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Signalling Pathways
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Bridging the gap between. . .







































dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x
2
3
− k2 · x4 +

v4·x5
p4+x5

− k3 · x4 − k−3 · x5
dx5
dt

= · · ·

...
dxn
dt

= −k1 · x1 · c2 + k−1 · x3

knowledge

representation
and

models of the

behaviour of

systems

Jérôme Feret 4 Tuesday, the 25th of June, 2019



Site-graphs rewriting
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PSfrag replaements

k

• a language close to knowledge representation;

• rules are easy to update;

• a compact description of models.
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Choices of semantics
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ordinary differential equations
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Complexity walls
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Abstractions offer different perspectives
on models
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concrete semantics causal traces
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exact projection
of the ODE semantics
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Static analysis of reachable species (I/II)

We capture the relationships between the states of the sites of each agent.
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PSfrag replaements
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Static analysis of reachable species (I/II)

We capture the relationships between the states of the sites of each agent.
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Static analysis of reachable species (II/II)

Applications:

1. check the consistency of a model [ICCMSE’07]

2. compute the properties to allow fast simulation [APLAS’07]

3. simplify models,

4. compute independent fragments of chemical species [PNAS’09, LICS’10,Chaos’10]

The analysis is complete (no false positif) for a significatif kernel of Kappa
[VMCAI’08].
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Model reduction

The ground differential system uses one variable per chemical species;
We directly compute its exact projection over independent fragments of chem-
ical species.
With a small model, 356 chemical species are reduced into 38 fragments:
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On a bigger model, 1019 chemical species are reduced into 180 000 frag-
ments. [PNAS’09,LICS’10,Chaos’10]

Jérôme Feret 11 Tuesday, the 25th of June, 2019



4ième École Thématique

MODÉLISATION FORMELLE DE RÉSEAUX DE
RÉGULATION BIOLOGIQUE

Reachability Analysis
of Rule-based Models

[ICCMSE’07,VMCAI’08]

Jérôme Feret
DI - ÉNS

Tuesday, the 25th of June, 2019



In this talk...

We illustrate the following concepts:

• Galois connections:

-- the upper closure operator γ ◦ α,
-- the lower closure operator α ◦ γ;

• soundness:

-- the abstraction forgets no behavior;

• completeness:

-- sufficient conditions that ensure the absence of false positive;

on an abstraction of the reachable connected components in a site-graph
rewriting language.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Signaling Pathways

Eikuch, 2007
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Contact map
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Causal traces
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ODE semantics
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ODE semantics
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What will happen if more Shc(s) is put in the system?
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ODE semantics
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Crowding effect
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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A chemical species

EGF r EGFRl

r

EGF r EGFRl

r

EGF(r!1), EGFR(l!1,r!2), EGFR(r!2,l!3), EGF(r!3)
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A Unbinding/Binding Rule
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EGF(r), EGFR(l,r)←→ EGF(r!1), EGFR(l!1,r)
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Internal state

EGF

r

EGFR

l
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EGFR(Y48∼u?,l!1), EGF(r!1)←→ EGFR(Y48∼p?,l!1), EGF(r!1)
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Don’t care, Don’t write

EGFR
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A contextual rule

EGFR

r

Y48 EGFR

r

Y48

EGFR(Y48∼u,r!_)→ EGFR(Y48∼p,r)

Jérôme Feret 16 Tuesday, the 25th of June, 2019



Creation/Suppression

EGFR r EGFR r EGFRr

l

Y48

R(r)→ R(r!1), R(r!1,l,Y48∼u)

EGFR r EGFRr EGFR r

R(r!1), R(r!1)→ R(r)
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Early EGF example

Ligand-receptor binding, receptor dimerisation, rtk x-phosph, & de-phosph
 01: R(l,r), E(r) <-> R(l1,r), E(r1)
 02: R(l1,r), R(l2,r) <-> R(l1,r3), R(l2,r3)
 03: R(r1,Y68) -> R(r1,Y68p)
       R(Y68p) -> R(Y68) 
 04: R(r1,Y48) -> R(r1,Y48p)
       R(Y48p) -> R(Y48) 

Sh x-phosph & de-phosph
 14: R(r2,Y48p1), Sh(π1,Y7) ->  R(r2,Y48p1), Sh(π1,Y7p)
 ??: Sh(π1,Y7p)  ->  Sh(π1,Y7)
 16: Sh(π,Y7p) -> Sh(π,Y7)

Y68-G binding
 09: R(Y68p),  G(a,b)  <-> R(Y68p1)+G(a1,b)
 11: R(Y68p),  G(a,b2) <-> R(Y68p1)+G(a1,b2)

egf rules 1

receptor type: R(l,r,Y68,Y48)

refined from 
R(Y68p)+G(a)<->R(Y68p1)+G(a1)

refined from 
Sh(Y7p)-> Sh(Y7)

protein shorthands: E:=egf, R:=egfr, So:=Sos,Sh:=Sh,G:=grb2
site abbreviations & fusions: Y68:=Y1068, Y48:=Y1148/73, Y7:=Y317, π:=PTB/SH2
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Early EGF example

G-So binding
 10: R(Y68p1), G(a1,b), So(d) <-> R(Y68p1), G(a1,b2), So(d2)
 12: G(a,b), So(d)   <->  G(a,b1), So(d1)
 22: Sh(π,Y7p2), G(a2,b), So(d)      <->  Sh(π,Y7p2), G(a2,b1), S(d1)
 19: Sh(π1,Y7p2), G(a2,b), So(d)   <->  Sh(π1,Y7p2), G(a2,b1), S(d1) 

Y48-Sh binding
13: R(Y48p), Sh(π,Y7)  <-> R(Y48p1), Sh(π1,Y7) 
15: R(Y48p), Sh(π,Y7p) <-> R(Y48p1), Sh(π1,Y7p)
18: R(Y48p), Sh(π,Y7p1), G(a1,b)  <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b)
20: R(Y48p), Sh(π,Y7p1), G(a1,b3), S(d3) <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b3), S(d3)

