Formal Methods for
Discrete Regulatory Networks

Jean-Paul Comet, Gilles Bernot<br>University Côte d'Azur, I3S laboratory, France

Île de Porquerolles, le 24 juin 2019

1. Formal logic and dynamic models for biology
2. Discrete models for gene networks according to René Thomas
3. Regulatory networks and temporal logic
4. Models as mediums for checking biological hypotheses
5. Genetically modified Hoare logic, and examples
6. Extracting interesting experiments from models
7. Complex vs. complicated...

## Mathematical models in biology: what for ?

Different purposes $\Longrightarrow$ different approaches

- Models as intelligent "Data Base" to store biological knowledge
- Models as tools for establishing causality chains
- Models as design tools for synthetic biology
- Models as guidelines for the choice of experiments

For the 3 last purposes, models can deviate from biological descriptions, while remaining very useful, because they are dedicated to the question under consideration.
"Kleenex" models...

## Static Graph v.s. Dynamic Behaviour

Difficulty to predict the result of combined regulations
Difficulty to measure the strength of a given regulation
Example of "competitor" circuits

Multistationarity ?
Homeostasy?


Many underlying qualitative models: $\approx 700$ qualitative behaviours

## Mathematical Models and Simulation

1. Rigorously encode sensible knowledge, into ODEs for instance
2. A few parameters are approximatively known

- Some parameters are limited to some intervals
- Many parameters are a priori unknown

3. Perform lot of simulations, compare results with known behaviours, and propose some credible values of the unknown parameters which produce robust acceptable behaviours
4. Perform additional simulations reflecting novel situations
5. If they predict interesting behaviours, propose new biological experiments
6. Better tune the model parameters and try to go further
... not my cup of tea...
"Large scale" simulations are not the only way to use a computer. There are computer aided environments which help:

- designing simplified models that can be analytically solved
- avoiding models that can be "tuned" ad libitum
- constraining models according to experimental data
- validating models with a reasonable number of experiments
- defining only models that could be experimentally refuted
- proving refutability w.r.t. experimental capabilities

To establish a methodology "dry" models $\leftrightarrow$ "wet" experiments one needs to assist reasonning capabilities.

## 7 Formal Logic: syntax/semantics/deduction



1. Formal logic and dynamic models for biology
2. Discrete models for gene networks according to René Thomas
3. Regulatory networks and temporal logic
4. Models as mediums for checking biological hypotheses
5. Genetically modified Hoare logic, and examples
6. Extracting interesting experiments from models
7. Complex vs. complicated...

## Multivalued Regulatory Graphs

Derivatives are sigmoids w.r.t. the source gene



Derivatives are sigmoids w.r.t. the source gene


Derivatives are sigmoids w.r.t. the source gene


Derivatives are sigmoids w.r.t. the source gene


## First simplification: piecewise linear

Approximate sigmoids as step functions:






Presence of an activator $=$ Absence of an inhibitor $\frac{d y}{d t}=k_{0}+k_{1} \cdot \mathbb{1}_{x_{1} \geqslant \tau_{1}}+k_{2} \cdot \mathbb{1}_{x_{2} \geqslant \tau_{2}}+k_{3} \cdot \mathbb{1}_{x_{3}<\tau_{3}}+k_{4} \cdot \mathbb{1}_{x_{4}<\tau_{4}}-\gamma \cdot y$ Solutions of the form $C e^{-\gamma t}+\frac{\sum 1 k_{i}}{\gamma}$ whose $\lim _{t \rightarrow \infty}$ is $\frac{\sum 1 k_{i}}{\gamma}$ As many such equations as genes in the interaction graph

In each hypercube, all the trajectories have a unique attractive point, which can be outside de hypercube

## 14 <br> Discrete Gene Networks (Thomas \& Snoussi)




In each state, a variable $v$ tries to go toward the interval numbered $K_{v, \omega}$ : the one containing $\frac{\Sigma 1 k_{i}}{\gamma}$


Absent $y$ helps: $K_{x, \bar{y}}$
Both : $K_{x, x \bar{y}}$

| $\frac{(x, y)}{(0,0)}$ | $\frac{\text { Focal Point }}{\left(K_{x, \bar{y}}, K_{y}\right)}$ |
| :---: | :---: |
| $(0,1)$ | $\left(K_{x}, K_{y}\right)$ |
| $(1,0)$ | $\left(K_{x, x \bar{y}}, K_{y}\right)$ |
| $(1,1)$ | $\left(K_{x, x}, K_{y}\right)$ |
| $(2,0)$ | $\left(K_{x, x \bar{y}}, K_{y}, x\right)$ |
| $(2,1)$ | $\left(K_{x, x}, K_{y, x}\right)$ |

