal magnitude responses of some standard digital filters are depicted below.
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Figure 1: Ideal magnitude responses: (a) lowpass; (b) highpass; (c) bandpass; (d) band-
stop filters.
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Lowpass, highpass, bandpass, and bandstop filters

• For instance, the lowpass filter, as seen in Figure 1a, is described by

|H(ejω)| =






1, for |ω| ≤ ωc

0, for ωc < |ω| ≤ π
(4)

• Using (3), the impulse response for the ideal lowpass filter is

h(n) =
1

2π

∫ωc

−ωc

ejωndω =






ωc

π
, for n = 0

sin(ωcn)

πn
, for n "= 0

(5)

• One should note that in the above inverse transform calculations we have supposed
that the phase of the filter is zero.
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Lowpass, highpass, bandpass, and bandstop filters

• From Section 4.2.3, we have that the phase of an FIR filter must be of the form
e− jω M

2 , where M is an integer.

• Therefore, for M even, it suffices to shift the above impulse response by M
2

samples. However, for M odd, M
2

is not an integer, and the impulse response must
be computed as

h(n) =
1

2π

∫ωc

−ωc

e− jω M
2 ejωndω

=
1

2π

∫ωc

−ωc

ejω(n− M
2 )dω

=
sin

[

ωc

(

n − M
2

)]

π
(

n − M
2

) (6)
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Lowpass, highpass, bandpass, and bandstop filters

• Likewise, for bandstop filters, the ideal magnitude response, depicted in Figure 1d, is
given by

|H(ejω)| =






1, for 0 ≤ |ω| ≤ ωc1

0, for ωc1
< |ω| < ωc2

1, for ωc2
≤ |ω| ≤ π

(7)

• Then, using (3), the impulse response for such an ideal filter is

h(n) =
1

2π

[∫ωc1

−ωc1

ejωndω +

∫π

ωc2

ejωndω +

∫−ωc2

−π

ejωndω

]

=






1 +
ωc1

− ωc2

π
, for n = 0

1

πn
[sin(ωc1

n) − sin(ωc2
n)] , for n "= 0

(8)
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Differentiators

• An ideal discrete-time differentiator is a linear system that, when samples of a
band-limited continuous signal are used as input, the output samples represent the
derivative of the continuous signal.

• More precisely, given a continuous-time signal xa(t) band-limited to
[

−π
T
, π

T

)

,
when its corresponding sampled version x(n) = xa(nT) is input to an ideal
differentiator, it produces the output signal, y(n), such that

y(n) =
dxa(t)

dt

∣

∣

∣

∣

t=nT

(9)

• If the Fourier transform of the continuous-time signal is denoted by Xa( jΩ), we
have that the Fourier transform of its derivative is jΩXa( jΩ).
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Differentiators

• Therefore, an ideal discrete-time differentiator is characterized by a frequency
response, up to a multiplicative constant, of the form

H(ejω) = jω, for −π ≤ ω < π (10)

• The magnitude and phase responses of a differentiator are depicted in Figure 2.
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Differentiators
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Figure 2: Characteristics of an ideal discrete-time differentiator: (a) magnitude response;
(b) phase response.
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Differentiators

• Using equation (3), the corresponding impulse response is given by

h(n) =
1

2π

∫π

−π

jωejωndω

=






0, for n = 0

1

2π

[

ejωn

(

ω

n
−

1

jn2

)]
∣

∣

∣

∣

π

−π

=
(−1)n

n
, for n "= 0

(11)

• One should note that if a differentiator is to be approximated by a linear-phase FIR
filter, one should necessarily use either a Type-III or a Type-IV form.
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Hilbert transformers

• These equations provide a relation between the Fourier transforms of the real and
imaginary parts of a signal whose Fourier transform is null for −π ≤ ω < 0. It thus
implies that the ideal Hilbert transformer has the following transfer function:

H(ejω) =






− j, for 0 ≤ ω < π

j, for − π ≤ ω < 0
(17)

• The magnitude and phase components of such a frequency response are depicted in
Figure 3.
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Hilbert transformers
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Figure 3: Characteristics of an ideal Hilbert transformer: (a) magnitude response; (b)
phase response.
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Hilbert transformers

• Using equation (3), the corresponding impulse response for the ideal Hilbert
transformer is given by

h(n) =
1

2π

[∫π

0

− je jωndω+

∫0

−π

je jωndω

]

=






0, for n = 0

1

πn
[1−(−1)n] , for n "= 0

(18)

• By examining equation (17) we conclude, as in the case of the differentiator, that a
Hilbert transformer must be approximated, when using a linear-phase FIR filter, by
either a Type-III or Type-IV structure.
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Summary

Table 1: Ideal frequency characteristics and corresponding impulse responses for low-
pass, highpass, bandpass, and bandstop filters, as well as for differentiators and
Hilbert transformers.

Filter type Magnitude response Impulse response

|H(e jω)| h(n)

Lowpass






1, for 0 ≤ |ω| ≤ ωc

0, for ωc < |ω| ≤ π






ωc

π
, for n = 0

1

πn
sin(ωcn), for n "= 0

Highpass






0, for 0 ≤ |ω| < ωc

1, for ωc ≤ |ω| ≤ π






1 −
ωc

π
, for n = 0

−
1

πn
sin(ωcn), for n "= 0
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Summary

Filter type Magnitude response Impulse response

|H(e jω)| h(n)

Bandpass






0, for 0 ≤ |ω| < ωc1

1, for ωc1 ≤ |ω| ≤ ωc2

0, for ωc2
< |ω| ≤ π






(ωc2 − ωc1)

π
, for n = 0

1

πn
[sin(ωc2

n) − sin(ωc1
n)] , for n "= 0

Bandstop






1, for 0 ≤ |ω| ≤ ωc1

0, for ωc1 < |ω| < ωc2

1, for ωc2
≤ |ω| ≤ π






1 −
(ωc2 − ωc1)

π
, for n = 0

1

πn
[sin(ωc1

n) − sin(ωc2
n)] , for n "= 0
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Summary

Filter type Frequency response Impulse response

H(e jω) h(n)

Differentiator jω, for −π ≤ ω < π






0, for n = 0

(−1)n

n
, for n "= 0

Hilbert

transformer






− j, for 0 ≤ ω < π

j, for − π ≤ ω < 0






0, for n = 0
1

πn
[1 − (−1)n] , for n "= 0
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FIR filter approximation by frequency sampling

• In general, the problem of FIR filter design is to find a finite-length impulse response
h(n), whose Fourier transform H(ejω) approximates a given frequency response
well enough.