Sh-G binding
17: R(Y48p1), Sh(π1,Y7p), G(a,b)   <-> R(Y48p1), Sh(π1,Y7p2), G(a2,b)
21: Sh(π,Y7p), G(a,b)  <->  Sh(π,Y7p1), G(a1,b)
23: Sh(π,Y7p), G(a,b2) <-> Sh(π,Y7p1), G(a1,b2)
24: R(Y48p1), Sh(π1,Y7p), G(a,b3), S(d3)  <-> R(Y48p1), Sh(π1,Y7p2), G(a2, b3), S(d3)

egf rules 2

refined from 
R(Y48p)+Sh(π)<->R(Y48p1)+Sh(π1)

why not simply G(b3)??

refined from 
Sh(π), G(a)<->Sh(π1), G(a1)

interface note: highlight 
the interacting parts

refined from 
So(d)+G(b)<->So(d1)+G(b1)
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Properties of interest

1. Show the absence of modeling errors:

• detect dead rules ;
• detect overlapping rules;
• detect non exhaustive interactions;
• detect rules with ambiguous molecularity.

2. Get idiomatic description of the networks:

• capture causality;
• capture potential interactions;
• capture relationships between site states;
• simplify rules.

3. Allow fast simulation:

• capture accurate approximation of the wake-up relation.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Concrete semantics

A rule is a symbolic representation of a multi-set of reactions.

For instance, the rule:

PSfrag replaements

kd

within a model with the following signature:

denotes the following two reactions:

PSfrag replaements

kd

PSfrag replaements

kd
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Set of reachable chemical species

Let R = {Ri} be a set of rules.
Let Species be the set of all chemical species (C, c1, c ′

1, . . . , ck, c
′
k, . . . ∈ Species).

Let Species0 be the set of initial .

We are interested in Speciesω the set of all chemical species that can be con-
structed in one or several applications of the reactions induced by the rules
in R, starting from the set Species0 of initial chemical species.

(We do not care about the number of occurrences of each chemical species).
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Inductive definition

We define the mapping F as follows:

F :






℘(Species) → ℘(Species)

X 7→ X ∪

{

c ′
j

∣

∣

∣

∣

∃Rk ∈ R, c1, . . . , cm ∈ X,

c1, . . . , cm →Rk c
′
1, . . . , c

′
n

}

.

The set ℘(Species) is a complete lattice.
The mapping F is an extensive ∪-complete morphism.

We define the set of reachable chemical species as follows:

Speciesω =
⋃{

F
n(Species0)

∣

∣ n ∈ N
}
.
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Local views

EGF

r

EGFR

l
Y48

EGF

r

EGFR

l
Y48

EGFR.l

EGF.r

α({R(Y1∼u,l!1), E(r!1)}) = {R(Y1∼u,l!r.E); E(r!l.R)}.
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Galois connection

Let Local_view be the set of all local views.

Let α ∈ ℘(Species)→ ℘(Local_view) be the function that maps any set of
chemical species into the set of their local views.

The set ℘(Local_view) is a complete lattice.
The function α is a ∪-complete morphism.

Thus, it defines a Galois connection:

℘(Species) −−→←−−
α

γ

℘(Local_view).

(The function γ maps a set of local views into the set of complexes that can
be built with these local views).
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γ ◦ α

γ ◦ α is an upper closure operator: it abstracts away some information.

Guess the image of the following set of chemical species ?






R

rl
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α ◦ γ

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?






R

rl

R.lR.r

; S

rl

R.lR.r
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One more question

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?






R

rl

R.l

; R

rl

R.lR.r
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Abstract reactions

EGFR r EGFRr EGFR r EGFRr

EGFR
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Y48 EGFR
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EGFR

r
l

Y48 EGFR

r
l

Y48

EGF.r

PSfrag replaements

♯
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Abstract counterpart to F

We define F
♯ as:

F
♯ :






℘(Local_view) → ℘(Local_view)

Y 7→ Y ∪

{

lv ′
j

∣

∣

∣

∣

∃Rk ∈ R, lv1, . . . , lvm ∈ Y,

lv1, . . . , lvm →
♯

Rk
lv ′

1, . . . , lv
′
n

}

.

We have:

• F
♯ is extensive;

• F
♯ is monotonic;

• F ◦ γ
.

⊆ γ ◦ F♯;

• F
♯ ◦ α = α ◦ F ◦ γ ◦ α (we will see later why).
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Soundness

Theorem 1 Let:

1. (D,⊆,∪) and (D♯,⊑,⊔) be chain-complete partial orders;

2. D −−→←−−
α

γ

D♯ be a Galois connection;

3. F ∈ D→ D and F
♯ ∈ D♯ → D♯ be monotonic mappings such that:

F ◦ γ
.

⊆ γ ◦ F♯;

4. X0 ∈ D be an element such that: X0 ⊆ F(X0);

Then:

1. both lfpX0
F and lfpα(X0)

F
♯ exist,

2. lfpX0
F ⊆ γ(lfpα(X0)

F
♯).
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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From views to species

For any X ∈ ℘(Local_view), γ(X) is given by a rewrite system:
For any lv ∈ X, we add the following rules:

F

.

.

.

F
E

.

E

E

I
E

.

F

F

F

F
E

.

E

E

E

F
F

Y2

Y1 Y3

u

r.

r.

r.

Y1

l

l

p

p

Y2

Y1

u

p

u

r.

Y2

Y1 Y3

u

l

p

r

u

Y3

Y3.

r

r

r

r

l l

Y3.

r.

l.

Y3rY3

l

p

p

u

r.

Y2

Y3

u

l.

r

l.

r

p

p

u

r.

