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Adriana Dapena1∗, Héctor J. Pérez-Iglesias1 and Vicente Zarzoso2

1 Departamento de Electrónica e Sistemas, Universidade da Coruña, 15071 A Coruña, Spain
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ABSTRACT

The popular Alamouti orthogonal space time code attains full transmit diversity in multiple antenna systems. This paper
addresses the problem of blind channel identification in (2 × 1) Alamouti coded systems. Under the assumption of indepen-
dent symbol substreams, the channel can be estimated from the eigendecomposition of matrices composed of second- or
higher-order statistics (cumulants) of the received signal. The so-called joint approximate diagonalization of eigenmatrices
(JADE) method for blind source separation via independent component analysis is optimal in that it tries to simultaneously
diagonalize a full set of fourth-order cumulant matrices. To reduce computational complexity, we perform the eigenvalue
decomposition of a single cumulant matrix, which is judiciously chosen by maximizing its expected eigenvalue spread.
Simulation results show that the resulting technique outperforms existing blind Alamouti channel estimation methods and
achieves a performance close to JADE’s at a fraction of the computational cost. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade, a large number of Space–Time Coding
(STC) techniques have been proposed in the literature to
exploit spatial diversity in systems with multiple elements
at both transmission and reception (see, for instance, Refer-
ences [1,2] and references therein). Orthogonal Space Time
Block Coding (OSTBC) is remarkable in that it is able to
provide full diversity gain with linear decoding complex-
ity [3--5]. The basic premise of OSTBC is the encoding
of the transmitting symbols into a unitary matrix so as to
spatially decouple their Maximum Likelihood (ML) detec-
tion, which can be seen as a matched filter followed by a
symbol-by-symbol detector.

In addressing the issue of decoding complexity, Alamouti
has proposed a popular OSTBC scheme for transmission
in systems with two antennas at the transmitter and only
one at the receiver [3]. This scheme is the only OSTBC
capable of achieving full spatial rate for complex constel-
lations. Other OSTBCs have been proposed for more than
two transmitting antennas, but they suffer from severe spa-

tial rate loss [4,5]. The Alamouti code can also be used in
systems with multiple antennas at reception. At first glance,
it seems that using several receiving antennas is beneficial
because this increases the diversity gain and provides array
gain. However, the signal structure imposed by the Alam-
outi code reduces the constrained channel capacity limit
when there is more than one receiving antenna [6]. Thus,
(2 × 1) Alamouti coded systems are most attractive in wire-
less communications due to their simplicity and their ability
to provide maximum diversity gain while preserving chan-
nel capacity. Because of these advantages, the Alamouti
code has been incorporated in the IEEE 802.11 and IEEE
802.16 standards [7].

Coherent detection in (2 × 1) Alamouti coded systems
requires the identification of a (2 × 2) unitary channel
matrix. The transmission of pilot symbols, also referred to
as training symbols, is often used to perform channel esti-
mation required for a coherent detection of OSTBCs [8,9].
However, training symbols reduce the throughput and such
schemes are inadequate when the bandwidth is scarce. Sev-
eral strategies have been proposed recently to avoid these

Copyright © 2010 John Wiley & Sons, Ltd.



Blind channel estimation based on eigenvalue spread A. Dapena, H. J. Pérez-Iglesias and V. Zarzoso

limitations. Among the most popular is the so-called Differ-
ential STBC (DSTBC) [10,11], which incurs a 3-dB penalty
compared to the coherent ML receiver.

Another class of decoding strategies has recently arisen
by interpreting the decoding of OSTBCs as a Blind Source
Separation (BSS) problem: the transmitted symbol sub-
streams can be considered as unknown sources to be
recovered from their mixtures observed at the receiving
antenna output, whereas the channel matrix can be seen
as the mixing transformation between the sources and the
observations [12--15]. The term blind (or unsupervised)
refers to the fact that little or nothing is known or assumed
about the sources and the mixing matrix structure in a
general BSS scenario. Under the assumption of statistical
independence between the transmitted symbol substreams,
Independent Component Analysis (ICA) techniques can be
used to tackle this problem. Hence, many existing ICA algo-
rithms (e.g., References [12--14]) would be able to identify
the channel matrix and recover the transmitting symbols.
However, in order to reduce the computational load, spe-
cific algorithms taking advantage of the special structure of
these codes can be designed instead [16--19].