Presence of an activator $=$ Absence of an inhibitor $=$ A resource

## State Graphs

| $\frac{(x, y)}{(0,0)}$ | $\left(\begin{array}{c}\text { Focal Point } \\ \left.K_{x, \bar{y}}, K_{y}\right)=(2,1) \\ (0,1) \\ \left(K_{x}, K_{y}\right)=(0,1) \\ (1,0)\end{array}\left(K_{x, x \bar{y}}, K_{y}\right)=(2,1)\right.$ |
| :---: | :---: |
| $(1,1)$ | $\left(K_{x, x}, K_{y}\right)=(2,1)$ |
| $(2,0)$ | $\left(K_{x, x \bar{y}}, K_{y, x}\right)=(2,1)$ |
| $(2,1)$ | $\left(K_{x, x}, K_{y, x}\right)=(2,1)$ |



## State Graphs

| $\frac{(x, y)}{}$ | Focal Point |
| :---: | :---: |
| $(0,0)$ | $\left(K_{x, \bar{y}}, K_{y}\right)=(2,1)$ |
| $(0,1)$ | $\left(K_{x}, K_{y}\right)=(0,1)$ |
| $(1,0)$ | $\left(K_{x, x \bar{y}}, K_{y}\right)=(2,1)$ |
| $(1,1)$ | $\left(K_{x, x}, K_{y}\right)=(2,1)$ |
| $(2,0)$ | $\left(K_{x, x \bar{y}}, K_{y, x}\right)=(2,1)$ |
| $(2,1)$ | $\left(K_{x, x}, K_{y, x}\right)=(2,1)$ |

"desynchronization" $\longrightarrow$


## State Graphs

| $\frac{(x, y)}{(0,0)}$ | $\left(\begin{array}{c}\text { Focal Point } \\ \left(K_{x, \bar{y}}, K_{y}\right)=(2,1) \\ (0,1)\end{array}\left(K_{x}, K_{y}\right)=(0,1)\right.$ |
| :---: | :---: |
| $(1,0)$ | $\left(K_{x, x \bar{y}}, K_{y}\right)=(2,1)$ |
| $(1,1)$ | $\left(K_{x, x}, K_{y}\right)=(2,1)$ |
| $(2,0)$ | $\left(K_{x, x \bar{y}}, K_{y, x}\right)=(2,1)$ |
| $(2,1)$ | $\left(K_{x, x}, K_{y, x}\right)=(2,1)$ |

"desynchronization"
by units of Manhattan distance


## Multistationarity vs. positive cycles

- A cycle in the interaction graph is positive if it contains an even number of inhibitions
- Theorem: if the state graph exhibits several attraction basins then there is at least one positive cycle in the interaction graph
- Was a conjecture from the 70 's to 2004; proved by Adrien Richard (and by Christophe Soulé for the continuous case)
- A cycle in the interaction graph is negative if it contains a odd number of inhibitions
- Thomas conjecture: if the state graph exhibits an homeostasy (stable oscillations) then there is at
 least one negative cycle in the interaction graph
- Was a conjecture from the 70 's to $\approx 2010$.

Counter-examples have been found (A. Richard, J.-P. Comet, P. Ruet)

Nonetheless it remains a very useful tip in practice when modelling biological examples!

## Characteristic state of a cycle

Helps characterizing the saddle point (resp. center of the oscillations) of the behaviour "driven" by a positive (resp. negative) cycle.


Whatever the sign of $x_{i} \rightarrow x_{i+1}$, for some set of resources $\omega$ one should have $K_{x_{i+1}, \omega}<s_{i+1} \leqslant K_{x_{i+1}, \omega x_{i}}$, all along the cycle
but it remains a heuristic, at least for negative cycles...

## Thomas parameters: exponential number

$2^{i}$ parameters where $i$ is the in-degree of the gene
$\prod(0+1)^{2^{i}}$ possible parameter values genes where $o$ is the out degree of each gene


Yeast $\approx 7000$ genes
Human $\approx 25000$ genes
Rice $\approx 40000$ genes

## 22 <br> Multiplexes: encode cooperation knowledge

"Proteins of $a$ and $b$ form a complex before acting on $d . .$. "

multiplex formula $\equiv a_{2} \wedge b_{1}$
abbreviation:
$v_{i} \equiv(v \geq i)$
$8 \rightarrow 4$ parameters
${ }_{23}$ Any propositional formula + remove sign
"... and $c$ inhibits $d$ whatever $a$ or $b "$