• As seen in Section 3.2, one way of achieving such a goal is by noting that the DFT of
a length-N sequence h(n) corresponds to samples of its Fourier transform at the
frequencies ω = 2πk

N
, that is

H(ejω) =

N−1∑

n=0

h(n)e− jωn (19)

and then

H(ej 2πk
N ) =

N−1∑

n=0

h(n)e− j 2πkn
N , for k = 0, 1, . . ., (N − 1) (20)
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FIR filter approximation by frequency sampling

• It is then natural to consider designing a length-N FIR filter by finding an h(n)

whose DFT corresponds exactly to samples of the desired frequency response.

• In other words, h(n) can be determined by sampling the desired frequency
response at the N points ej 2π

N k and finding its inverse DFT. This method is generally
referred to as the frequency sampling approach.

• More precisely, if the desired frequency response is given by D(ω), one must first
find

A(k)ejθ(k) = D

(

ωsk

N

)

, for k = 0, 1, . . ., (N − 1) (21)

where A(k) and θ(k) are samples of the desired amplitude and phase responses,
respectively.
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FIR filter approximation by frequency sampling

• Type I: Even order M and symmetrical impulse response. In this case, the phase
and amplitude responses must satisfy

θ(k) = −
πkM

M + 1
, for 0 ≤ k ≤ M (22)

A(k) = A(M − k + 1), for 1 ≤ k ≤
M

2
(23)

and then, the impulse response is given by

h(n) =
1

M + 1



A(0) + 2

M
2∑

k=1

(−1)kA(k) cos
πk(1 + 2n)

M + 1



 (24)

for n = 0, 1, . . ., M.
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Table 2: Impulse responses for linear-phase FIR filters with frequency sampling approach.

Filter type Impulse response Condition

h(n), for n = 0,1,...,M

Type I
1

M+1

2

6

4
A(0)+2

M
2∑

k=1

(−1)kA(k)cos
πk(1+2n)

M+1

3

7

5

Type II
1

M+1

2

6

4
A(0)+2

M−1
2∑

k=1

(−1)kA(k)cos
πk(1+2n)

M+1

3

7

5
A

“

M+1
2

”

= 0

Type III
2

M+1

M
2∑

k=1

(−1)k+1A(k)sin
πk(1+2n)

M+1
A(0) = 0

Type IV
1

M+1

2

6

4
(−1)

M+1
2

+nA

„

M+1

2

«

+2

M−1
2∑

k=1

(−1)kA(k)sin
πk(1+2n)

M+1

3

7

5
A(0) = 0
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Example 5.1

• Design a lowpass filter satisfying the specification below using the frequency
sampling method:

M = 52

Ωp = 4.0 rad/s

Ωr = 4.2 rad/s

Ωs = 10.0 rad/s






(37)

• Obs.: Note that in this text, in general, the variable Ω represents an analog
frequency, and the variable ω a digital frequency.
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Example 5.1 - Solution

• We divide the [0, Ωs] interval into (M + 1) = 53 sub-intervals of same length
Ωs

M+1
, each starting at Ωk = Ωs

M+1
k, for k = 0, 1, . . . , M.

• According to the prescribed specifications, Ωp and Ωr lie close to the extremes

kp =

⌊

(M + 1) ×
Ωp

Ωs

⌋

= $53 ×
4

10
% = 21 (38)

kr =

⌊

(M + 1) ×
Ωr

Ωs

⌋

= $53 ×
4.2

10
% = 22 (39)

• Thus, we assign

A(k) =






1, for 0 ≤ k ≤ kp

0, for kr ≤ k ≤ M
2

(40)
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Example 5.1 - Solution

• Then, one can employ the following MATLAB script, implementing the first row in
Table 2, to design a Type I lowpass filter using the frequency sampling method:
M = 52; N = M+1;
Omega_p = 4; Omega_r = 4.2; Omega_s = 10;
kp = floor(N*Omega_p/Omega_s);
kr = floor(N*Omega_r/Omega_s);
A = [ones(1,kp+1) zeros(1,M/2-kr+1)];
k = 1:M/2;
for n=0:M,

h(n+1) = A(1) +
2*sum((-1).ˆk.*A(k+1).*cos(pi.*k*(1+2*n)/N));
end;
h = h./N;

• Using this script, one ends up with the set of coefficients shown in Table 3.

40



Diniz, da Silva and Netto

Example 5.1 - Solution

• The corresponding magnitude response is shown in Figure 4.
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Figure 4: Magnitude response of the lowpass filter designed with the frequency sampling
method.
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FIR filter approximation by frequency sampling

M + 1 
2" 

D(   ) ! ! j H(e     ) 

! 

$ 

" 

0 

Figure 5: The desired magnitude response and the Fourier transform of h(n) coincide
only at the frequencies 2πk

M+1
, when using the frequency sampling approxima-

tion method.
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FIR filter approximation with window functions

• For all ideal filters analyzed in Section 5.2, the impulse responses obtained from
equation (3) have infinite duration, which leads to non-realizable FIR filters.

• A straightforward way to overcome this limitation is to define a finite-length auxiliary
sequence h′(n), yielding a filter of order M, as

h′(n) =






h(n), for |n| ≤ M
2

0, for |n| > M
2

(48)

assuming that M is even.
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FIR filter approximation with window functions

• The resulting transfer function is written as

H′(z) = h(0) +

M
2∑

n=1

(

h(−n)zn + h(n)z−n
)

(49)

• This is still a noncausal function which we can make causal by multiplying it by z
−M

2 ,
without either distorting the filter magnitude response or destroying the linear-phase
property.

• The example below highlights some of the impacts that the truncation of the impulse
response in equations (48) and (49) has on the filter frequency response.