The present work focuses on blind algorithms for chan-
nel identification in (2 × 1) Alamouti’s OSTBC based on
the eigenvalue decomposition (EVD) of matrices contain-
ing fourth-order statistics of the observations [16,19]. These
algorithms can be considered as particular cases of the pop-
ular ICA method known as Joint Approximate Diagonaliza-
tion of Eigenmatrices (JADE) [20], which can be regarded
as optimal in that it exploits all fourth-order information.
To reduce computational cost, we propose to perform the
eigendecomposition of a single cumulant matrix. A simple
fully blind criterion is proposed to determine the cumulant
matrix with optimum eigenvalue spread. As demonstrated
by numerical experiments, the novel estimation method
derived from this criterion achieves similar error probabil-
ities to JADE’s but presents reduced computational cost.

The material is structured as follows. Section 2 briefly
describes Alamouti’s coding scheme. An overview of the
BSS/ICA approach to blind channel identification is then
presented in Section 3. In Section 4, we determine the
closed form of the matrix that maximizes the eigenvalue
spread of fourth-order cross-cumulant matrices. A novel
blind channel estimation method in (2 × 1) Alamouti sys-
tems is derived from this result. Section 5 summarizes some
numerical experiments to evaluate and compare the perfor-
mance of the new algorithm. Finally, Section 6 brings the
paper to an end with some concluding remarks.

2. THE (2 × 1) ALAMOUTI’S
CODING SCHEME

Figure 1 shows the baseband representation of Alamouti
OSTBC with two antennas at the transmitter and one
antenna at the receiver. A digital source in the form of
a binary data stream, bi, is mapped to complex modula-
tion symbols which are separated in two substreams, s1

and s2. Each pair of symbols {s1, s2} is then transmitted
in two adjacent periods using a simple strategy: in the first
period s1 and s2 are transmitted from the first and the sec-
ond antenna, respectively, and in the second period −s∗

2 is
transmitted from the first antenna and s∗

1 from the second
one, the symbol (·)∗ denoting complex conjugation. In the
sequel, we assume that the symbol substreams are complex-
valued, zero-mean, stationary, non-Gaussian distributed and
statistically independent; their exact probability density
functions are otherwise unknown.

The transmitted symbols (sources) arrive at the receiving
antenna through fading paths h1 and h2 from the first and
second transmitting antenna, respectively. Hence, the signal
received during the first symbol period has the form

z1 = s1h1 + s2h2 + n1 (1)

If the channel remains constant during two periods, the
observation in the second period is given by

z2 = s∗
1h2 − s∗

2h1 + n2 (2)

In the above expressions, ni denotes the additive white
Gaussian noise (AWGN). By defining the observation vec-
tor as x = [x1, x2]T = [z1, z

∗
2]T, symbol (·)T standing for

the transpose operator, the relationship between the obser-
vation vector x and the source vector s = [s1, s2]T is given
by

x = Hs + n (3)

where n = [n1, n
∗
2]T is the noise vector and H represents

the (2 × 2) channel matrix:

H =
[
h1 h2

]
=

[
h1 h2

h∗
2 −h∗

1

]
. (4)

It is interesting to note that matrix H is unitary up to a
scalar factor, i.e.,

HHH = HHH = ‖h‖2I2 (5)

where ‖h‖2 = |h1|2 + |h2|2 is the squared Euclidean norm
of the channel vector, I2 is the (2 × 2) identity matrix and
(·)H is the Hermitian operator. It follows that the transmitted
symbols can be recovered, up to scale, as ŝ = ĤHx, where
Ĥ is a suitable estimate of the channel matrix. As a result,
this scheme supports ML detection based only on linear pro-
cessing at the receiver. As developed throughout the rest of
the paper, the unitary character of matrix H can be exploited
to identify the channel using EVD-based techniques.
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Figure 1. Alamouti’s coding scheme.

3. CHANNEL ESTIMATION
STRATEGIES

The performance of communication systems which make
use of the Alamouti’s coding scheme, like most other coding
strategies, depends on the accurate estimation of the chan-
nel matrix H. The standard way to estimate this matrix is
through the transmission of pilot symbols [8,9]. However,
the inclusion of pilot symbols reduces the system through-
put (equivalently, it reduces the system spectral efficiency)
and wastes transmission energy because training sequences
do not convey information. Strategies that avoid this limita-
tion include the so-called Differential STBC (DSTBC) [11]
which is a signaling technique that generalizes differen-
tial modulations to the transmission over MIMO channels.
DSTBCs can be incoherently decoded without the aid
of channel estimates but they incur a 3-dB performance
penalty when compared to coherent detection.