I and semi-links are non-terminal.
I is the initial symbol.
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Pumping lemma

• We use this rewrite system to enumerate the chemical species of γ(X).

• There are two cases:

1. either there is a finite number of rewrite sequences;
2. or we encounter cyclic derivations

i.e. an open chemical species with a cycle of the following form:

R.l-r.E ... R.l-r.E
can be built.

• We only enumerate chemical species that are reached through an acyclic
rewriting computation.

• It turns out that: if X ∈ α(℘(Species)) then each rewrite sequence is the
prefix of a terminating rewrite sequence.
(So there is an unbounded number of species if, and only if,
there is an unbounded number of rewrite sequences.)
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Examples

1. Make the demo for egf
2. Make the demo for fgf
3. Make the demo for Global invariants
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Counting chemical species

Given a set of local views X, we can easily count the number of species in
γ(X) by using the following lemmas:

Lemma 1 (rigidity) An embedding between two connected components is
fully characterized by the image of one agent.

Lemma 2 (automorphism) If γ(X) is finite, then for any C ∈ γ(X):

• C has at most two automorphisms;

• if C has two automorphisms, then C has a bond of the form R.r − r.R.
Moreover one automorphism swaps the two R of this bond.

Lemma 3 (Euler) If a chemical species has no cycle, then it has an agent
with only one site.

sketch the algorithm
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Which information is abstracted away ?

Our analysis is exact (no false positive):

• for EGF cascade (356 chemical species);

• for FGF cascade (79080 chemical species);

• for SBF cascade (around 1019 chemical species).

We know how to build systems with false positives. . .
. . .but they seem to be biologically meaningless.

This raises the following issues:

• Can we characterize which information is abstracted away ?

• Which is the form of the systems, for which we have no false positive ?

• Do we learn something about the biological systems that we describe ?
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Which information is abstracted away ?

Theorem 2 We suppose that:

1. (D,⊆) be a partial order;

2. (D♯,⊑,⊔) be chain-complete partial order;

3. D −−→←−−
α

γ

D♯ be a Galois connection;

4. F ∈ D→ D and F
♯ ∈ D♯ → D♯ are monotonic;

5. F ◦ γ
.

⊆ γ ◦ F♯;

6. X0, inv ∈ D such that:

• X0 ⊆ F(X0) ⊆ F(inv) ⊆ inv,
• inv = γ(α(inv)),
• and α(F(inv)) = F

♯(α(inv));

γ(lfpα(Species0)
F
♯)

Species

inv

Speciesω

Then, lfpα(X0)
F
♯ exists and γ(lfpα(X0)

F
♯) ⊆ inv.
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Proof I/III

We have already seen (previous lectures) that:

1. lfpα(X0)
F
♯ exists;

2. there exists an ordinal δ such that lfpα(X0)
F
♯ = F

♯δ(α(X0)).
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Proof II/III

Let us show that γ(lfpα(X0)
F
♯) ⊆ inv.

Let us prove instead by induction over δ that F♯δ(α(X0)) ⊑ α(inv).

• If Y ∈ D♯ is an element such that Y ⊑ α(inv),
F
♯(Y) ⊑ F

♯(α(inv)) (F♯ is mon)
F
♯(α(inv)) = α(F(inv)) (assumption)

α(F(inv)) ⊑ α(inv). (α is mon and inv is a post)

Thus: F♯(Y) ⊑ α(inv)

• If Yi ∈ D♯I is a chain of elements such that Yi ⊑ α(inv) for any i ∈ I,
then, ⊔Yi ⊑ α(inv) (lub).

So: F♯δ(α(X0)) ⊑ α(inv).
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Proof III/III

We have:
F
♯δ(α(X0)) ⊑ α(inv).

Since γ is monotonic:

γ(F♯δ(α(X0))) ⊆ γ(α(inv)).

But, by assumption, γ(α(inv)) = inv.
Thus,

γ(F♯δ(α(X0))) ⊆ inv.
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When is there no false positive ?

Theorem 3 We suppose that:

1. (D,⊆,∪) and (D♯,⊑,⊔) are chain-complete partial orders;

2. (D,⊆) −−→←−−
α

γ

(D♯,⊑) is a Galois connection;

3. F : D→ D is a monotonic map;

4. X0 is a concrete element such that X0 ⊆ F(X0);

5. F ◦ γ
.

⊆ γ ◦ F♯;

6. F
♯ ◦ α = α ◦ F ◦ γ ◦ α.

Then:

• lfpX0
F and lfpα(X0)

F
♯ exist;

• lfpX0
F = γ(α(lfpX0

F))⇐⇒ lfpX0
F = γ(lfpα(X0)

F
♯).

We need to understand under which assumptions lfpX0
F = γ(α(lfpX0

F)).
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Local set of chemical species

Definition 1 We say that a set X ∈ ℘(Species) of chemical species is local if
and only if X ∈ γ(℘(Local_view)).

(ie. a set X is local if and only if X is exactly the set of all the species that are
generated by a given set of local views.)
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Swapping relation

We define the binary relation
SWAP
∼ among tuples Species∗ of chemical species.

We say that (C1, . . . , Cm)
SWAP
∼ (D1, . . . , Dn) if and only if:

(C1, . . . , Cm) matches with
l

r l

r

while (D1, . . . , Dn) matches with
l

r l

r
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Swapping closure

Theorem 4 Let X ∈ ℘(Species) be a set of chemical species.