53



Diniz, da Silva and Netto

Example 5.2

• Design a bandstop filter satisfying the specification below:

M = 50

Ωc1
= π

4
rad/s

Ωc2
= π

2
rad/s

Ωs = 2π rad/s






(50)
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Example 5.2 - Solution

• Applying equations (48) and (49) to the corresponding bandstop equations in
Table 1, one may use the script:
M = 50;
wc1 = pi/4; wc2 = pi/2; ws = 2*pi;
n = 1:M/2;
h0 = 1 - (wc2 - wc1)/pi;
haux = (sin(wc1.*n) - sin(wc2.*n))./(pi.*n);
h = [fliplr(haux) h0 haux];
to obtain the filter coefficients listed in Table 4 (only half of them are listed as the
others can be found using h(n) = h(50 − n)).

• The resulting magnitude response is depicted in Figure 6.
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Example 5.2 - Solution
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Figure 6: Bandstop filter: (a) magnitude response; (b) passband detail.
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FIR filter approximation with window functions

• The ripple seen in Figure 6 close to the band edges is due to the slow convergence
of the Fourier series h(n) when approximating functions presenting discontinuities,
such as the ideal responses seen in Figure 1.

• This implies that large amplitude ripples in the magnitude response appear close to
the edges whenever an infinite-length h(n) is truncated to generate a finite-length
filter. These ripples are commonly referred to as Gibbs’ oscillations.

• It can be shown that Gibbs’ oscillations possess the property that their amplitudes do
not decrease even when the filter order M is increased dramatically. This severely
limits the practical usefulness of equations (48) and (49) in FIR design, because the
maximum deviation from the ideal magnitude response can not be minimized by
increasing the filter length.
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FIR filter approximation with window functions

• Although we can not remove the ripples introduced by the poor convergence of the
Fourier series, we can still attempt to control their amplitude by multiplying the
impulse response h(n) by a window function w(n).

• The window w(n) must be designed such that it introduces minimum deviation from
the ideal frequency response. The coefficients of the resulting impulse response
h′(n) become

h′(n) = h(n)w(n) (51)

• In the frequency domain, such a multiplication corresponds to a periodic convolution
operation between the frequency responses of the ideal filter, H(ejω), and of the
window function, W(ejω), that is

H′(ejω) =
1

2π

∫π

−π

H(ejω′

)W(ej(ω−ω′))dω′ (52)
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FIR filter approximation with window functions

(a)
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Figure 7: Magnitude responses of a window function: (a) ideal case; (b) practical case.

61



Diniz, da Silva and Netto
Rectangular window

• A simple truncation of the impulse response as described in equation (48) can be
interpreted as the product between the ideal h(n) and a window given by

wr(n) =






1, for |n| ≤ M
2

0, for |n| > M
2

(53)

• Note that if we want to truncate the impulse responses in Table 1 using the above
equation, and still keep the linear-phase property, the resulting truncated sequences
would have to be either symmetric or antisymmetric around n = 0.

• This implies that, for those cases, M would have to be even (Type-I and Type-III
filters, as seen in Subsection 4.2.3).

• For the case of M odd, the solution would be to shift h(n) so that it is causal and
apply a window different from zero from n = 0 to n = M − 1. This solution,
however, is not commonly used in practice.
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Rectangular window

• From equation (53), the frequency response of the rectangular window is given by

Wr(ejω) =

M
2∑

n=− M
2

e− jωn

=
ejω M

2 − e− jω M
2 e− jω

1 − e− jω

= e− j ω
2

[

ejω( M+1
2 ) − e− jω( M+1

2 )
]

1 − e− jω

=
sin

[

ω(M+1
2

)
]

sin
(ω

2

) (54)
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Triangular windows

• The main problem associated with the rectangular window is the presence of ripples
near the band edges of the resulting filter, which are caused by the existence of
sidelobes in the frequency response of the window.

• Such a problem is due to the inherent discontinuity of the rectangular window in the
time domain. One way to reduce such a discontinuity is to employ a
triangular-shaped window, which will present only small discontinuities near its
edges.

• The standard triangular window is defined as

wt(n) =






−
2|n|

M + 2
+ 1, for |n| ≤ M

2

0, for |n| > M
2

(55)
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Triangular windows

• A small variation of such a window is called the Bartlett window and is defined by

wtB(n) =






−
2|n|

M
+ 1, for |n| ≤ M

2

0, for |n| > M
2

(56)

• These two triangular-type window functions are closely related. Their main difference
lies in the fact that the Bartlett window presents one null element at each of its
extremities. In that manner, an Mth-order Bartlett window can be obtained by
juxtaposing one zero at each extremity of the (M − 2)th-order standard triangular
window.

• In some cases, an even greater reduction of the sidelobes is necessary, and then
more complex window functions should be used, such as the ones described below.
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Hamming and Hann windows

• The generalized Hamming window is defined as

wH(n) =






α + (1 − α) cos
(

2πn

M

)

, for |n| ≤ M
2

0, for |n| > M
2

(57)

with 0 ≤ α ≤ 1.

• This generalized window is referred to as the Hamming window when α = 0.54,
and for α = 0.5, it is known as the Hann or Hanning window.

• The frequency response for the general Hamming window can be expressed based
on the frequency response of the rectangular window.
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Hamming and Hann windows

• We first write equation (57) as

wH(n) = wr(n)

[

α + (1 − α) cos
(

2πn

M

)]

(58)

• By transforming the above equation to the frequency domain, clearly the frequency
response of the generalized Hamming window results from the periodic convolution
between Wr(ejω) and three impulse functions as

WH

`

e jω´

= Wr

`

e jω´

∗

»

αδ(ω)+

„

1−α

2

«

δ

„

ω−
2π

M

«

+

„

1−α

2

«

δ

„

ω+
2π

M

«–

(59)

• And then

WH

`

e jω´

= αWr

`

e jω´

+

„

1 − α

2

«

Wr

“

e j(ω− 2π
M

)
”

+

„

1 − α

2

«

Wr

“

e j(ω+ 2π
M

)
”

(60)
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Hamming and Hann windows

• From this equation, one notices that WH(ejω) is composed of three versions of the
rectangular spectrum Wr(ejω): the main component, αWr(ejω), centered at
ω = 0, and two additional ones with smaller amplitudes, centered at
ω = ±2π/M, that reduce the secondary lobe of the main component.

4" 2" %2" 
M + 1 M + 1 M + 1 M + 1 
%4" 

! 