Pilot symbols can also be avoided by using blind
approaches. BSS algorithms can estimate the mixing matrix
H and the realizations of the source vector s from the corre-
sponding realizations of the observed vector x. This lack of
prior knowledge may limit the achievable performance, but
makes blind approaches more robust to calibration errors
(i.e., deviations of model assumptions from reality) than
conventional array processing techniques [20]. A property
commonly exploited in BSS is the statistical independence
of the sources. Depending on the degree of independence
considered, two main group of techniques can be distin-
guished: Principal Component Analysis (PCA), which are
based on Second-Order Statistics (SOS), and Independent
Component Analysis (ICA), which exploits Higher-Order
Statistics (HOS). A number of PCA and ICA approaches
rely on the eigendecomposition of certain matrix or tensor
structures.

3.1. SOS-based blind channel estimation

The PCA methods are based on the observations covariance
matrix

Q(2)
x = E[xxH] = HRsH

H (6)

where Rs = E[ssH] represents the source covariance
matrix. Due to the independence assumption, the com-
ponents of source vector s are in particular second-order
uncorrelated, giving rise to a diagonal covariance matrix
Rs = diag(σ2

1 , σ
2
2 ), in which σ2

i denotes the ith-source
power. The EVD [21] of Q(2)

x reads

Q(2)
x = U!UH (7)

where the columns of U are the eigenvectors and the diag-
onal matrix ! contains the eigenvalues of Q(2)

x . Comparing
expressions (6) and (7), the mixing matrix may be readily
identified, up to scale, as Ĥ = U. However, it is well-known
that the matrix U can be found only when the associated
eigenvalues are different [21]. In order to guarantee this
condition, several authors have proposed to use a linear pre-
coder before to Alamouti’s encoder to unbalance the source
power [22] or to color the sources [17]. Experiment results
reported in Reference [19] show that the global performance
is degraded when the power source is unbalanced because,
although the mean probability is adequate, the error proba-
bility of the sources with lower power is excessively high for
some real applications. Another way to guarantee the iden-
tifiably condition consists in transmitting an odd number
of real symbols at each block [18]. This approach, how-
ever, produces a loss in the transmission rate because some
symbols must be ruled out.

3.2. HOS-based blind channel estimation

The higher-order independence of the source signals is
exploited by the ICA approach. Independence is typi-
cally measured by means of HOS such as the higher-order
cumulants: the absolute value of the marginal cumu-
lants is to be maximized or, equivalently, that of the
cross-cumulants minimized, subject to the appropriate con-
straints. In Comon’s pioneering ICA contribution [12],
the initial source estimates provided by PCA are further
processed via Givens rotations aiming at maximizing the
fourth-order independence of the transformed signals. The
optimal rotation angles are obtained by rooting a low-
degree polynomial whose coefficients are computed from
the fourth-order cumulants of the signal pair. Several sweeps
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over all signal pairs are necessary for convergence. This
pairwise scheme can be seen as the generalization to
fourth-order cumulant tensors (higher-order arrays) of the
well-known Jacobi technique for matrix diagonalization.

Research into higher-order eigen-based approaches
began with Cardoso’s early work on the so-called quadri-
covariance, a folded version of the fourth-order moment
array, and culminated in the popular JADE method [20],
which can be summarized as follows. For the sake of sim-
plicity, we restrict the exposition to zero-mean distributions
and circular statistics. These are commonly encountered in
the application at hand.

Given a random vector x = [x1, x2, . . . , xn] ∈ Cn,
its second-order cumulants are simply defined as
cum(xi, x

∗
j ) = E[xix

∗
j ], and the fourth-order cumulants as

cum(xi, x
∗
j , xk, x

∗
") = E[xix

∗
j xkx

∗
"] − E[xix

∗
j ]E[xkx

∗
"]

−E[xix
∗
"]E[xjx

∗
k] − E[xixk]E[x∗

j x
∗
"].

(8)

Given a matrix M ∈ Cn×n, the fourth-order cumulant
matrix Q(4)

x (M) is defined as the (n × n) matrix with com-
ponents [20]

[
Q(4)
x (M)

]
ij

=
n∑

k,"=1

cum(xi, x
∗
j , xk, x

∗
")m"k (9)

where m"k = [M]"k. Cumulants verify a multi-linearity
property [23] whereby, if the sources in s are statistically
independent, we have

cum(xi, x
∗
j , xk, x

∗
") =

∑

p

hip h∗
jp hkp h∗

lp ρp (10)

where ρp = cum(sp, s
∗
p, sp, s

∗
p) is the marginal fourth-order

cumulant (kurtosis) of the source sp and hip is the element in
the ith row, pth column of H. Note also that the kurtosis of a
Gaussian distributed signal is zero, cum(ni, n

∗
i , ni, n

∗
i ) = 0.

