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Two Lectures

Formal Methods for Systems Biology WB\O\N"‘
1. Introduction to Chemical Reaction Networks (CRNSs) mtob\l“d‘“d“‘
ID enzymatic Lotka-Volterra oscillator CRN models 7

2. Continuous semantics by ordinary differential equations
TD enzyme kinetics

3. Formal behaviours in temporal logics and model-checking
TD robustness and parameter search

The Cell: a Chemical Analog Computer .
Blology:
1. Turing completeness of continuous CRNs W w\mcRN"‘

ram
TD synthesis of oscillators and switches MWP‘“’
2. Logical circuits for diagnosis
TD doctor in the cell
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Biochemical Kinetics

Study of the concentration of chemical substances as a function of time.

Molecular species: A, ,..., A,
|A|=Number of molecules A
[A]= |A| / Volume (e.g. unit ML-') Concentration of A in the solution
noted also A by abuse of notation

Molecular solutions: S, S’, ...:
multiset of molecules

linear expression with stoichiometric coefficients: ¢, *A, +...+ ¢, ™ A,

Reactions given with rate functions: f for S => &’
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Mass Action Law Kinetics

Assumption: infinite diffusion speed, dilute solutions, low concentrations

Law: The number of reactions per time unit is proportional to the number of
reactant molecules present in the solution

The rate of a reaction A + B => C is k*[A]*[B] for some reaction rate constant k

Continuous semantics: the time evolution of concentrations obeys the ODE
dA/dt=-kAB dB/dt=-kAB dC/dt=kAB
Stochastic semantics: SSA with same assumption of perfect diffusion
 infinite diffusion speed
Multi-agent semantics: simulation of diffusion
« finite diffusion speed for macromolecules
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Interpretation of Rate Constants

Complexation rate constant: probability of reaction upon collision
specificity, affinity, position of matching surfaces and energy of bonds

Decomplexation rate constant: total energy of the bonds

Diffusion speeds:
small molecules > substrates > enzymes
cells are 10-100um long, full of compartments
average travel in one random walk for one enzyme:
1 umin 1s, 2umin 4s, 10umin 100s

500000 random collisions per second with a substrate concentration of 10-°

50000 random collisions per second with a substrate concentration of 10-6
Possibility of fast computations compared to DNA computation
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Reaction Rate Functions

Mass action law kinetics ~ Guldberg and Waage, 1864

k*AforA=>B
k*A*B for A+B => C b o
K*A*m*B”n for m*A + n*B => R N

Henri-Michaelis-Menten kinetics
Vm*A/(Km+A) for A=>B

Henry 1903, Michaelis and Menten 1913

Hill kinetics
Vm*A*n/(Km+A”n) for A =>B

Archibald Hill 1910

Origin and justification of these other rate functions?
come from reductions of mass action law CRNs

”
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Continuous Semantics of a CRN

To a set of reactions { f; for S, => S, }_,  given with rate functions f,

.....

one associates the Ordinary Differential Equations (ODE) over {A,,..., A/}
dA/dt = 2" (r(A)- (AY) *fi = 2"y m(A) *f
where [(A) is the stoichiometric coefficient of A in S,

r(A) is the stoichiometric coefficient of A in S’,
m=r; — |, is the net stoichiometric vector of reaction i

In matrix form: x = M. f(x)

Solution x(t) by numerical integration
Steady states: concentrations x such that M. f(x) = 0 non-linear problem
Elementary modes: fluxes v such that M.v = 0 linear problem

”
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Numerical Integration Methods

dX/dt = f(X) with initial conditions X,

|dea: discretize time t,, t,=t,+At, t,=t,+At, ... and compute a trace
(to, Xo), (t1,X ) o (G Xn)- -

Forward Eulers method: t,,=t+ At X, =X+{(X;)*At
estimation error(X, . )=|f(X,)-f(Xi, )| " At

Midpoint method (Runge-Kutta): intermediate computation at At/2
Adaptive step size: At, = At/2 while error>error,,,,, otherwise At = 2*At,
Implicit method (Rosenbrock): solve X, ,=X+f(X.,4)*At by root finding

Biocham-3: Rosenbrock method implemented in Prolog

Biocham-4: GSL library with implicit method by default,

not as good as Biocham-3 = back to Biocham-3 implementation

+ Events: hybrid systems (both continuous ODE and discrete event transitions)
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Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:
E+S >¢1 C 2B E+P
E+S <2 C

Mass action law kinetics ODE:
dE/dt =
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Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:
E+S ¢ C > E+P
E+S <2 C
Mass action law kinetics ODE:
dE/dt = -c,ES+(c,+c;)C
dS/dt = -c,ES+c,C
dC/dt = ¢,ES-(c;+c,)C
dP/dt = c;C
Two conservation laws (i.e. species s.t. 2"._;Mi = constant since £"._, dMi/dt = 0):
E+C=constant=E,+C,, S+C+P=constant=S,+C,+P,,
we can eliminate E and P and get the equivalent parametric system
dS/dt = -c,(E,+C,-C)S+c,C
dC/dt = c,(Ey+C,)S-(c4S+c,+c;)C we shall further assume C,=0, P,=0
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Slow/Fast Time Scales

Hydrolysis of benzoyl-L-arginine ethyl ester by trypsin (protein of 247 amino acids)
present(E,1e-8). present(S,1e-5). E<< S

parameter(c1=4e6, c2=25, c3=15). c1>>c2 c3

C1"E*SforE+S=>C. c2"CforC=>E+S. ¢3*C for C => E+P.