Figure 8: The three components of the generalized Hamming window combine to re-
duce the resulting secondary lobes. (Solid line – αWr(ejω); dashed line –
1−α

2
Wr

(

ej(ω− π
M )

)

; dotted line – 1−α
2

Wr

(

ej(ω+ π
M )

)

.)
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Hamming and Hann windows

• The main characteristics of the generalized Hamming window are:

– All three Wr(ejω) components have zeros close to ω = ± 4π
M+1

. Hence, the
main-lobe total width is 8π

M+1
.

– When α = 0.54, the main-lobe total energy is approximately 99.96% of the
window total energy.

– The transition band of the Hamming window is larger than the transition band of
the rectangular window, due to its wider main lobe.

– The ratio between the amplitudes of the main and secondary lobes of the
Hamming window is much larger than for the rectangular window.

– The stopband attenuation for the Hamming window is larger than the attenuation
for the rectangular window.

70



Diniz, da Silva and Netto

Blackman window

• The Blackman window is defined as

wB(n) =






0.42 + 0.5 cos
(

2πn

M

)

+ 0.08 cos
(

4πn

M

)

, for |n| ≤ M
2

0, for |n| > M
2

(61)

• Compared to the Hamming window function, the Blackman window introduces a
second cosine term to further reduce the effects of the secondary lobes of Wr(ejω).

• The Blackman window is characterized by the following issues:

– The main-lobe width is approximately 12π
M+1

, which is wider than that for the
previous windows.

– The passband ripples are smaller than in the previous windows.

– The stopband attenuation is larger than in the previous windows.

71



Diniz, da Silva and Netto

Example 5.3

• Design a bandstop filter satisfying the specification below using the rectangular,
Hamming, Hann, and Blackman windows:

M = 80

Ωp1
= 2000 rad/s

Ωp2
= 4000 rad/s

Ωs = 10 000 rad/s






(62)
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Example 5.3 - Solution

• This time, filter specifications are given in the analog frequency domain. Hence, one
must first normalize Ωp1

and Ωp2
before employing a script similar to the one

given in Example 5.2:
M = 80;
Omega_c1 = 2000; Omega_c2 = 4000; Omega_s = 10000;
wc1 = Omega_c1*2*pi/Omega_s; wc2 =
Omega_c2*2*pi/Omega_s;
n = 1:M/2;
h0 = 1 - (wc2 - wc1)/pi;
haux = (sin(wc1.*n) - sin(wc2.*n))./(pi.*n);
h = [fliplr(haux) h0 haux];
to obtain the impulse response using the rectangular window.
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Example 5.3 - Solution

• For the other three windows, one must multiply sample-by-sample h(n) above by
the corresponding window obtained with the MATLAB commands
hamming(M+1);, hanning(M+1);, and blackman(M+1);.

• The resulting impulse responses are shown in Tables 5–8, where only the filter
coefficients for 0 ≤ n ≤ 40 are given, since the remaining coefficients can be
obtained as h(n) = h(80 − n).

• The magnitude responses associated to the four impulse responses listed in
Tables 5–8 are depicted in Figure 9. The reader should notice the compromise
between the transition bandwidth and the ripple in the passband and stopband when
going from the rectangular to the Blackman window, that is, as the ripple decreases,
the width of the transition band increases accordingly.
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Figure 9: Magnitude responses when using: (a) rectangular; (b) Hamming; (c) Hann; (d)
Blackman windows.
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Kaiser window

• All the window functions seen so far allow us to control the transition band through a
proper choice of the filter order M.

• However, no control can be achieved over the passband and stopband ripples, which
makes these windows of little use when designing filters with prescribed frequency
specifications, such as that depicted in Figure 10.

• Such problems are overcome with the Kaiser and Dolph-Chebyshev windows,
presented in this and in the next subsections.
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Kaiser window
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Figure 10: Typical specification of a lowpass filter. The specifications are in terms of the
digital frequency ω = 2π Ω

Ωs
= ΩT .
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Kaiser window

• As seen earlier in this section, the ideal window should be a finite-duration function
such that most of its spectral energy is concentrated around |ω| = 0, quickly
decaying when |ω| increases.

• There is a family of continuous-time functions, called the prolate spheroidal functions,
which are optimal for achieving these properties.
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Kaiser window

• Such functions, although very difficult to implement in practice, can be effectively
approximated with the hyperbolic-sine I0(·) functions as

w(t) =






I0

[

β
√

1 − ( t
τ
)2

]

I0(β)
, for |t| ≤ τ

0, for |t| > τ

(63)

where β = Ωaτ and I0(x) is the zeroth-order modified Bessel function of the first
kind, which can be efficiently determined through its series expansion given by

I0(x) = 1 +

∞∑

k=1

[

(x
2
)k

k!

]2

(64)
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Kaiser window

• The Fourier transform of w(t) is given by

W(Ω) =
2τ sin

[

β
√

( Ω
Ωa

)2 − 1
]

βI0(β)
√

( Ω
Ωa

)2 − 1
(65)

• The Kaiser window is derived from equation (63) by making the transformation to the
discrete-time domain given by τ → M

2
T and t → nT . The window is then

described by

wK(n) =






I0

[

β
√

1 − (2n
M

)2

]

I0(β)
, for |n| ≤ M

2

0, for |n| > M
2

(66)

• Since the functions given by equation (65) tend to be highly concentrated around
|Ω| = 0, we can assume that W(Ω) ≈ 0, for |Ω| ≥ Ωs

2
.
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Kaiser window

• Therefore, we can approximate the frequency response for the Kaiser window by

WK(ejω) ≈
1

T
W

(ω

T

)

(67)

where W(Ω) is given by equation (65) when τ is replaced by M
2

T .

• This yields

WK(ejω) ≈
M sin

[

β
√

( ω
ωa

)2 − 1
]

βI0(β)
√

( ω
ωa

)2 − 1
(68)

where ωa = ΩaT and β = Ωaτ = ωa

T
M
2

T = ωa
M
2

.