As a consequence, under an AWGN linear model like Equa-
tion (3) with statistically independent sources and unitary
mixing matrix,† the cumulant matrix takes the form [20]

Q(4)
x (M) = H!(M)HH (11)

matrix !(M) being diagonal with

[!(M)]ii = ρih
H
i Mhi. (12)

Since the sources provide from the same modulated bit
stream, they have equal power and kurtosis, i.e., ρ = ρ1 =
ρ2.

Hence, the eigendecomposition of the matrix defined
in Equation (9) allows the identification of the remaining

† In fact, expression (11) is valid for any mixing matrixH, even if it is
not unitary.

unitary part of H if the eigenvalues of Q(4)
x (M) are

different, i.e., if matrix !(M) contains different entries:
ρhH

i Mhi &= ρhH
j Mhj , ∀i &= j. To increase robustness

to eigenspectrum degeneracy, a set {Q(4)
x (Mk)}m

k=1, may
be (approximately) jointly diagonalized. The full set
comprises m = n2 linearly independent (e.g., orthonormal)
matrices {Mk}m

k=1. A simplified version of the algorithm
is obtained by considering the set of matrices verify
Q(4)
x (Mk) = λkMk. As there are only n such eigenma-

trices, this version is, in theory, computationally more
efficient. JADE can be efficiently implemented in terms of
the Jacobi technique for matrix diagonalization.

In Alamouti’s coding scheme, the channel matrix is
essentially unitary with n = 2 and can therefore be identi-
fied by this procedure since, up to the scale indeterminacy,
H can be determined from the EVD of Q(4)

x (M) if this
matrix has different eigenvalues. The orthogonality prop-
erty of the channel matrix used in OSTBC makes it possible
to reduce the computational load of EVD-based algorithms
since the whitening stage required to obtain a unitary mix-
ture before the cumulant-matrix EVD is spared. Taking
into account this consideration, Beres et al. [16] have pro-
posed to estimate the channel matrix by computing the
eigenvectors of a fourth-order cross-cumulant matrix. This
method can be considered as a particular case of JADE with
a (2×2) matrix M with elements m11 = 1, m12 = m21 =
m22 = 0 (or m22 = 1, m12 = m21 = m11 = 0) in Equation
(9). The performance of this criterion has been improved
in Reference [19] by considering a linear combination of
two fourth-order cumulant matrices, which corresponds to
m11 = −m22 = 1/

√
2, m12 = m21 = 0.

4. CHANNEL IDENTIFICATION
BASED ON MAXIMIZING THE
EIGENVALUE SPREAD

The performance of EVD-based methods depends on the
difference between the eigenvalues (eigenvalue spread)
of the matrix to be diagonalized because, as already men-
tioned, the eigenvectors associated with equal eigenvalues
cannot be determined up to a unitary transformation.
Since the matrix channel cannot be identified when the
eigenvalue spread is close to zero, we propose to estimate
the channel matrix by diagonalizing the cumulant matrix
given in Equation (9) using the matrix M that maximizes
its eigenvalue spread. In particular for the (2 × 1) Alamouti
scheme, the eigenvalue spread L(M) is defined here as the
difference between the two eigenvalues of Q(4)

x (M) given
in Equation (11).

Considering that the channel matrix verified the orthog-
onality property given in Equation (5), we can define a
normalized matrix Ĥ = H

‖h‖ , so that ĤĤH = I2. As a con-
sequence, Equation (11) can be rewritten as follows

Q(4)
x (M) = H %(M) HH

= Ĥ%(M)ĤH‖h‖2 = Ĥ%̂(M)ĤH (13)
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where %̂(M)ii = ‖h‖2hH
i Mhiρ. Hence, the eigenvalue

spread of Q(4)
x (M) is given by

L(M) = |[%(M)]11 − [%(M)]22|

= |ρ|‖h‖2|hH
1 Mh1 − hH

2 Mh2|. (14)

To avoid arbitrarily large eigenvalue spread values, we
will constrain matrix M to have unit norm, i.e., ‖M‖2

FRO =
|m11|2 + |m12|2 + |m21|2 + |m22|2 = 1.