$8 \longrightarrow 2$ parameters,
$(\mathrm{o}+1)^{8} \rightarrow(\mathrm{o}+1)^{2}$ parameterizations


Exhaustively identify the sets of (integer) parameters that cope with known behaviours from biological experiments

Solution $=$ perform reverse engineering via formal logic

- 2003: enumeration + CTL + model checking (Bernot,Comet,Pérès, Richard)
- 2005: path derivatives + model checking (Batt,De Jong)
- 2005: PROLOG with constraints (Trilling, Corblin,Fanchon)
- 2007: symbolic execution + LTL (Mateus,Le Gall,Comet)
- 2011: traces + enumeration + CTL + model checking (Siebert,Bockmayr)
- 2015: genetically modified Hoare logic + constraint solving (Bernot,Comet,Roux,Khalis,Richard)


## Menu

1. Formal logic and dynamic models for biology
2. Discrete models for gene networks according to René Thomas
3. Regulatory networks and temporal logic
4. Models as mediums for checking biological hypotheses
5. Genetically modified Hoare logic, and examples
6. Extracting interesting experiments from models
7. Complex vs. complicated...


As many possible state graphs as possible parameter sets...
(huge number)
from each initial state:


Atoms $=$ comparaisons : $(x=2) \quad(y>0) \quad \ldots$
Logical connectives: $\left(\varphi_{1} \wedge \varphi_{2}\right) \quad\left(\varphi_{1} \Longrightarrow \varphi_{2}\right) \quad \cdots$
Temporal modalities: made of 2 characters

| $A=\frac{\text { first character }}{\text { for All path choices }}$ | $X=$ ne $\frac{\text { second character }}{}$ |
| :--- | :--- |
| $E=$ there Exist a choice | $F=$ for some Future state |
|  | $G=$ for all future states (Globally) |
|  | $U=$ Until |

$A X(y=1):$ the concentration level of $y$ belongs to the interval 1 in all states directly following the considered initial state.
$E G(x=0)$ : there exists at least one path from the considered initial state where $x$ always belongs to its lower interval.

## Temporal Connectives of CTL

neXt state:
$E X \varphi: \varphi$ can be satisfied in a next state
$A X \varphi: \varphi$ is always satisfied in the next states
eventually in the Future:
$E F \varphi: \varphi$ can be satisfied in the future
$A F \varphi: \varphi$ will be satisfied at some state in the future
Globally:
$E G \varphi: \varphi$ can be an invariant in the future
$A G \varphi: \varphi$ is necessarilly an invariant in the future
Until:
$E[\psi \cup \varphi]$ : there exist a path where $\psi$ is satisfied until a state where $\varphi$ is satisfied
$A[\psi U \varphi]: \psi$ is always satisfied until some state where $\varphi$ is satisfied

## Semantics of Temporal Connectives



EX $\varphi$

$A X \varphi$

$\mathrm{EF} \varphi$


AF $\varphi$

EG $\varphi$
AG $\varphi$
$E[\psi \cup \varphi]$
$A[\psi \cup \varphi]$

$$
(\text { after } \longrightarrow: \varphi, \text { after } \longrightarrow: \psi)
$$

Common properties:
"functionality" of a sub-graph
Special role of "feedback loops"


- positive: multistationnarity (even number of - )
- negative: homeostasy (odd number of - )



Characteristic properties: $\left\{\begin{array}{l}(x=2) \Longrightarrow A G(\neg(x=0)) \\ (x=0) \Longrightarrow A G(\neg(x=2))\end{array}\right.$
They express "the positive feedback loop is functional" (satisfaction of these formulas relies on the parameters $K_{\text {... }}$ )

Common properties:
"functionality" of a sub-graph
Special role of "feedback loops"


- positive: multistationnarity (even number of - )
- negative: homeostasy (odd number of - )



Characteristic properties: $\left\{\begin{array}{l}(x=2) \Longrightarrow A G(\neg(x=0)) \\ (x=0) \Longrightarrow A G(\neg(x=2))\end{array}\right.$
They express "the positive feedback loop is functional" (satisfaction of these formulas relies on the parameters $K_{\text {... }}$ )

- Efficiently computes all the states of a state graph which satisfy a given formula: $\left\{\eta \mid M \models_{\eta} \varphi\right\}$.
- Efficiently select the models which globally satisfy a given formula.

Intensively used:

- to find the set of all possible discrete parameter values
- to check models under construction w.r.t. known behaviours (one often gets an empty set of parameter values!)
- and to prove the consistency of a biological hypothesis

Computes all the states of a discrete state graph that satisfy a given formula: $\left\{\eta \mid M \not \models_{\eta} \varphi\right\}$.
Idea 1: work on the state graph instead of the path trees.
Idea 2: check first the atoms of $\varphi$ and then check the connectives of $\varphi$ with a bottom-up computation strategy.
Idea 3: (computational optimization) group some cases together using BDDs (Binary Decision Diagrams).