• The main advantage of the Kaiser window appears in the design of FIR digital filters
with prescribed specifications, such as that depicted in Figure 10, where the
parameter β is used to control some filter characteristics.
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Kaiser window

• The overall procedure for designing FIR filters using the Kaiser window is as follows:

– (i) From the ideal frequency response that the filter is supposed to approximate,
determine the impulse response h(n) using Table 1. If the filter is either lowpass
or highpass, one should make Ωc =

Ωp+Ωr

2
. The case of bandpass and

bandstop filters is dealt with later in this subsection.

– (ii) Given the maximum passband ripple in dB, Ap, and the minimum stopband
attenuation in dB, Ar, determine the corresponding ripples

δp =
100.05Ap − 1

100.05Ap + 1
(69)

δr = 10−0.05Ar (70)
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Kaiser window

• (cont.)

– (iii) As with all other window functions, the Kaiser window can only be used to
design filters that present the same passband and stopband ripples. Therefore, in
order to satisfy the prescribed specifications, one should use δ = min{δp, δr}.

– (iv) Compute the resulting passband ripple and stopband attenuation in dB using

Ap = 20 log
1 + δ

1 − δ
(71)

Ar = −20 log δ (72)

– (v) Given the passband and stopband edges, Ωp and Ωr, respectively, compute
the transition bandwidth Tr = (Ωr − Ωp).
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Kaiser window

• (cont.)

– (vi) Compute β using

β =






0, for Ar ≤ 21

0.5842(Ar − 21)0.4 + 0.078 86(Ar − 21), for 21 < Ar ≤ 50

0.1102(Ar − 8.7), for 50 < Ar

(73)

This empirical formula was devised by Kaiser based on the behavior of the
function W(Ω) in equation (65).

– (vii) Defining the normalized window length D = TrM
Ωs

, where Ωs is the
sampling frequency, we have that:

D =






0.9222, for Ar ≤ 21

(Ar − 7.95)

14.36
, for 21 < Ar

(74)
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Kaiser window

• (cont.)

– (viii) Having computed D using equation (74), we can determine the filter order
M as the smallest even number that satisfies

M ≥
ΩsD

Tr
(75)

One should remember that Tr must be in the same units as Ωs.

– (ix) With M and β determined, we compute the window wK(n) using
equation (66). We are now ready to form the sequence h′(n) = wK(n)h(n),
where h(n) is the ideal filter impulse response computed in step (i).

– (x) The desired transfer function is then given by

H(z) = z− M
2 Z{h′(n)} (76)
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Kaiser window

• The above procedure applies to lowpass filters (see Figure 10) as well as highpass
filters. If the filter is either bandpass or bandstop, we must include the following
reasoning in step (i) above:

– 1. Compute the narrower transition band

Tr = ±min{|Ωr1
− Ωp1

|, |Ωp2
− Ωr2

|} (77)

Notice that Tr is negative for bandpass filters and positive for bandstop filters.

– 2. Determine the two central frequencies as

Ωc1
=

(

Ωp1
+

Tr

2

)

(78)

Ωc2
=

(

Ωp2
−

Tr

2

)

(79)
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Kaiser window

• A typical magnitude specification for a bandstop filter is depicted in Figure 11.

! ! r1 ! r2 ! c2 ! p2 ! c1 ! p1 
0 

" 

| H( e j ! ) | 

1  + $ 

1  – $ 

$ 

Figure 11: Typical specification of a bandstop filter.
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Example 5.4

• Design a bandstop filter satisfying the specification below using the Kaiser window:

Ap = 1.0 dB

Ar = 45 dB

Ωp1
= 800 Hz

Ωr1
= 950 Hz

Ωr2
= 1050 Hz

Ωp2
= 1200 Hz

Ωs = 6000 Hz






(80)
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Example 5.4 - Solution

• Following the procedure described above, the resulting filter is obtained as follows
(note that in the FIR design procedure described above, the parameters of the Kaiser
window depend only on the ratio of the analog frequencies in the filter specification to
the sampling frequency; therefore, the frequencies can be entered in the formula in
hertz, as long as the sampling frequency Ωs is also in hertz):

– (i) From equations (77)–(79), we have that

Tr = + min{(950 − 800), (1200 − 1050)} = 150 Hz (81)

Ωc1
= 800 + 75 = 875 Hz (82)

Ωc2
= 1200 − 75 = 1125 Hz (83)
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Example 5.4 - Solution

• (cont.)

– (ii) From equations (69) and (70),

δp =
100.05 − 1

100.05 + 1
= 0.0575 (84)

δr = 10−0.05×45 = 0.005 62 (85)

(86)

– (iii) δ = min{0.0575, 0.005 62} = 0.005 62

– (iv) From equations (71) and (72),

Ap = 20 log
1 + 0.005 62

1 − 0.005 62
= 0.0977 dB (87)

Ar = −20 log 0.005 62 = 45 dB (88)
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Example 5.4 - Solution

• (cont.)

– (v) Tr has already been computed as 150 Hz in step (i).

– (vi) From equation (73), since Ar = 45 dB, then

β = 0.5842(45 − 21)0.4 + 0.078 86(45 − 21) = 3.975 4327 (89)

– (vii) From equation (74), since Ar = 45 dB, then

D =
(45 − 7.95)

14.36
= 2.580 0835 (90)

– (viii) Since the sampling period is T = 1
6000

s, we have, from equation (75),

M ≥
6000 × 2.580 0835

150
= 103.203 34 ⇒ M = 104 (91)
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Example 5.4 - Solution

• This whole procedure is implemented by a simple MATLAB script:
Ap = 1; Ar = 45;
Omega_p1 = 800; Omega_r1 = 950;
Omega_r2 = 1050; Omega_p2 = 1200;
Omega_s = 6000;
delta_p = (10ˆ(0.05*Ap) - 1)/(10ˆ(0.05*Ap) + 1);
delta_r = 10ˆ(-0.05*Ar);
F = [Omega_p1 Omega_r1 Omega_r2 Omega_p2];
A = [1 0 1];
ripples = [delta_p delta_r delta_p];
[M,Wn,beta,FILTYPE] =
kaiserord(F,A,ripples,Omega_s);
which yields as outputs beta = 3.9754 and M = 104, as determined above.
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Example 5.4 - Solution

• In this short script, the auxiliary vectors A and ripples specify the desired gain
and allowed ripple, respectively, in each filter band.