The two following assertions are equivalent:

1. X = γ(α(X));

2. for any tuples (Ci), (Dj) ∈ Species∗ such that:

• (Ci) ∈ X∗,

• and (Ci)
SWAP
∼ (Dj);

we have (Dj) ∈ X∗.
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Proof (easier implication way)

If:

• X = γ(α(X)),

• (Ci)i∈I ∈ X∗,

• and (Ci)i∈I
SWAP
∼ (Dj)j∈J;

Then:
we have α({Ci | i ∈ I}) = α({Dj | j ∈ J}) (because (Ci)

SWAP
∼ (Dj))

and α({Ci | i ∈ I}) ⊆ α(X) (because (Ci) ∈ X∗ and α mon);
so α({Dj | j ∈ J}) ⊆ α(X);
so {Dj | j ∈ J} ⊆ γ(α(X)) (by def. of Galois connections);
so {Dj | j ∈ J} ⊆ X (since X = γ(α(X)));
so (Dj)j∈J ∈ X∗.
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Proof: more difficult implication way

For any X ∈ ℘(Local_view), γ(X) is given by a rewrite system:
For any lv ∈ X, we add the following rules:

F

.

.

.

F
E

.

E

E

I
E

.

F

F

F

F
E

.

E

E

E

F
F

Y2

Y1 Y3

u

r.

r.

r.

Y1

l

l

p

p

Y2

Y1

u

p

u

r.

Y2

Y1 Y3

u

l

p

r

u

Y3

Y3.

r

r

r

r

l l

Y3.

r.

l.

Y3rY3

l

p

p

u

r.

Y2

Y3

u

l.

r

l.

r

p

p

u

r.

I and semi-links are non-terminal.
I is the initial symbol.
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Proof (more difficult implication way)

We suppose that X is close with respect to
SWAP
∼ .

We want to prove that γ(α(X)) ⊆ X.

We prove, by induction, that any open complex that can be built by gathering
the views of α(X), can be embedded in a complex in X:

• By def. of α, this is satisfied for any local view in α(X);

• This remains satisfied after unfolding a semi-link with a local view;

• This remains satisfied after binding two semi-links.
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Initialization

F

E

E

.

E

F
E

.

.

I

p

u

r.
u

l

Y2

p

p

u

r.

Y1

Y2

Y1 Y3

u

l

Y3

p

r.

r.

C ∈ X
(since lv ∈ α(X))lv
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Unfolding a semi-link

.

.

E

F

F

F
E

..

.

.

F
E

.

open partial species

.

Y1

r

Y3

l

u

r

p

p
r.

l.

u

l.

p

u

r.

r.

Y2

Y1 Y3

u

l

p

r

Y2

p

C ∈ X C ′ ∈ X

lv
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Unfolding a semi-link

F

.

E

.

..

F
E

.

..

.

open partial species

F

Y3

l.

r

p

r

p

u

r.

Y2

Y1 Y3

u

l

p

l

p

p

u

r.

Y2

Y1

u

r

lv

C" ∈ X
(

SWAP
∼

)
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Binding two semi-links

.. ..

.

E

.

F.

..

..

open partial species open partial species

F
E

.

.

r.

rl lr

l.

r.

l.

rrrr

C ∈ X C ′′ ∈ X
(

SWAP
∼

)
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Consequences

Let Y ∈ ℘(Local_view)) be a set of local views such that α(γ(Y)) = Y.

1. Each open complex C built with the local views in Y is a sub-complex of
a close complex C ′ in γ(Y).

2. When considering the rewrite system that computes γ(Y), any partial
rewriting sequence can be completed in a successful one.

Thus:

(a) γ(Y) is finite if and only if the grammar has a finite set of prefixes
(and the latter is decidable);

(b) We have F
♯ ◦ α = α ◦ F ◦ γ ◦ α.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Outline

We have proved that:

• if the set Speciesω of reachable chemical species is close with respect

swapping
SWAP
∼ ,

• then the reachability analysis is exact (i.e. Speciesω = γ(lfpα(Species0)
F
♯)).

Now we give some sufficient conditions that ensure this property.
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Sufficient conditions

Whenever the following assumptions:

1. initial agents are not bound;

2. rules are atomic;

3. rules are local:

• only agents that interact are tested,
• no cyclic patterns (neither in lhs, nor in rhs);

4. binding rules do not interfere i.e. if both:

• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:

• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. chemical species in γ(α(Speciesω)) are acyclic,

are satisfied, the set of reachable chemical species is local.
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Proof outline

We sketch a proof in order to discover sufficient conditions that ensure this
property:

• We consider tuples of complexes in which the same kind of links occur
twice.

• We want to swap these links.

• We introduce the history of their computation.

• There are several cases. . .
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First case (I/V)

.

.

..

.

..

..

r
r

r
r

C ′ ∈ Speciesω
C ∈ Speciesω
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First case (II/V)

..

.

..

..

.

.

r r
r r

C ′ ∈ Speciesω
∗

just before the links are made

C ∈ Speciesω
∗
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First case (III/V)

.

.

.

.

..

..

.

r
rr

r

C ∈ Speciesω
∗

we suppose we can swap the links
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First case (IV/V)

Then, we ensure that further computation steps:

• are always possible;

• have the same effect on local views;

• commute with the swapping relation
SWAP
∼ .

Cn

SWAP
∼ ,σ

//

R,φ

��

C ′
n

R,φ

��

Cn+1

SWAP
∼ ,σ

//C ′
n+1
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First case (V/V)

.

..

.

..

..
..

...

.

rr
rr

C ∈ Speciesω
∗
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Second case (I/II)

.

..

.

..

..
..

...

.

..
r

r
r

r

we assume that the chemical species C is acyclic

C ∈ Speciesω
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Second case (II/II)

..... ..
..

.

.

..

.

..

..

.

.

..

.

..

r
rr

r
r

r

r

r
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Sufficient conditions

Whenever the following assumptions:

1. initial agents are not bound;

2. rules are atomic;

3. rules are local:

• only agents that interact are tested,
• no cyclic patterns (neither in lhs, nor in rhs);

4. binding rules do not interfere i.e. if both:

• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:

• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. chemical species in γ(α(Speciesω)) are acyclic,

are satisfied, the set of reachable chemical species is local.
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Third case (I/III)

.