Example:

$$
(x=0) \quad \Longrightarrow \quad A G(\neg(x=2))
$$

Obsession: travel the state graph as less as possible

... one should travel all the paths from any green box and check if successive boxes are green: too many boxes to visit.
Trick: $A G(\neg(x=2))$ is equivalent to $\neg E F(x=2)$
start from the red boxes and follow the transitions backward.

## Menu

1. Formal logic and dynamic models for biology
2. Discrete models for gene networks according to René Thomas
3. Regulatory networks and temporal logic
4. Models as mediums for checking biological hypotheses
5. Genetically modified Hoare logic, and examples
6. Extracting interesting experiments from models
7. Complex vs. complicated...

## Simplifications driven by the hypothesis

Biologists spend money and time for experiments because they have a hypothesis $\varphi$ in mind that they want to test. . .
... Successive simplified views of the studied biological object and of the hypothesis:

${ }_{37}$ Simplifications via gene removing (Naldi)


## Simplifications via level folding



## Simplifications via subgraphs

Embeddings of Regulatory Networks:


Necessary and sufficient condition on the local dynamics of the "input frontier"
. . . Also fusion of genes, etc.

## Menu

1. Formal logic and dynamic models for biology
2. Discrete models for gene networks according to René Thomas
3. Regulatory networks and temporal logic
4. Models as mediums for checking biological hypotheses
5. Genetically modified Hoare logic, and examples
6. Extracting interesting experiments from models
7. Complex vs. complicated...

## Standard Hoare logic: $\operatorname{swap}(x, y)$

$$
\begin{aligned}
& \text { aux }:=\mathrm{x} \\
& \mathrm{x}:=\mathrm{y} \\
& \mathrm{y}:=\mathrm{aux}
\end{aligned}
$$

$\rightarrow$ triple " $\{P\}$ program $\{Q\}$ " precondition $P$, postcondition $Q$

$$
\begin{aligned}
& \left\{\left(x=x_{0}\right) \wedge\left(y=y_{0}\right)\right\} \\
& \text { aux }:=\mathrm{x} \\
& \mathrm{x} \quad:=\mathrm{y} \\
& \mathrm{y}:=\mathrm{aux} \\
& \left\{\left(y=x_{0}\right) \wedge\left(x=y_{0}\right)\right\}
\end{aligned}
$$

$$
\rightarrow " P \Longrightarrow \text { (weakest precondition)" ? }
$$

$$
\begin{aligned}
& \left\{\left(x=x_{0}\right) \wedge\left(y=y_{0}\right)\right\} \\
& \quad \text { aux }:=\mathrm{x} ; \\
& \quad \mathrm{x} \quad:=\mathrm{y} ; \\
& \mathrm{y}:=\mathrm{aux} \\
& \left\{\left(y=x_{0}\right) \wedge\left(x=y_{0}\right)\right\}
\end{aligned}
$$

$\rightarrow$ backward proof strategy

$$
\begin{aligned}
& \left\{\left(x=x_{0}\right) \wedge\left(y=y_{0}\right)\right\} \\
& \quad \text { aux }:=\mathrm{x} ; \\
& \quad \mathrm{x}:=\mathrm{y} ; \\
& \mathrm{y}:=\mathrm{aux} \\
& \left\{\left(y=x_{0}\right) \wedge\left(x=y_{0}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(x=x_{0}\right) \wedge\left(y=y_{0}\right)\right\} \\
& \text { aux } \left.:=x \neq x\left(x=x_{0}\right) \wedge\left(y=y_{0}\right)\right\} \\
& \left.x:=y\left(a u x=x_{0}\right) \wedge\left(y=y_{0}\right)\right\} \\
& y:=\text { aux }\left\{\left(\text { aux }=x_{0}\right) \wedge\left(x=y_{0}\right)\right\} \\
& \left\{\left(y=x_{0}\right) \wedge\left(x=y_{0}\right)\right\}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\left\{\left(x=x_{0}\right) \wedge\left(y=y_{0}\right)\right\} & \\
:=\mathrm{x} ; \\
\mathrm{x}:=\mathrm{y} \\
\mathrm{y}:=\mathrm{aux} & \left\{\left(\mathrm{aux}=x_{0}\right) \wedge\left(y=y_{0}\right) \wedge\left(y=y_{0}\right)\right\} \\
\left\{\left(y=x_{0}\right) \wedge\left(x=y_{0}\right)\right\} & \{Q[v \leftarrow \operatorname{expr}]\} \quad v:=\operatorname{expr}\{Q\}
\end{array}\right)
$$