As a result, the optimization criterion can be written as
follows:

Mopt = arg max
‖M‖2

FRO=1
L(M)

= arg max
‖M‖2

FRO=1
|ρ|‖h‖2|hH

1 Mh1 − hH
2 Mh2|.

(15)

The expression above can be also written as

mopt = arg max
‖m‖2=1

|ρ|‖h‖2|h̃Hm| (16)

where

h̃ =





|h1|2 − |h2|2

2h∗
1h

∗
2

2h1h2

|h2|2 − |h1|2



 , m =





m11

m21

m12

m22



 . (17)

According to the Cauchy–Schwarz inequality, the inner
product h̃Hm in Equation (16) is maximized when m has
the direction and sense of h̃. As a result, the normalized
vector mopt has the form

m =





m11

m21

m12

m22



 = 1√
2 + 2|γ|2





1

γ∗

γ

−1



 where

γ = 2h1h2

|h1|2 − |h2|2
. (18)

Equivalently, the optimum matrix is given by

Mopt =

[
m11 m12

m21 m22

]
= 1√

2 + 2|γ|2

[
1 γ

γ∗ −1

]
. (19)

Note that ‖Mopt‖2
FRO = 1. As a result, the eigenvalue

spread of Q(4)
x (M) is maximized when the parameter γ

is computed using Equation (18), which depends on the
channel coefficients h1 and h2.

4.1. Sub-optimal approach

We will now propose a simplified approach which consists
in diagonalizing the cumulant matrix given in Equation (9)
with the highest eigenvalue spread considering only two
matrices

M1 =
[

1 0

0 0

]
M2 =

[
0 0

1 0

]
. (20)

These matrices verify ‖M1‖2
FRO = ‖M2‖2

FRO = 1. The
eigenvalue spreads obtained directly by evaluating these
matrices in Equation (14) are

L(M1) = |ρ|‖h‖2||h1|2 − |h2|2| (21)

L(M2) = |ρ|‖h‖2 2|h1h2|. (22)

The matrix M that maximizes the eigenvalue spread can
then be selected using the following criterion:

|L(M2)|
|L(M1)|

= 2|h1||h2|
||h1|2 − |h2|2|

= 2|h1h2|
||h1|2 − |h2|2|

M1

≶
M2

1.

(23)

It is interesting to note that the decision criterion above
depends on the absolute value of parameter γ defined in
Equation (18), i.e., the matrix M1 or M2 must be selected
by using the rule

|γ|
M1

≶
M2

1. (24)

4.2. Comparison among eigenvalue spreads

A way to measure the improvement obtained by using the
optimal and suboptimal approaches consists in measuring
the probability of the eigenvalue spread of the matrix to be
diagonalized being close to zero. The best criterion has the
lowest probability.

In order to compare the eigenvalue spread obtained with
different matrices M, we have evaluated Equation (15)
considering that the channel coefficients have a Rayleigh
distribution. Subsequently, we have computed the cumu-
lative probability distribution (cpd) corresponding to each
value of L(M). Figure 2(a) plots the cpd for L(M1), L(M2),
L(Mopt) and the suboptimal approach which computes the
maximum between L(M1) and L(M2). The channels have
been normalized to avoid scale influence. It is apparent that
L(M1) has the highest probability of taking values close
to zero. Figure 2(b) zooms the part corresponding to the
eigenvalue spread smaller than 0.15. Note that the cpd of
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Figure 2. Cumulative probability distribution for different matricesM: L(M1), L(M2), max(L(M1), L(M2)), and L(Mopt).

the suboptimal approach coincides with the cpd of the opti-
mal one for L(M) ≤ 0.1 and, therefore, it is reasonable to
think that both approaches will provide similar performance
to estimate the channel matrix.