..

.

.

.

..

.

..

..
..

...

.

.

..

.

r
r r

r r
r

r
r

C ∈ Speciesω
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Third case (II/III)

.

.

..

.

..
..

...

.

.

..

.

..

rrr r

C ∈ Speciesω
∗
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Third case (II/III)

.

.

..

.

..

? ? ?

..
..

...

.

.

..

.

..

..

r
r r

r
r

r
r

r

C ∈ SpeciesωC ∈ Speciesω
∗
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Dangerous sites

A site is dangerous if it may occur in a cycle within a complex (∈ γ(α(Speciesω))).

We would weaken the fifth requirement into:

• The binding state of a dangerous site is never tested, unless for binding
or unbinding this site.

• When we bind dangerous sites, we only test that these sites are free.

Then, we prove that:

1. we can build any complex with free dangerous sites,

2. then, we can bind them as much as we like.
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Non local systems

Species0
∆
= R(a∼u)

Rules
∆
=






R(a∼u) ↔ R(a∼p)
R(a∼u),R(a∼u) → R(a∼u!1),R(a∼u!1)
R(a∼p),R(a∼u) → R(a∼p!1),R(a∼p!1)
R(a∼p),R(a∼p) → R(a∼p!1),R(a∼p!1)






R(a∼u!1),R(a∼u!1) ∈ Speciesω
R(a∼p!1),R(a∼p!1) ∈ Speciesω
But R(a∼u!1),R(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u),B(a∼u)

Rules
∆
=






A(a∼u),B(a∼u)→ A(a∼u!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼p!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼u!1),B(a∼p!1)






A(a∼u!1),B(a∼p!1) ∈ Speciesω
A(a∼p!1),B(a∼u!1) ∈ Speciesω
But A(a∼p!1),B(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u)

Rules
∆
=

{
A(a∼u)↔ A(a∼p)
A(a∼u),A(a∼p)→ A(a∼u!1),A(a∼p!1)

}

A(a∼u!1),A(a∼p!1) ∈ Speciesω
But A(a∼p!1),A(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= R(a,b)

Rules
∆
= { R(a,b),R(a)→ R(a,b!1),R(a!1)}

R(a,b!2),R(a!2,b!1),R(a!1,b)∈ Speciesω
But R(a!1,b!1) 6∈ Speciesω.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Outline

• we have a syntactic criterion in order to ensure that the set of reachable
chemical species of a kappa system is local ;

• we now design program transformations to help systems satisfying this
criterion ;

1. decontextualization
-- is fully automatic;
-- preserves the transition system;
-- simplifies rules thanks to reachability analysis.

2. conjugation
-- manual;
-- preserves the set of reachable chemical species;
-- uses backtrack to add new rules.
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Example

Initial rule:

R2(l!2,r),R1(l!1,r),E2(r!1),E1(r!2)→ R2(l!3,r!1),R1(l!2,r!1),E2(r!2),E1(r!3)

Decontextualized rule:

R2(l!_,r),R1(l!_,r)→ R2(l!_,r!1),R1(l!_,r!1)

We can remove redundant tests.
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Example

Initial rules:

Sh(Y7∼p!2,pi!1),G(a!2,b),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b),R(Y48∼p!1)
Sh(Y7∼p!3,pi!1),G(a!3,b!2),So(d!2),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b!2),So(d!2),R(Y48∼p!1)

Sh(Y7∼p!1,pi),G(a!1,b) → Sh(Y7∼p,pi),G(a,b)
Sh(Y7∼p!1,pi),G(a!1,b!_) → Sh(Y7∼p,pi),G(a,b!_)

Decontextualized rule:

Sh(Y7!1),G(a!1)→ Sh(Y7),G(a)

We can remove exhaustive enumerations.
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How does it work ?

To remove a test, we prove that:

• this test is satisfied whenever the other tests are satisfied;

• or each complex that passes all tests but this one also matches with the
left hand side of another rule that performs the same action.

Jérôme Feret 79 Tuesday, the 25th of June, 2019



More formally

More formally:

• Each rule R is associated with the set S(R) of open chemical species
that can match its lhs;

• Rules are gathered in equivalence classes according to the actions they
perform;

• For each class [R], we compute:

G([R]) = ∪{S(R ′) | R ′ ∈ [R]}.

• For each class [R], Reach([R]) is an over approximation of the set of
open chemical species that may match the lhs of a rule R ′ ∈ [R].

A rule R may be decontextualized in a rule R ′ if:

S(R ′) ∩ Reach([R]) ⊆ G([R]).

Decontextualization is more efficient, if the reachability analysis is accurate.
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An undecontextualizable rule

Initial rule:

Sh(Y7∼u,pi!1),R(Y48∼p!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48∼p!1,r!_)

Decontextualized rule:

Sh(Y7∼u,pi!1),R(Y48!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48!1,r!_)
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Conjugation

If a rule R ′ is equivalent to a rule in the transitive closure of the system.
Then it may be included in the system without modifying reachable states.
To remove the context C of a rule, we try to apply it for another context C ′ by:

1. removing the context C ′ (backtrack) ;

2. building the context C ;

3. applying the initial rule ;

4. removing the context C (backtrack) ;

5. building the context C ′.

This is proved manually.
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Overview

1. Introduction

2. Language: Kappa

3. Abstraction: Local views

4. Completeness: false positives?

5. Local fragment of Kappa

6. Decontextualization

7. Conclusion
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Conclusion

• A scalable static analysis to abstract the reachable chemical species.

• A class of models for which the abstraction is complete.

• Many applications:

-- idiomatic description of reachable chemical species;
-- dead rule detection;
-- rule decontextualization;
-- computer-driven kinetic refinement.