$$
\begin{aligned}
& \left\{\left(x=x_{0}\right) \wedge\left(y=y_{0}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left(y=x_{0}\right) \wedge\left(x=y_{0}\right)\right\} \\
& \overline{\left\{Q_{3}\right\} a_{1}\left\{Q_{2}\right\}}:=\quad \overline{\left\{Q_{2}\right\} a_{2}\left\{Q_{1}\right\}}:=\quad \overline{\{P\} a_{1} ; a_{2}\left\{Q_{1}\right\}} ; \quad \overline{\left.Q_{1}\right\} a_{3}\{Q\}}:= \\
& \{P\} a_{1} ; a_{2} ; a_{3}\{Q\}
\end{aligned}
$$

## Standard Hoare logic: abs(x)

$$
\begin{align*}
& \left\{(r \geq 0) \wedge\left(r^{2}=x_{0}^{2}\right)\right\} \\
& \left\{Q_{1}\right\} p_{1}\{Q\} \quad\left\{Q_{2}\right\} p_{2}\{Q\}  \tag{if}\\
& \left\{\left(e \wedge Q_{1}\right) \vee\left(\neg e \wedge Q_{2}\right)\right\} \text { if } e \text { then } p_{1} \text { else } p_{2}\{Q\}
\end{align*}
$$

## Also:

While loop:

$$
\frac{\{e \wedge I\} p\{I\} \quad(\neg e \wedge I) \Longrightarrow Q}{\{I\} \text { while e with I do } p\{Q\}}
$$

Empty program: $\quad \frac{P \Longrightarrow Q}{\{P\} \varepsilon\{Q\}}$ use sparingly: loses weakest precondition!

## Assertion language (Pre/Post)

Terms: $v$ gene $|n \in \mathbb{N}| K_{v,\{\cdots\}}$ parameter symbols $|+|-$ atoms: $t \geqslant t^{\prime}\left|t<t^{\prime}\right| t=t^{\prime} \mid \ldots$
Connectives: $\neg|\wedge| \vee \mid \Longrightarrow$
Example:

$$
\left(a \leqslant 3 \wedge d+1<K_{d,\{m, c\}}\right) \vee\left(K_{d,\{c\}}<K_{d,\{m, c\}} \wedge c \geqslant 3\right)
$$

From multiplexes to assertions: flattening


$$
\overline{\varphi_{m}} \equiv \varphi_{m}\left[m_{i} \leftarrow \varphi_{i}\right] \text { for all } i \text { and recursively }
$$

## Assertions that formalize Thomas'framework

$\omega$ is the set of ressources of $v$ :

$$
\Phi_{v}^{\omega} \equiv\left(\bigwedge_{m \in \omega} \overline{\varphi_{m}}\right) \wedge\left(\bigwedge_{m \in G^{-1}(v) \backslash \omega} \neg \overline{\varphi_{m}}\right)
$$

$v$ can increase:

$$
\Phi_{v}^{+} \equiv \bigwedge_{\omega \subset G^{-1}(v)}\left(\Phi_{v}^{\omega} \Longrightarrow K_{v, \omega}>v\right)
$$

$v$ can decrease:

$$
\Phi_{v}^{-} \equiv \bigwedge_{\omega \subset G^{-1}(v)}\left(\Phi_{v}^{\omega} \Longrightarrow K_{v, \omega}<v\right)
$$

Trace specifications

- $x+|x-|x:=n| \operatorname{assert}(\varphi)$
- $p_{1} ; p_{2} ; \cdots ; p_{n}$
- if $\varphi$ then $p_{1}$ else $p_{2}$
- while $\varphi$ with $\psi$ do $p$
- $\forall\left(p_{1}, p_{2}, \cdots, p_{n}\right)$
- $\exists\left(p_{1}, p_{2}, \cdots, p_{n}\right)$

Examples:

- $b+; c+; b-$

- $\exists(b+, b-, c+, c-, \varepsilon)$
- while $(b<2)$ with $(c>0)$
do $\exists(b+, b-, \forall((c-; a-), c+))$ od;
b-