4.3. Blind estimation of parameter γ

The matrix M obtained for the approaches presented above
depend on parameter γ , which is a function of the chan-
nel coefficients h1 and h2. Considering the signal model in
Equation (3) and the linearity property of cumulants given
in Equation (10), we can express the following fourth-order
cross-cumulants as functions of the channel coefficients

cum(x1, x
∗
1, x1, x

∗
2) = cum(h1s1 + h2s2 + n1, h

∗
1s

∗
1 + h∗

2s
∗
2

+ n∗
1, h1s1 + h2s2 + n1, h2s

∗
1

− h1s
∗
2 + n2) = |h1|2h1h2

× cum(s1, s
∗
1, s1, s

∗
1) − |h2|2h1h2

× cum(s2, s
∗
2, s2, s

∗
2)

= (|h1|2 − |h2|2)h1h2ρ (25)

cum(x1, x
∗
2, x1, x

∗
2) = 2h2

1h
2
2ρ. (26)

Using these definitions, it is straightforward to obtain

γ = cum(x1, x
∗
2, x1, x

∗
2)

cum(x1, x
∗
1, x1, x

∗
2)

= 2h2
1h

2
2ρ

(|h1|2 − |h2|2)h1h2ρ
= 2h1h2

|h1|2 − |h2|2
. (27)

Note that the suboptimal approach only needs to know the
module of parameter γ that can be estimated by computing
the absolute value of Equation (27). An alternative way

to obtain |γ| is to use the fourth-order cross-cumulant in
Equation (25) and

cum(x1, x
∗
1, x2, x

∗
2) = 2|h1|2|h2|2ρ. (28)

In this case, we have

|γ| = cum(x1, x
∗
1, x2, x

∗
2)

|cum(x1, x
∗
1, x1, x

∗
2)|

= 2|h1|2|h2|2ρ
||h1|2 − |h2|2||h1 h2|ρ

= 2|h1h2|
||h1|2 − |h2|2|

.

(29)

Simulation results presented in the next section show that
this second way for estimating |γ| is more adequate because
the error in the estimation of cum(x1, x

∗
2, x1, x

∗
2) in larger

than for cum(x1, x
∗
1, x2, x

∗
2).

5. EXPERIMENTAL RESULTS

This section reports several numerical experiments carried
out to evaluate and compare the performance of the blind
channel estimation algorithms studied in this paper. The
experiments have been performed on QPSK source symbols
coded with the Alamouti scheme. The channel is assumed
to remain constant during the transmission of a block of
K symbols. The second- and fourth-order statistics have
been calculated by sample averaging over the symbols of a
block. The channels have been generated from a Rayleigh
distribution. Performance has been evaluated in terms of the
SER (Symbol Error Rate) by averaging 100 000 indepen-
dent simulations.

In order to compare the two methods proposed
above to estimate the module of parameter γ , Fig-
ure 3 shows the normalized error in the estimation
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of the fourth-order cross-cumulants cum(x1, x
∗
1, x1, x

∗
2),

cum(x1, x
∗
2, x1, x

∗
2) and cum(x1, x

∗
1, x2, x

∗
2). The normalized

error has been computed using the following expression:

error =
|cum(xi, x

∗
j , xk, x

∗
l ) − ˆcum(xi, x

∗
j , xk, x

∗
l )|

|cum(xi, x
∗
j , xk, x

∗
l )|

(30)

where cum(xi, x
∗
j , xk, x

∗
l ) represents the theoretical value,

computed directly from the channel realization using Equa-
tions (26), (25), and (28), and ˆcum(xi, x

∗
j , xk, x

∗
l ) is the

estimated value, obtained by sample averaging over K =
500 symbols. It is apparent that the error in the estimation
of cum(x1, x

∗
1, x2, x

∗
2) is considerably smaller than the error

obtained for cum(x1, x
∗
2, x1, x

∗
2). This means that the best

form to estimate |γ| consists in estimating the fourth-order
cross-cumulants used in Equation (29) instead of consid-
ering the module of Equation (27), as can be observed in
Figure 4.

Figure 5 plots the performance of the proposed approach
for a packet size of K = 500 symbols. The proposed
approaches match the Perfect CSI when the theoretical
value of γ is used. Note also that both the optimal and the
suboptimal approaches present a loss of performance for
high SNRs when the parameter γ is estimated using Equa-
tion (27). This undesirable situation does not appear when
the module of γ is computing using Equation (29).

Figure 6 compares these results with other blind
approaches:

! The SOS-based approach proposed by Via et al. [17].! The method proposed by Beres et al. [16] correspond-
ing to diagonalize the fourth-order cross-cumulant
matrix associated with M1.! Joint diagonalization of the fourth-order cumulant
matrices corresponding to M1 and M2 using the pro-
cedure described in Appendix A. This procedure is an
optimization of JADE and provides the same perfor-
mance with a fraction of the computational cost.