• It can also help simulation algorithms:

-- wake up/inhibition map (agent-based simulation);
-- flat rule system generation (for bounded set of chemical species);
-- on the fly flat rule generation (for large/unbounded set)
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On the menu today

1. Context and motivations

2. Case studies

3. Reduction of ordinary differential equations

4. Abstraction of the information flow

5. Model reduction

6. Conclusion
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Intra-cellular signalling pathways

Eikuch, 2007
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Interaction maps

Oda et al, 2005
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Models of the behaviour of the system






dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x
2
3 − k2 · x4 +

v4·x5
p4+x5

− k3 · x4 − k−3 · x5
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3
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Bridge the gap between. . .






dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x
2
3 − k2 · x4 +

v4·x5
p4+x5

− k3 · x4 − k−3 · x5
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

knowledge
representation and

models of the
behaviour of systems
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Site-graphs rewriting

EGF r EGFRl

r

EGF r EGFRl

r

EGF r EGFRl

r

EGF r EGFRl

r

PSfrag replaements

k

• a language close to knowledge repre-
sentation;

• rules are easy to update;

• a compact description of models.
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Choices of semantics

EGF r EGFRl

r

EGF r EGFRl

r

EGF r EGFRl

r

EGF r EGFRl

r

PSfrag replaements

k

EGF

r

EGFR

l

rY68

Y48

ShC
piY7

Grb2

a

b Sosd

interaction
map

x

y1

y2

y3

z1

z2

z3

1/2

1/3

1

1

11/3

1/3

1/2

1/2

1/2

1/2

1/2

Markov chain






dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x
2
3 − k2 · x4 +

v4·x5
p4+x5

− k3 · x4 − k−3 · x5
dx5
dt

= · · ·

...
dxn
dt

= −k1 · x1 · c2 + k−1 · x3

ordinary differential equations
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Abstractions offer different perspectives
on models
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concrete semantics causal traces

EGF

r

EGFR

l

rY68

Y48

ShC
piY7

Grb2

a

b Sosd

information flow
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exact projection
of the ODE semantics
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Contact map
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Causal traces

Jérôme Feret 11 Tuesday, the 25th of June, 2019



ODE semantics
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Causal traces
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Combinatorial wall
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Information flow
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A potential breach
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Case study
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Case study

PSfrag replaements

kc

kdkd

kgkg
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Law of mass action
We consider that chemical species are elementary particles without any vol-
ume, and that they are diffusing in an infinite, perfectly fluid and homoge-
neous medium without borders.
Let X be a set of chemical species.
A reaction network is a set of reactions R.
Each reaction r is defined by:

1. αr, a function from X to N (the reactants);

2. βr, a function from X to N (the products);

3. kr, a non negative real number (the kinetic rate).

With these notations, the law of mass action defines the behaviour of the
concentration [X] of each chemical species X:

d[X]

dt
=

∑

r∈R

kr · (βr(X) − αr(X)) ·
∏

X ′∈X

[X ′]αr(X
′).
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Case study

PSfrag replaements

kc






d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(u,p,u)]

dt
= kc·[(u,u,u)]−kg·[(u, p, u)] − kd·[(u, p, u)]

d[(u, p, p)]

dt
=−kl·[(u, p, p)] + kr·[(u, p, u)]

d[(p, p, u)]

dt
=kl·[(u, p, u)] − kr·[(p, p, u)]

d[(p, p, p)]

dt
=kl·[(u, p, p)] + kr·[(p, p, u)]
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Case study

PSfrag replaements

kc

kdkd

kgkg






d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(u,p,u)]

dt
= −kg·[(u,p,u)] + kc·[(u,u,u)] − kd·[(u,p,u)]

d[(u,p,p)]

dt
= −kg·[(u,p,p)] + kd·[(u,p,u)]

d[(p,p,u)]

dt
= kg·[(u,p,u)] − kd·[(p,p,u)]

d[(p,p,p)]

dt
= kg·[(u,p,p)] + kd·[(p,p,u)]
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Case study
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Case study
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Case study

[(u,u,u)] = [(u,u,u)]

[(u,p,?)]
∆
= [(u,p,u)] + [(u,p,p)]

[(p,p,?)]
∆
= [(p,p,u)] + [(p,p,p)]






d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(u,p,?)]
dt

= −kg·[(u,p,?)] + kc·[(u,u,u)]
d[(p,p,?)]

dt
= kg·[(u,p,?)]

[(u,u,u)] = [(u,u,u)]

[(?,p,u)]
∆
= [(u,p,u)] + [(p,p,u)]

[(?,p,p)]
∆
= [(u,p,p)] + [(p,p,p)]






d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(?,p,u)]
dt

= −kd·[(?,p,u)] + kc·[(u,u,u)]
d[(?,p,p)]

dt
= kd·[(?,p,u)]
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What we have learned so far:

We can use the absence of information flow to detect
useless correlations between the states of sites in chem-
ical species. We can use this to cut chemical species
into fragments.

This transformation loses some information: we cannot
compute the concentration of each chemical species
anymore.
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2. Case studies
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4. Abstraction of the information flow
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Differential semantics

A system of ordinary differential equations is a pair (V,F) where:

• V is a finite set of variables,

• F is a continuous function from V → R
+ to V → R.

Elements of V → R
+ are called states.