## Genetic, a la Hoare, inference rules

Incrementation rule:

$$
\overline{\left\{\Phi_{v}^{+} \wedge Q[v \leftarrow v+1]\right\} v+\{Q\}}
$$

Decrementation rule: $\overline{\left\{\Phi_{v}^{-} \wedge Q[v \leftarrow v-1]\right\} v-\{Q\}}$
Assertion rule:

$$
\{\varphi \wedge Q\} \operatorname{assert}(\varphi)\{Q\}
$$

Universal quantifier rule: $\frac{\left\{P_{1}\right\} p_{1}\{Q\} \quad\left\{P_{2}\right\} p_{2}\{Q\}}{\left\{P_{1} \wedge P_{2}\right\} \forall\left(p_{1}, p_{2}\right)\{Q\}}$
Existential quantifier rule: $\frac{\left\{P_{1}\right\} p_{1}\{Q\} \quad\left\{P_{2}\right\} p_{2}\{Q\}}{\left\{P_{1} \vee P_{2}\right\} \exists\left(p_{1}, p_{2}\right)\{Q\}}$

## Menu

1. Formal logic and dynamic models for biology
2. Discrete models for gene networks according to René Thomas
3. Regulatory networks and temporal logic
4. Models as mediums for checking biological hypotheses
5. Genetically modified Hoare logic, and examples
6. Extracting interesting experiments from models
7. Complex vs. complicated...

## Example: Feedforward "loop"

Uri Alon most frequent regulatory network patterns


Behaviour of $b$ after switching $a$ from off to on ?
Simple off $\rightarrow$ on $\rightarrow$ off behaviour of $b$ with the help of $c$ :

$$
\{(a=1 \wedge b=0 \wedge c=0)\} b+; c+; b-\{b=0\}
$$

possible if and only if: $K_{b,\{\sigma, \lambda\}}=1 \wedge K_{c,\{1\}}=1 \wedge K_{b,\{\sigma\}}=0$

## Feedforward example (continued)

off $\rightarrow$ on $\rightarrow$ off behaviour of $b$ without the help of $c$ :

$$
\{(a=1 \wedge b=0 \wedge c=0)\} b+; b-\{b=0\}
$$

$$
\left\{\begin{array}{l}
b=0 \\
((c \geqslant 1) \wedge(a<1)) \Longrightarrow\left(\left(K_{b}=1\right) \wedge\left(K_{b}=0\right)\right) \\
\left.((c \geqslant 1) \wedge(a \geqslant 1)) \Longrightarrow\left(\left(K_{b, \sigma}\right) 1\right) \wedge\left(K_{b, \sigma}=0\right)\right) \\
((c<1) \wedge(a<1)) \Longrightarrow\left(\left(K_{b, \lambda}=1\right) \wedge\left(K_{b, \lambda}=0\right)\right) \\
((c<1) \wedge(a \geqslant 1)) \Longrightarrow\left(\left(K_{b, \sigma \lambda}=1\right) \wedge\left(K_{b, \sigma \lambda}=0\right)\right)
\end{array}\right\} \text { not satisfiable! }
$$

Although $b+; c+; b-$ is possible, if $c$ becomes "on" before $b$, then $b$ will never be able to get "on"

Proof by refutation:

$$
\begin{aligned}
& \left\{\begin{array}{l}
a=1 \wedge b=0 \wedge c=1 \wedge \\
K_{b, \sigma \lambda}=1 \wedge K_{c, l}=1 \wedge K_{b, \sigma}=0
\end{array}\right\} \\
& \text { while } b<1 \text { with } I \text { do } \exists(b+, b-, c+, c-) \\
& \{b=1\}
\end{aligned}
$$

the triple is inconsistent, whatever the loop invariant I !

## Cell cycle in mammals

- A 22 gene model reduced to 5 variables using multiplexes


SK = Cyclin E/Cdk2, Cyclin H/Cdk7
$A=$ Cyclin $A / C d k 1$
$B=$ Cyclin B/Cdk1
$E n=A P C^{G 1}, C K I(p 21, p 27)$, Wee1
$E P=A P C^{M}$, Phosphatases

- 48 states, 26 parameters, 339738624 possible valuations, 12 trace specifications and a few temporal properties


## Cell cycle in mammals (continued)

- 13 parameters have been entirely identified (50\%) and only 8192 valuations remain possible according to the generated constraints (0.002\%)
- Additional reachability constraints (e.g. endoreplication and quiescent phase) have been necessary, on an extended hybrid extension of the Thomas' framework, to identify (almost) all parameters
- This initial Hoare logic identification step was crucial: it gave us the sign of the derivatives in all the (reachable) states


## Correctness, Completeness and Decidability

- If there is a proof tree for $\{P\} p\{Q\}$ then for each initial state satisfying $P$, there are traces in the regulatory network that realize the trace specification $p$, and for all of them, if terminating, they satisfy $Q$ at the end.
- If for each initial state satisfying $P$ there are traces that realize $p$ in the regulatory network and if they all satisfy $Q$ at the end, then there exists a proof tree for $\{P\} p\{Q\}$.
- There is a simple algorithm to compute, for each $Q$, the minimal loop invariant I such that $\{I\}$ while e with I do $p\{Q\}$. (However well chosen slightly non minimal invariants can considerably simplify the proof tree...)