• The Kaiser window coefficients are determined by:
kaiser_win = kaiser(M+1,beta);
and are shown in Figure 12 along with the associated magnitude response.
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Example 5.4 - Solution
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Figure 12: Kaiser window: (a) window function; (b) magnitude response.
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Example 5.4 - Solution

• The desired filter is obtained using the fir1 command, as exemplified by:
h = fir1(M,Wn,FILTYPE,kaiser_win, ′noscale ′);
where the noscale flag avoids the unitary gain at the first passband center
imposed by MATLAB.

• The designed filter characteristics are summarized in Table 9.
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Example 5.4 - Solution
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Figure 13: Resulting bandstop filter: (a) impulse response; (b) magnitude response; (c)
passband detail.
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Dolph-Chebyshev window

• Based on the Mth-order Chebyshev polynomial given by

CM(x) =






cos
[

M cos−1(x)
]

, for |x| ≤ 1

cosh
[

M cosh−1(x)
]

, for |x| > 1

(92)

the Dolph-Chebyshev window is defined as

wDC(n) =






1

M+1






1

r
+2

M
2∑

i=1

CM

»

x0 cos
„

iπ

M+1

«–

cos
„

2niπ

M+1

«





, for |n| ≤ M

2

0, for |n| > M
2

(93)

where r is the ripple ratio defined as r = δr

δp
and

x0 = cosh
[

1

M
cosh−1

(

1

r

)]

(94)
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Dolph-Chebyshev window

• The procedure for designing FIR filters using the Dolph-Chebyshev window is very
similar to the one for the Kaiser window:

– (i) Perform steps (i) and (ii) of the Kaiser procedure.

– (ii) Determine r = δr

δp
.

– (iii) Perform steps (iii)–(v) and (vii)–(viii) of the Kaiser procedure, to determine the
filter order M. In step (vii), however, as the stopband attenuation achieved with
the Dolph-Chebyshev window is typically 1 to 4 dB higher than that obtained
using the Kaiser window, one should compute D for the Dolph-Chebyshev
window using equation (5.74) with Ar replaced by Ar + 2.5.

– (iv) With r and M determined, compute x0 from equation (94), and then compute
the window coefficients from equation (93).

– (v) We are now ready to form the sequence h′(n) = wDC(n)h(n), where
h(n) is the ideal filter impulse response computed in step (86).

– (vi) Perform step (x) of the Kaiser procedure to determine the resulting FIR filter.
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Dolph-Chebyshev window

• Overall, the Dolph-Chebyshev window is characterized by:

– The main-lobe width, and consequently the resulting filter transition band, can be
controlled by varying M.

– The ripple ratio is controlled through an independent parameter r.

– All secondary lobes have the same amplitude. Therefore, the stopband of the
resulting filter is equiripple.
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Maximally flat FIR filter approximation

• Maximally flat approximations should be employed when a signal must be preserved
with minimal error around the zero frequency or when a monotone frequency
response is necessary.

• FIR filters with a maximally flat frequency response at ω = 0 and ω = π were
introduced by Herrmann. We consider here, following the standard literature on the
subject, the lowpass Type-I FIR filter of even order M and symmetric impulse
response.

• In this case, the frequency response of a maximally flat FIR filter is determined in
such a way that H(ejω) − 1 has 2L zeros at ω = 0, and H(ejω) has 2K zeros at
ω = π.

• To achieve a maximally flat response, the filter order M must satisfy
M = (2K + 2L − 2). Thus, the first 2L − 1 derivatives of H(ejω) are zero at
ω = 0, and the first 2K − 1 derivatives of H(ejω) are zero at ω = π.
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Maximally flat FIR filter approximation

c ! 
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Figure 14: Typical specification of a maximally flat lowpass FIR filter.
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Example 5.5

• Design a maximally flat lowpass filter satisfying the specification below:

Ωc = 0.3π rad/s

Tr = 0.2π rad/s

Ωs = 2π rad/s






(108)
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Example 5.5 - Solution

Table 11: Coefficients of the lowpass filter designed with the maximally flat method.

d(0) to d(5)

d(0) = 1

d(1) = 27

d(2) = 378

d(3) = 3 654

d(4) = 27 405

d(5) = 169 911

d(6) = 906 192
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Example 5.5 - Solution
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Figure 15: magnitude response of maximally flat lowpass FIR filter: (a) linear scale; (b)
dB scale.
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FIR filter approximation by optimization

• The window method seen in Section 5.4 has a very straightforward design procedure
for approximating the desired magnitude response. However, the window method is
not efficient for designing, for example, FIR filters with different ripples in the
passband and stopband, or nonsymmetric bandpass or bandstop filters.

• To fill this gap, in this section we present several numerical algorithms for designing
more general FIR digital filters.

• In many signal processing systems, filters with linear or zero phase are required.
Unfortunately, filters designed to have zero phase are not causal; this can be a
problem in applications where very little processing delay is permissible.

• Also, nonlinear phase causes distortion in the processed signal, which can be very
perceptible in applications like data transmission, image processing, and so on.
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FIR filter approximation by optimization

• One of the major advantages of using an FIR system instead of a causal IIR system
is that FIR systems can be designed with exact linear phase.

• As seen in Subsection 4.2.3, there are four distinct cases where an FIR filter
presents linear phase. To present general algorithms for designing linear-phase FIR
filters, a unified representation of these four cases is necessary.

• We define an auxiliary function P(ω) as

P(ω) =

L∑

l=0

p(l) cos(ωl) (109)

where L + 1 is the number of cosine functions in the expression of H(ejω).
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FIR filter approximation by optimization

• Based on this function, we can express the frequency response of the four types of
linear-phase FIR filters as:

– Type I: Even order M and symmetric impulse response. We get

H(ejω) = e− jω M
2

M
2∑

m=0

a(m) cos(ωm)

= e− jω M
2

M
2∑

l=0

p(l) cos(ωl)

= e− jω M
2 P(ω) (110)

with

a(m) = p(m), for m = 0, 1, . . ., L (111)

where L = M
2

.
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FIR filter approximation by optimization

• (cont.)