The differential semantics maps each initial state X0 ∈ V → R
+ to the solution

XX0 ∈ [0, Tmax
X0

[→ (V → R
+) of the following equation:

XX0(T) = X0 +

∫ T

t=0

F(XX0(t))·dt.

that is defined over the widest time interval as possible.
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Back to the case study

1. V
∆
= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]},

2. F(ρ)
∆
=






[(u,u,u)] 7→ −kc·ρ([(u,u,u)])

[(u,p,u)] 7→ −kg·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kd·ρ([(u,p,u)])

[(u,p,p)] 7→ −kg·ρ([(u,p,p)]) + kd·ρ([(u,p,u)])

[(p,p,u)] 7→ kg·ρ([(u,p,u)]) − kd·ρ([(p,p,u)])

[(p,p,p)] 7→ kg·ρ([(u,p,p)]) + kd·ρ([(p,p,u)]).
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Abstraction
An abstraction is a 5-uple (V,F,V ♯, ψ,F♯), where:

• (V,F) is a system of ordinary equations,

• V ♯ is a finite set of observables,

• ψ is a function from the set V → R into the set V ♯ → R,

• F
♯ is a function C∞ from the set V ♯ → R

+ into the set V ♯ → R;
such that:

• ψ is linear with positive coefficients only and such that each variable
v ∈ V occurs in the image of at least one observable v♯ ∈ V ♯ with a non-
zero coefficient;

• the following diagram commutes:
(V → R

+)
F

−→ (V → R)

ψ





y





y

ψ

(V ♯ → R
+)

F
♯

−→ (V ♯ → R)

that is to say that ψ ◦ F = F
♯ ◦ψ.
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Back to the case study

1. V
∆
= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]}

2. F(ρ)
∆
=






[(u,u,u)] 7→ −kc·ρ([(u,u,u)])

[(u,p,u)] 7→ −kg·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kd·ρ([(u,p,u)])

[(u,p,p)] 7→ −kg·ρ([(u,p,p)]) + kd·ρ([(u,p,u)])

· · ·

3. V ♯ ∆= {[(u,u,u)], [(?,p,u)], [(?,p,p)], [(u,p,?)], [(p,p,?)]}

4. ψ(ρ)
∆
=






[(u,u,u)] 7→ ρ([(u,u,u)])

[(?,p,u)] 7→ ρ([(u,p,u)]) + ρ([(p,p,u)])

[(?,p,p)] 7→ ρ([(u,p,p)]) + ρ([(p,p,p)])

. . .

5. F
♯(ρ♯)

∆
=






[(u,u,u)] 7→ −kc·ρ
♯([(u,u,u)])

[(?,p,u)] 7→ −kd·ρ
♯([(?,p,u)]) + kc·ρ♯([(u,u,u)])

[(?,p,p)] 7→ kd·ρ
♯([(?,p,u)])

. . .
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Let us apply the abstraction function

Let:

1. (V,F,V ♯, ψ,F♯) be an abstraction,

2. and X0 ∈ V → R
+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T) = X0 +

∫ T

t=0

F(XX0(t))·dt.

So:

ψ(XX0(T)) = ψ

(

X0 +

∫ T

t=0

F(XX0(t))·dt

)

.
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Let us push ψ towards the right

Let:

1. (V,F,V ♯, ψ,F♯) be an abstraction,

2. and X0 ∈ V → R
+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T) = X0 +

∫ T

t=0

F(XX0(t))·dt.

So:

ψ(XX0(T)) = ψ(X0) +ψ

(∫ T

t=0

F(XX0(t))·dt

)

.
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Let us push ψ towards the right

Let:

1. (V,F,V ♯, ψ,F♯) be an abstraction,

2. and X0 ∈ V → R
+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T) = X0 +

∫ T

t=0

F(XX0(t))·dt.

So:

ψ(XX0(T)) = ψ(X0) +

∫ T

t=0

[ψ ◦ F](XX0(t))·dt.
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Let us push ψ towards the right

Let:

1. (V,F,V ♯, ψ,F♯) be an abstraction,

2. and X0 ∈ V → R
+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T) = X0 +

∫ T

t=0

F(XX0(t))·dt.

So:

ψ(XX0(T)) = ψ(X0) +

∫ T

t=0

[F♯ ◦ψ](XX0(t))·dt.
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Let us push ψ towards the right

Let:

1. (V,F,V ♯, ψ,F♯) be an abstraction,

2. and X0 ∈ V → R
+ be an initial state.

We have, at any time T within the time interval [0, Tmax
X0

[:

XX0(T) = X0 +

∫ T

t=0

F(XX0(t))·dt.

So:

ψ(XX0(T)) = ψ(X0) +

∫ T

t=0

F
♯(ψ(XX0(t)))·dt.
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Abstract semantics

Let (V,F,V ♯, ψ,F♯) be an abstraction.
The couple (V ♯,F♯) is a system of differential equations.
Let us denote by Y its semantics.
For each state Y0 ∈ V ♯ → R

+, we denote by [0, T ♯max
Y0

[ the domain of the func-
tion YY0. We have, at any time T ♯ ∈ [0, T ♯max

X0
[,

YY0(T
♯) = Y0 +

∫ T ♯

t=0

F
♯(YY0(t))·dt.

Theorem 1 For each initial state X0 ∈ V → R
+, we have:

1. T ♯max
ψ(X0)

= Tmax
X0

;

2. at any time T ∈ [0, Tmax
X0

[, ψ(XX0(T)) = Yψ(X0)(T).

That is to say that the abstract semantics is the image of the concrete se-
mantics by the abstraction function.
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Abstract trajectories

t

Y(t)
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Concrete trajectories

t

Y(t)

X(t)
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Concrete semantics

A rule is a symbolic representation of a multi-set of reactions.

For instance, the rule:

PSfrag replaements

kd

denotes the following two rules:

PSfrag replaements

kd

PSfrag replaements

kd

The semantics of a set of rules is the semantics of the underlying multi-set of
reactions.
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Flow of information (in the concrete)

Does the state of a given site influence the capability to modify another site?
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l

r
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Flow of information (in the concrete)
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Flow of information (in the concrete)

If there exists a soup of chemical species in which the activation rate of the
site of ShC is different in these two contexts, then there may be a flow of
information.