Complex formation 5e-9 in 0.1s Product formation 1e-5 in 400s
4.000e-9 - 7 _p —P
2.000e-9 ] —E 0e6 7 —E
] —C ) —C
0.000e+0 — 7040 ] —S
0 0.05 7?’;16 0.15 0.2 _—
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Assume dC/dt=0...

Slightly different early trajectory in 0.1s

Michaelis Menten Reduction

Vm*S/(Km+S) for S => P.
parameter(EO=1e-8).
function(Vm=c2*EO0).

function(Km= (c2+c3)/c1).

-

6.000e-9
4.000e-9 —P
—E
1 —C
2.000e-9 |
.000e+0
............................
0 0.02 0.04 0.06 0.08 0.1

Same trajectory in 400 s
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TD2: Enzyme Kinetics

BIOCHAM-4: version online http://lifeware.inria.fr/biocham4/online/

Michaelis-Menten enzymatic reaction CRN

« CRN of 3 reactions with mass action law kinetics
» Real parameter values for the hydrolysis of benzoyl-L-arginine ethyl ester by trypsin (protein of 247 amino acids)

In [1]: present(E,z). parameter(z=le-8).
present(S,s). parameter(s=le-5).
absent (C).
absent (P).

In [2]: parameter(kl=4e6, k2=25, k3=15).

In [3]: k1*E*S for E+S => C.
k2*C for C => E+S.
k3*C for C => E+P.
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Quasi-Steady State Approximation (QSSA)

Vmax

Assume quasi-steady state dC/dt ~ 0 =~ ¢,E;S-(c,S+c,+c;)C

Then C = ¢c,E;S/(c,S+c,+Cy)
= EpS/(K,+S)

where K. =(c,+c3)/c, .

Substrate concentration with half maximum velocity

Vmax/2

Reaction velocity v

Substrate concentration [S]

We get dP/dt = -dS/dt = -c,(E,+C(,-C)S+c,C
=V, S/ (K,+S) where V_= c;E,
maximum velocity at saturing substrate concentration

Michaelis-Menten kinetics: v,S /(K +S) for S => P

C and E are eliminated but sometimes E is re-injected as a variable...
c;*E*S /(K +S) for S+E => E+P
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(Weak) Justification by
Preservation of Time Scales

“Time taken for a significant change”

Time scale of f(t) =L T _fmin

lae

Time scale of C(t) = e—8  _1

48_8/0.01 80 0.000000004 /
Formally, suppose S(t)=S, we get =

dC/dt - C1(EO+CO)SO = (C1 SO+CZ+CB) C “‘(”mm”m“/}o_oo 0.02 0.04 0.06 0.08 0.10
C(t) = (Cy-C) ekt + C where k= ¢;Sy+c,+C5 and C = (Eq+Cy)So/ (K +S,)

|max

0.000000006

Taking k' as time scale of e*t(i.e. decrease of e'=1/3 in k! time)
gives in the Trypsin example 1/(10-°.4.100+25+15)=1/80 =0.0125s
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Validity Condition of QSSA

When the time scale of S is much longer than the time scale of C...
S varies from S, t0 0

| dS/dt = -c,(E,-C)S+ ¢,C | is maximal when S=5,, C=C,

Time scale of S = 1/(c4Ey)

In the Trypsin example 1/(4.10°. 10-8)=25s

Validity condition: c,E, << k = ¢,S,+c,+c; (e.g. Trypsin: 4.10-2<<80)
l.e. QSSA valid when Ej << Sy+K |

in particular when E;<<S, [Briggs and Haldane 1925]

Better justification by approximation in all time points [Tikhonov theorem]
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Quasi-Equilibrium Approximation (QE)

Assume reaction equilibrium c,ES=c,C (fast complexation/decomplexation cycle)
From E=E,-C we get ¢,E;S-¢c,CS =¢,C E+S 2¢1 C >SE+P c3<<c2
C = c¢4E;S/(c,+c,S) E+S <2 C
C = ES/(Kyt+S)
where K =c,/c,
Substrate concentration with half maximum velocity

Hence dP/dt = -dS/dt =V S/ (K;+S)
where V = c;3E,
maximum velocity at saturing substrate concentration

Michaelis-Menten quasi-equilibrium kinetics: v_.S / (Ky+S) for S => P
justified when complex equilibrium reached on a fast time scale c;/c, <<1
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Conclusion

Michaelis-Menten kinetics, Hill kinetics of order n and more general kinetics
come from reductions of elementary CRNs with Mass Action law kinetics

QSS approximation: projection on slow dynamics variables
— fast dynamics species E, C act as slaves of slow species S

QE approximation: elimination of fast reaction equilibria

The slow/fast separation of the CRN dynamics may change over time
— resulting in a hybrid automaton of piece-wise reduced CRNs
— helps to understand the CRN dynamics

Using Michaelis-Menten kinetics in a CRN may be not justified (and wrong)

”
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