## Menu

1. Formal logic and dynamic models for biology
2. Discrete models for gene networks according to René Thomas
3. Regulatory networks and temporal logic
4. Models as mediums for checking biological hypotheses
5. Genetically modified Hoare logic, and examples
6. Extracting interesting experiments from models
7. Complex vs. complicated...

## Generation of biological experiments (1)

Set of all the formulas:
$\varphi=$ hypothesis


## Generation of biological experiments (2)

Set of all the formulas:
$\varphi=$ hypothesis
Obs $=$ possible experiments


## Generation of biological experiments (3)

Set of all the formulas:
$\varphi=$ hypothesis
Obs $=$ possible experiments $T h(\varphi)=\varphi$ inferences


## Generation of biological experiments (4)

Set of all the formulas:
$\varphi=$ hypothesis
Obs $=$ possible experiments $T h(\varphi)=\varphi$ inferences $S=$ sensible experiments


## Generation of biological experiments (5)

Set of all the formulas:
$\varphi=$ hypothesis
Obs $=$ possible experiments $T h(\varphi)=\varphi$ inferences
$S=$ sensible experiments

Refutability:

$$
S \Longrightarrow \varphi ?
$$



Set of all the formulas:
$\varphi=$ hypothesis
Obs = possible experiments
$T h(\varphi)=\varphi$ inferences
$S=$ sensible experiments
Refutability:

$$
S \Longrightarrow \varphi ?
$$

Best refutations:
Choice of experiments in S ?
... optimisations


Example: Mucus Production in P. aeruginosa

$\mathcal{M}$ : (unknown thresholds)


$$
\Phi: \begin{cases}(\text { Alginate }=2) \Longrightarrow A G(\text { Alginate }=2) & \text { (hypothesis }) \\ (\text { Alginate }=0) \Longrightarrow A G(\text { Alginate }<2) & \text { (knowledge })\end{cases}
$$

Assume that only mucus can be observed:
Lemma: $A G($ Alginate $=2) \Longleftrightarrow A F A G($ mucus $=1)$
(... formal proof by computer ...)
$\rightarrow$ To validate: $($ Alginate $=2) \Longrightarrow A F A G($ mucus $=1)$

## Karl Popper:

to validate $=$ to try to refute thus $A=$ false is useless experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state Alginate $=2$. If the state is not directly controlable we need to prove lemmas:

$$
(\text { something reachable }) \Longrightarrow(\text { Alginate }=2)
$$

General form of a test:

$$
\text { (something reachable }) \Longrightarrow \text { (something observable })
$$

## Extraction of experiment schemes

- Question: What is the experiment to do to reduce the set of coherent models? (equiprobable / non-equiprobable models)
- model checking :

|  | $F_{1}$ | $F_{2}$ | $\ldots$ | $F_{f}$ |
| :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | 1 | 1 | $\ldots$ | 0 |
| $M_{2}$ | 1 | 0 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ |
| $M_{m}$ | 0 | 1 | $\ldots$ | 0 |

- choose $F_{i}$ that balances the following probabilities:

$$
\mu_{i}=p\left(\left\{M_{j} \mid M_{j} \models F_{i}\right\}\right) \quad \text { and } \quad \overline{\mu_{i}}=p\left(\left\{M_{j}\left|M_{j}\right| \vDash F_{i}\right\}\right)
$$

One has to try to minimise $E[\mu$ (remainded models) after exp.]
$-\min \left(\mu_{i} \times \mu_{i}+\overline{\mu_{i}} \times \overline{\mu_{i}}\right)=\min \left(\mu_{i}^{2}+\left(1-\mu_{i}\right)^{2}\right)$