EGF

r

EGFR

l

r

Y68

Y48

EGF

r

EGFR

l

r Y68

Y48

ShC

pi

Y7

EGF

r

EGFR

l

r Y68

Y48

ShC

pi

Y7

Jérôme Feret 35 Tuesday, the 25th of June, 2019



Discrimination by a rule
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In this case, there exists a rule which makes a difference between these two
contexts, for instance the following one:

ShCY7 pi EGFRY48 r ShCY7 pi EGFRY48 r
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Flow of information due to a rule
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Flow of information due to a rule
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Flow of information due to a rule
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Flow of information due to a rule
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Flow of information due to a rule

ShC

Y7

pi

EGFR

r

Y48

ShC

Y7

pi

EGFR

r

Y48

EGF

r

EGFR

l

r

Y68

Y48

EGF

r

EGFR

l

r

Y68

Y48

ShC

pi

Y7

ShC

pi

Y7

Grb2 ab

Grb2

a

b

Sos d

Jérôme Feret 37 Tuesday, the 25th of June, 2019



Projection on the contact map
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Projection on the contact map
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Projection on the contact map
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Projection on the contact map
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Projection on the contact map
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Direct computation
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Direct computation
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Which patterns shall we keep?
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Which patterns shall we keep?
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Pattern annotation
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Pattern annotation
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Prefragment
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Definition 1 (prefragment) A pattern is a prefragment
if, in its annotated form, there exists a site that it is
reachable from every site (following the flow of informa-
tion).
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Fragments
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Definition 2 (fragment) A fragment is a prefragment that
cannot be embedded in any bigger prefragment. lah-
baldsjfljs dfljd fls j dslj fsl fds
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Examples
Which patterns are fragments?
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Examples : annotated map
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Examples : pattern annotation
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Examples
Which patterns are prefragments?

EGF

r

EGFR

l

rY48

EGF

r

EGFR

l

r

EGF

r

EGFR

l

rY48

EGF

r

EGFR

l

r

Y68

EGF

r

EGFR

l

r

EGF

r

EGFR

l

r

EGF

r

EGFR

l

r

Y68

EGF

r

EGFR

l

r

Jérôme Feret 46 Tuesday, the 25th of June, 2019



Examples
Prefragments
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Examples
Which patterns are fragments?
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Examples
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Fragments
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Examples : fragments
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Almost done. . .

We are left to express the consumption and the produc-
tion (in concentration) of each fragment as expressions
of the concentration of fragments.

Firstly, we notice that the concentration of each prefrag-
ment can be expressed as a linear combination of the
concentration of the fragments.
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Fragments consumption

ShCY7 pi EGFRY48 r ShCY7 pi EGFRY48 r

ShCY7 pi EGFRY48

l

Whenever there is an overlap between a fragment and a connected compo-
nent in the left hand side of a rule such that the common region contains a
site that is modified by the rule, then the connected component embeds in
the fragement.
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Fragments consumption
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nent in the left hand side of a rule such that the common region contains a
site that is modified by the rule, then the connected component embeds in
the fragement.
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Fragments consumption

ShCY7 pi EGFRY48 r ShCY7 pi EGFRY48 r

ShCY7 pi EGFRY48

l

r

For each fragment F, for each rule:

r : C1, . . . , Cn → rhs k

and for each occurrence of a connected component Cj that is modified by the
rule, in a the fragment F, we have the following contribution:

d[F]

dt

−
=

k · [F] ·
∏

i 6=j [Ci]

SYM[C1, . . . , Cn] · SYM[F]
.
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Fragments production

ShCY7 pi EGFRY48 r ShCY7 pi EGFRY48 r

ShCY7 pi EGFR

l

Y48

Whenever there is an overlap between a fragment and the right hand side of
a rule, such that the common region contains a site that is modified by the
rule. . .
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Fragments production

ShCY7 pi EGFRY48 r ShCY7 pi EGFRY48 r
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Whenever there is an overlap between a fragment and the right hand side of
a rule, such that the common region contains a site that is modified by the
rule. . .
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Fragments production

ShCY7 pi EGFRY48 r ShCY7 pi EGFRY48 r

ShCY7 pi EGFR

l

Y48

ll

Whenever there is an overlap between a fragment and the right hand side
of a rule such that the common region contains a site that is modified by the
rule, each connected component in the left hand side of the refined rule, is a
prefragment.
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Fragment production

For each overlap ch between a fragment and the right hand side of a rule,
such that the common region contains a site that is modified by the rule:

r : C1, . . . , Cm → rigth hand side k,

we have the following contribution:

d[F]

dt

+
=

k ·
∏

i

[

C ′
i

]

SYM[C1, . . . , Cm] · SYM[F]
.

where C ′
1, . . . , C

′
n is the left hand side of the refined rule.
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On the menu today

1. Context and motivations

2. Case studies

3. Reduction of ordinary differential equations

4. Abstraction of the information flow

5. Model reduction

6. Conclusion
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Benchmark

Model early EGF EGF/Insulin SFB

Number of mollecular species 356 2899 ∼ 2.1019

Number of fragments
38 208 ∼ 2.105

(ODEs semantics)

Number of fragments
356 618 ∼ 2.1019

(CTMC semantics)
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In short
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Abstraction of the information flow
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Abstraction of the information flow
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Patterns of interest
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Patterns of interest
EGF

r

EGFR

l

rY48

EGF

r

EGFR

l

r

EGF

r

EGFR

l

rY48

EGF

r

EGFR

l

r

Y68

EGF

r

EGFR

l

r

EGF

r

EGFR

l

r

EGF

r

EGFR

l

r

Y68

EGF

r

EGFR

l

r

EGF

r

EGFR

l

rY68

Y48

ShC
piY7

Grb2

a

b Sosd

Jérôme Feret 62 Tuesday, the 25th of June, 2019



Related topics and acknowledgements

• Model reduction (ODEs semantics)
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• Context-sensitive abstraction of information flow
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Tatjana Petrov, Heinz Koeppl, Tom Henzinger
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