Equation (29) has been used to estimated |γ| in the sub-
optimal approach while Equation (27) has been employed
for the optimal approach since it needs to compute both
the module and the phase. In this figure, we see that the
results obtained with the method proposed by Via et al.,
the suboptimal method and joint diagonalization are very
close to the Perfect CSI while the worst result corresponds
to the method proposed by Beres et al.. This is reasonable
because the fourth-order cross-cumulant used in the method
of Beres et al. corresponds to the eigenvalue spread L(M1)
which has a high probability of taking values close to zero,
as can be seen in Figure 2.

Figure 7 shows performance in terms of the number sym-
bols where the channel remains constant (packet size) at an
SNR of 15 dB. Note that the joint diagonalization procedure
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Figure 6. Comparison among EVD-based approaches: SER versus SNR for Rayleigh channels for a block size of 500 symbols.

and the suboptimal approach overcome the other methods
and achieve an adequate error probability for small pack-
ets. This result allows us to conjecture that the suboptimal
approach will be also adequate for time-varying channels.
As further work we will investigate this topic and the form

of implementing our technique using an adaptive method
like that proposed in Reference [24].

The decoding complexity of methods based on cumulant-
matrix diagonalization depends on two parameters: the
number of cumulants to be computed and the size of
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Figure 7. Comparison among EVD-based approaches: SER versus packet size for Rayleigh channels at an SNR of 15 dB.
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Table I. Computational load corresponding to compute second- and fourth-order cumulants, and matrix diagonalization.

Sums Multiplications Squared root Flop
2 flop 6 flop 8 flop

Second-order statistic (SOS) K − 1 K + 1 0 8K + 4
Fourth-order statistic (FOS) 7K − 4 9K + 4 0 68K + 16
Compute eigenvectors 6 11 3 102
Joint diagonalization 21 24 1 194 + flop(EVD)

Table II. Computational load of the compared approaches.

Approach Number of cumulant Size of the matrix to be diagonalized flop

Via et al. 3 SOS 2 × 2 24K + 114
Beres et al. 3 FOS 2 × 2 204K + 150
Joint diagonalization 5 FOS 3 × 3 340K + flop(EVD) + 274
Mopt 6 FOS 2 × 2 408K + 198
Suboptimal approach 3,7 FOS 2 × 2 251.2K + 161.2

the matrix to be diagonalized. Table I shows the num-
ber of operations (sums and multiplications) and the
FLoating-point OPerations (flop) associated with comput-
ing second-order and fourth-order cumulants for a block
of K points. We consider that all the operations are per-
formed with complex-valued numbers: a sum corresponds
to two flop, a multiplication corresponds to six flop and
a square root to eight flop. This table also shows the
operations (and flop) related with the procedure used to
diagonalize the cumulant matrices. It should be remem-
bered that all approaches compared in Figures 6 and 7,
except joint diagonalization, compute the eigenvectors of a
(2 × 2) matrix using expressions in Appendix B. The term
flop(EVD) denotes the number of flop needed to compute
the eigenvalues of a (3 × 3) matrix, which is a significant
quantity

Table II summarizes the parameters corresponding to the
compared algorithms. In order to reduce the computational
load, we have used the properties of the cumulants to com-
pute only those that are different. For instance, note that
cum(x1, x

∗
2, x1, x

∗
2) = cum∗(x2, x

∗
1, x2, x

∗
1). In the case of

the suboptimal approach, the number of fourth-order cross
cumulants to be computed depends on the decision criterion
(24). In 100 000 independent simulations, we have obtained
that M1 (three different fourth-order cross-cumulants) is
used 30% of times and M2 (four different fourth-order
cross-cumulants) is computed 70% of times, which corre-
sponds to computing an average number of 3.7 fourth-order
cross-cumulants. Taking into account these results and those
presented above, we conclude that the suboptimal approach
provides excellent performance in terms of SER and com-
putational load.

6. CONCLUSION

Channel estimation in (2 × 1) Alamouti’s space–time block
coded systems can be performed blindly from the eigende-
composition (or diagonalization) of matrices composed of

the receiving antenna output fourth-order cumulants. The
main assumption behind this approach is the statistical inde-
pendence between the source symbol substreams. However,
the performance of these methods is considerably degraded
when the eigenvalue spread of the matrix to diagonalize is
close to zero.

In this paper, we have obtained in closed-form the cumu-
lant matrix with maximum eigenvalue spread. Our analysis
shows that the optimum matrix depends on a parameter γ

whose value must be computed taking into account the cor-
rect value of the channel coefficients. Simulation results
verify that the performance of this approach matches the
optimal performance. We have also determined a sim-
ple form of estimating parameter γ by computing the
fourth-order cross-cumulants of the observations but, unfor-
tunately, a loss of performance for high SNR has been
observed due to finite-sample estimation errors.