- $\min \left(1-2 \mu_{i}+2 \mu_{i}^{2}\right)$
- minimum in $1 / 2$


## Extraction of experiment schemes



- What are the $n$ experiments to do to reduce the set of coherent models? (order, decision tree)
- previous strategy doesn't work.
- Ex : 9 models; 5 formulas, min depth $=\log _{2}(9)=4$

|  | $F_{1}$ | $F_{2}$ | $F_{3}$ | $F_{4}$ | $F_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | 1 | 1 | 1 | 0 | 0 |
| $M_{2}$ | 1 | 1 | 0 | 1 | 1 |
| $M_{3}$ | 1 | 0 | 1 | 0 | 1 |
| $M_{4}$ | 1 | 0 | 0 | 1 | 0 |
| $M_{5}$ | 0 | 1 | 0 | 0 | 0 |
| $M_{6}$ | 0 | 0 | 1 | 0 | 0 |
| $M_{7}$ | 0 | 0 | 0 | 1 | 0 |
| $M_{8}$ | 0 | 0 | 0 | 0 | 1 |
| $M_{9}$ | 0 | 0 | 0 | 0 | 0 |
|  | $4 / 5$ | $3 / 6$ | $3 / 6$ | $3 / 6$ | $3 / 6$ |


many thanks to S . Vial for this example

## Extraction of experiment schemes

|  | $F_{1}$ | $F_{2}$ | $F_{3}$ | $F_{4}$ | $F_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | 1 | 1 | 1 | 0 | 0 |
| $M_{2}$ | 1 | 1 | 0 | 1 | 1 |
| $M_{3}$ | 1 | 0 | 1 | 0 | 1 |
| $M_{4}$ | 1 | 0 | 0 | 1 | 0 |
| $M_{5}$ | 0 | 1 | 0 | 0 | 0 |
| $M_{6}$ | 0 | 0 | 1 | 0 | 0 |
| $M_{7}$ | 0 | 0 | 0 | 1 | 0 |
| $M_{8}$ | 0 | 0 | 0 | 0 | 1 |
| $M_{9}$ | 0 | 0 | 0 | 0 | 0 |
|  | $4 / 5$ | $3 / 6$ | $3 / 6$ | $3 / 6$ | $3 / 6$ |



Choice of an optimal decision tree $=$ NP-complete problem (reduction to the problem 3-DM, L. Hyafil and R.L. Rivest [1975])

## Extraction of experiment schemes

Algorithm min-max


## Menu

1. Formal logic and dynamic models for biology
2. Discrete models for gene networks according to René Thomas
3. Regulatory networks and temporal logic
4. Models as mediums for checking biological hypotheses
5. Genetically modified Hoare logic, and examples
6. Extracting interesting experiments from models
7. Complex vs. complicated...

## Circadian clock interaction graph



Impact of the day length on the persistence of the circadian circle ?
$\Longrightarrow$ framework with time delays / hybrid framework:

- mainly replace the integer $K_{x, \omega}$ by real numbers $C_{x, \omega, n}$, called celerities, where $n$ is the current state of $x$
- notice that $C_{x, \omega, n}>0$ if $K_{x, \omega}>n$ and a few other logical properties
- extension of temporal logic with delays: $A F_{\left[t_{1}, t_{2}\right]}$ and so on
- extension of Hoare logic

Decidability is lost but the identification of parameters remains "almost" automatic with such constant speeds $C_{x, \omega, n}$ (constraint solving on intervals)

## Hoare Logic on hybrid Automata


x


$$
\begin{aligned}
a:= & \top \mid C \ldots \leq \text { const } \mid \text { slide } \pm \mid \text { noslide } \pm \\
& \neg a|a \wedge a| a \vee a
\end{aligned}
$$

$$
\left\{\begin{array}{c}
D C_{0} \\
H C_{0}
\end{array}\right\}\left(\begin{array}{c}
\Delta t_{1} \\
\operatorname{slide}^{-}(y) \\
x+
\end{array}\right) ;\left(\begin{array}{c}
\Delta t_{2} \\
\operatorname{slide}^{+}(x) \\
y+
\end{array}\right) ;\left(\begin{array}{c}
\Delta t_{3} \\
\operatorname{slide}^{+}(y) \\
x-
\end{array}\right) ;\left(\begin{array}{c}
\Delta t_{4} \\
T \\
y-
\end{array}\right)\left\{\begin{array}{c}
D C_{f} \\
H C_{f}
\end{array}\right\}
$$

Fold levels and remove PPAR


## Remove Clock and "tunnel" pathways



## Separate inhibitors/activators of Clock-BMAL



## Fusion of all inhibitors


and Light prevents PER-CRY to enter the nucleus:


## a 12/12 hours model



## Winter model



## Summer model




## Make explicit the hypotheses that motivate the biologist

A far as possible formalize them to get a computer aided approach Behavioural properties are as much important as models Mathematical models are not reality: let's use this freedom! (several views of a same biological object)
Modelling is significant only with respect to the considered experimental reachability and observability (for refutability)

Formal proofs can suggest wet experiments
"Kleenex" models help understanding main behaviours
Specialized qualitative approaches can make complex models simple The more detailed models are not the more comprehensible ones