– Type II: Odd order M and symmetric impulse response. In this case, we have

H(ejω) = e− jω M
2

M+1
2∑

m=1

b(m) cos
[

ω

(

m −
1

2

)]

(112)

Using

b(m) =






p(0) +
1

2
p(1), for m = 1

1

2
(p(m − 1) + p(m)) , for m = 2, 3, . . ., L

1

2
p(L), for m = L + 1

(113)
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FIR filter approximation by optimization

• With L = M−1
2

, then H(ejω) can be written in the form

H(ejω) = e− jω M
2 cos

(ω

2

)

P(ω) (114)

using the trigonometric identity

2 cos
(ω

2

)

cos(ωm) = cos
[

ω

(

m +
1

2

)]

+ cos
[

ω

(

m −
1

2

)]

(115)

• The complete algebraic development is left as an exercise to the interested reader.
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• (cont.)

– Type III: Even order M and antisymmetric impulse response. In this case, we
have

H(ejω) = e− j(ω M
2

− π
2

)

M
2∑

m=1

c(m) sin(ωm) (116)

and then, by substituting

c(m) =






p(0) −
1

2
p(2), for m = 1

1

2
(p(m − 1) − p(m + 1)) , for m = 2, 3, . . ., (L − 1)

1

2
p(m − 1), for m = L, L + 1

(117)
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• With L = M
2

− 1, equation (116) can be written as

H(ejω) = e− j(ω M
2

− π
2 ) sin ωP(ω) (118)

using, in this case, the identity

sin ω cos (ωm) = sin [ω (m + 1)] − sin [ω (m − 1)] (119)

• Once again, the algebraic proof is left as an exercise at the end of this chapter.
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• (cont.)

– Type IV: Odd order M and antisymmetric impulse response. We have that

H(ejω) = e− j(ω M
2

− π
2

)

M+1
2∑

m=1

d(m) sin
[

ω

(

m −
1

2

)]

(120)

By substituting

d(m) =






p(0) −
1

2
p(1), for m = 1

1

2
(p(m − 1) − p(m)) , for m = 2, 3, . . ., L

1

2
p(L), for m = L + 1

(121)
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• With L = M−1
2

, then H(ejω) can be written as

H(ejω) = e− j(ω M
2 − π

2 ) sin
(ω

2

)

P(ω) (122)

using the identity

2 sin
(ω

2

)

cos(ωm) = sin
[

ω

(

m +
1

2

)]

− sin
[

ω

(

m −
1

2

)]

(123)
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• Equations (110), (114), (118), and (122) indicate that we can write the frequency
response for any linear-phase FIR filter as

H(ejω) = e− j(αω−β)Q(ω)P(ω) = e− j(αω−β)A(ω) (124)

where A(ω) = Q(ω)P(ω), α = M
2

, and for each case we have that:

– Type I: β = 0 and Q(ω) = 1

– Type II: β = 0 and Q(ω) = cos(ω
2

)

– Type III: β = π
2

and Q(ω) = sin(ω)

– Type IV: β = π
2

and Q(ω) = sin(ω
2

).
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• Let D(ω) be the desired amplitude response. We define the weighted error function
as

E(ω) = W(ω)(D(ω) − A(ω)) (125)

• We can then write E(ω) as

E(ω) = W(ω)(D(ω) − Q(ω)P(ω))

= W(ω)Q(ω)

(

D(ω)

Q(ω)
− P(ω)

)

(126)

for all 0 ≤ ω ≤ π, as Q(ω) is independent of the coefficients for each ω.
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• Defining

Wq(ω) = W(ω)Q(ω) (127)

Dq(ω) =
D(ω)

Q(ω)
(128)

the error function can be rewritten as

E(ω) = Wq(ω)(Dq(ω) − P(ω)) (129)

and one can formulate the optimization problem for approximating linear-phase FIR
filters as:

• Determine the set of coefficients p(l) that minimizes some objective function of the
weighted error E(ω) over a set of prescribed frequency bands.
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• To solve such a problem numerically, we evaluate the weighted error function on a
dense frequency grid with 0 ≤ ωi ≤ π, for i = 1, 2, . . ., KM, where M is the
filter order, obtaining a good discrete approximation of E(ω).

• For most practical purposes, using 8 ≤ K ≤ 16 is recommended. Points associated
with the transition bands can be disregarded, and the remaining frequencies should
be linearly redistributed in the passbands and stopbands to include their
corresponding edges.
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• Thus, the following equation results

e = Wq (dq − Up) (130)

where

e =
[

E(ω1) E(ω2) · · · E(ωKM)
]T (131)

Wq = diag
[

Wq(ω1) Wq(ω2) · · · Wq(ωKM)
]

(132)

dq =
[

Dq(ω1) Dq(ω2) · · · Dq(ωKM)
]T (133)

U =

















1 cos(ω1) cos(2ω1) . . . cos(Lω1)

1 cos(ω2) cos(2ω2) . . . cos(Lω2)
...

...
...

. . .
...

1 cos(ωKM) cos(2ωKM) . . . cos(LωKM)

















(134)

p = [p(0) p(1) · · · p(L)]
T (135)
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• With KM ≤ KM, as the original frequencies in the transition band were discarded.

• For the four standard types of filters, namely lowpass, highpass, bandpass, and
bandstop, as well as differentiators and Hilbert transformers, the definitions of
W(ω) and D(ω) are summarized in Table 12.
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Table 12: Weight functions and ideal magnitude responses for basic lowpass, highpass,
bandpass, and bandstop filters, as well as differentiators and Hilbert transform-
ers.

Filter type Weight function Ideal amplitude response

W(ω) D(ω)

Lowpass






1, for 0 ≤ ω ≤ ωp

δp

δr
, for ωr ≤ ω ≤ π






1, for 0 ≤ ω ≤ ωp

0, for ωr ≤ ω ≤ π

Highpass






δp

δr
, for 0 ≤ ω ≤ ωr

1, for ωp ≤ ω ≤ π






0, for 0 ≤ ω ≤ ωr

1, for ωp ≤ ω ≤ π
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Filter type Weight function Ideal amplitude response

W(ω) D(ω)

Bandpass






δp

δr
, for 0 ≤ ω ≤ ωr1

1, for ωp1
≤ ω ≤ ωp2

δp

δr
, for ωr2

≤ ω ≤ π






0, for 0 ≤ ω ≤ ωr1

1, for ωp1
≤ ω ≤ ωp2

0, for ωr2
≤ ω ≤ π

Bandstop






1, for 0 ≤ ω ≤ ωp1

δp

δr
, for ωr1

≤ ω ≤ ωr2

1, for ωp2
≤ ω ≤ π






1, for 0 ≤ ω ≤ ωp1

0, for ωr1
≤ ω ≤ ωr2

1, for ωp2
≤ ω ≤ π
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• It is important to remember all design constraints, due to the magnitude and phase
characteristics of the four linear-phase filter types, as summarized below, where a
‘Yes’ entry indicates that the corresponding filter structure is suitable to implement
the given filter type.