Another contribution of this paper has been to propose a
suboptimal approach to select the matrix of highest eigen-
value spread from a set of only two cumulant matrices. This
approach presents a satisfactory performance compared
with the optimal approach and with other blind tech-
niques, like JADE. Furthermore, the suboptimal approach
has important advantages with respect to JADE for real
implementation in FPGAs and DSPs: it computes fewer
cross-cumulant matrices and diagonalizes a single (2 × 2)
matrix. Moreover, parameter γ is only used as a threshold in
the suboptimal approach and, therefore, it is less sensitive
to estimation errors.

APPENDIX A: JOINT
DIAGONALIZATION PROCEDURE

The procedure used by JADE to simultaneous diagonaliza-
tion of several fourth-order cross cumulant matrices is an
extension of the Jacobi technique: a joint diagonalization
criterion is iteratively optimized under plane rotations. We
have optimized the original code presented in Reference
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[25] by considering the special structure of the Alamouti’s
system.

Let C be a (2 × 4) defined as

C =

[
c11 c12 c13 c14

c21 c22 c23 c24

]
. (A1)

For instance, the first step consists in obtaining the fol-
lowing (3 × 2) matrix:

G =




c11 − c22 c13 − c24

c12 c14

c21 c23



 . (A2)

From this matrix, we obtain F = GGH and a (3 × 3)
symmetric matrix given by

E =




e11 e12 e13

e21 e22 e23

e31 e32 e33



 (A3)

where

e11 = f11 (A4)

e12 = e21 = real(f12 + f13) (A5)

e13 = e31 = imag(−f12 + f13) (A6)

e22 = real(f22 + 2f23 + f33) (A7)

e23 = e32 = imag(f22 + 2f23 + f33) (A8)

e33 = real(f22 − 2f23 + f33). (A9)

The eigenvalues are computed and, then, the eigenvec-
tor u1 corresponding to the largest eigenvalue is obtained.
If u11 < 0 then we assign u1 = −u1. Finally, the channel
matrix is estimated as

H =

[
c −s∗

s c

]
(A10)

where c =
√

1+u11
2 and s = u12−

√
−1u13

2c
.

To compute the eigenvalues of the (3 × 3) matrix E has
a significant computational load in comparison with the
(2 × 2) case. A way to obtain the eigenvalues consists in
computing the roots of the following polynomial:

det(E − λI3) = −λ3 + λ2tr(E) + λ
1
2

(
tr(EE) − tr2(E)

)

+ det(E) (A11)

where I3 is the (3 × 3) identity matrix. The roots can be
found using methods for solving cubic equations, like Car-
dano’s procedure or the Lagragian method. The eigenvector

corresponding to the largest eigenvalue, λ1, can then be
computed by solving the following system of equations:

(E − λ1I3) u1 = 0. (A12)

APPENDIX B: EIGENVALUE
DECOMPOSITION OF A (2 × 2)
MATRIX

In this appendix we present a closed form of computing the
eigenvectors for a 2 × 2 matrix. Let C be a (2 × 2) matrix
defined as follows:

C =

[
c11 c12

c21 c22

]
. (B1)

Its eigenvalues are the roots of the following polynomial:

+ + det(C − λI2) = λ2 − (c11 + c22)λ + c11c22 − c12c21

= λ2 − λt + d

where t = c11 + c22 and d = c21c12 − c11c22. The roots are

λ1,2 = t ±
√

t2 + 4d

2
(B2)

where p = (c11 − c22)/2 and p =
√

p2 + c12c21.
The eigenvectors can then be computed as

U′=
[
u′

1 u′
2

]
=

[ c12
λ1−c11

c12
λ2−c11

1 1

]
=

[ c12
−p+q

c12
−p−q

1 1

]
.

(B3)

Finally, the normalized eigenvectors are given by

U =
[
u′

1
‖u′

1‖2

u′
2

‖u′
2‖2

]
(B4)

where

‖u′
1‖2=

√(
c12

−p + q

)2

+1, ‖u′
2‖2=

√(
c12

−p − q

)2

+1.

(B5)

Note that the method to estimate the channel matrix in
the Alamouti’s system only requires to compute the eigen-
vectors. Therefore, it is only needed to compute Equations
(B3), (B4), and (B5).
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