Filter type Type I Type II Type III Type IV

Lowpass Yes Yes No No

Highpass Yes No No Yes

Bandpass Yes Yes Yes Yes

Bandstop Yes No No No

Differentiator No No Yes Yes

Hilbert

transformer
No No Yes Yes
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Weighted-least-squares method

• In the weighted-least-squares (WLS) approach, the idea is to minimize the square of
the energy of the error function E(ω), that is

min
p

{
‖E(ω)‖2

2

}
= min

p

{∫π

0

|E(ω)|
2 dω

}

(136)

• For a discrete set of frequencies, this objective function is approximated by (see
equations (130)–(135))

‖E(ω)‖2
2 ≈

1

KM

KM∑

k=1

|E(ωk)|2 =
1

KM
eTe (137)

since in these equations e is a real vector.
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Weighted-least-squares method

• Using equation (130), and noting that Wq is diagonal, we can write that

eTe = (dT
q − pTUT)WT

qWq(dq − Up)

= (dT
q − pTUT)W2

q(dq − Up)

= dT
qW

2
qdq − dT

qW
2
qUp− pTUTW2

qdq + pTUTW2
qUp

= dT
qW

2
qdq − 2pTUTW2

qdq + pTUTW2
qUp (138)

because dT
qW

2
qUp = pTUTW2

qdq, since these two terms are scalar.

• The minimization of such a functional is achieved by calculating its gradient vector
with respect to the coefficient vector and equating it to zero.
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• Since

∇x{Ax} = AT (139)

∇x{xTAx} = (A+ AT)x (140)

this yields

∇p
{
eTe

}
= −2UTW2

qdq + 2UTW2
qUp

∗ = 0 (141)

which implies that

p∗ =
(

UTW2
qU

)−1
UTW2

qdq (142)

• It can be shown that when the weight function W(ω) is made constant, the WLS
approach is equivalent to the rectangular window presented in the previous section,
and so suffers from the same problem of Gibbs’ oscillations near the band edges.

• When W(ω) is not constant, the oscillations still occur but their energies will vary
from band to band.
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Example 5.6

• Design a Hilbert transformer of order M = 5 using the WLS approach by choosing
an appropriate grid of only 3 frequencies. Obtain p∗ and the filter transfer function.
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Example 5.6 - Solution

• For the odd order M = 5, the FIR Hilbert transformer should be of Type IV and the
number of coefficients of p is (L + 1), where L = M−1

2
= 2.

• According to equations (129) and (130), the response error is

e =









sin(ω1

2
) 0 0

0 sin(ω2

2
) 0

0 0 sin(ω3

2
)


































1

sin(ω1

2
)

1

sin(ω2

2
)

1

sin(ω3

2
)





















−









1 cos ω1 cos 2ω1

1 cos ω2 cos 2ω2

1 cos ω3 cos 2ω3

















p(0)

p(1)

p(2)














(143)
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• We then form the frequency grid within the range defined in Table 12, such as

ω1 =
π

3

ω2 =
π

2

ω2 =
2π

3






(144)

in such a way that the error vector becomes

e =














1

1

1









−









1
2

0 0

0
√

2
2

0

0 0
√

3
2

















1 1
2

−1
2

1 0 −1

1 −1
2

−1
2

















p(0)

p(1)

p(2)













(145)
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• The WLS solution requires the following matrix:

UTW2
qU =

1

4









1 1 1

1
2

0 −1
2

−1
2

−1 −1
2

















1 0 0

0 2 0

0 0 3

















1 1
2

−1
2

1 0 −1

1 −1
2

−1
2









=
1

4









6 −1 −4

−1 1 1
2

−4 1
2

3









(146)

whose inverse is

(

UTW2
qU

)−1
=

1

3









22 8 28

8 16 8

28 8 40









(147)
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• Then, the vector p∗ is computed as follows

p∗ =
(

UTW2
qU

)−1
UTW2

qdq

=
1

3









22 8 28

8 16 8

28 8 40

















1 1 1

1
2

0 −1
2

−1
2

−1 −1
2

















1
2

0 0

0
√

2
2

0

0 0
√

3
2









2 







2 0 0

0
√

2 0

0 0 2√
3

















1

1

1









=









1.7405

0.8453

0.3263









(148)
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• According to equations (121), we then have

d(1) = p(0) − 1
2
p(1) =2h(2) = 1.31785

d(2) = 1
2
(p(1) − p(2)) =2h(1) = 0.2595

d(3) = 1
2
p(2) =2h(0) = 0.16315





(149)

and the overall transfer function is given by

H(z)=0.0816+0.1298z−1+0.6589z−2−0.6589z−3−0.1298z−4−0.0816z−5

(150)
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• If a Hilbert filter of same order is designed with the MATLAB firls command,
which uses a uniform sampling to determine the frequency grid, the resulting transfer
function is

H(z)=−0.0828−0.1853z−1−0.6277z−2+0.6277z−3+0.1853z−4+0.0828z−5

(151)

• As can be observed in Figure 16, H(z) and H(z) have very similar magnitude
responses, with the differences arising from the nonuniform frequency grid employed
in the H(z) design for didactic purposes.
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Figure 16: Magnitude responses of Hilbert transformers in Example 5.6: step-by-step
H(z) design (solid line) and MATLAB H(z) design (dashed line).
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Chebyshev method

• In the Chebyshev optimization design approach, the idea is to minimize the
maximum absolute value of the error function E(ω).

• Mathematically, such scheme is described by

min
p

{‖E(ω)‖∞ } = min
p

{

max
ω∈F

{|E(ω)|}

}

(152)

where F is the set of prescribed frequency bands. This problem can be solved with
the help of the following important theorem:
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