Méthodes Formelles pour la Biologie des Systèmes

Two Lectures

Formal Methods for Systems Biology

- 1. Introduction to Chemical Reaction Networks (CRNs) *TD enzymatic Lotka-Volterra oscillator*
- 2. Continuous semantics by ordinary differential equations *TD enzyme kinetics*
- 3. Formal behaviours in temporal logics and model-checking *TD robustness and parameter search*

The Cell: a Chemical Analog Computer

- 1. Turing completeness of continuous CRNs TD synthesis of oscillators and switches
- 2. Logical circuits for diagnosis TD doctor in the cell

Synthetic Biology: How to program with CRNs ?

stems Biology:

CRN mode

ild and validate

Biochemical Kinetics

Study of the concentration of chemical substances as a function of time.

Molecular species: A₁,..., A_m

|A|=Number of molecules A
 [A]= |A| / Volume (e.g. unit ML⁻¹) Concentration of A in the solution noted also A by abuse of notation

Molecular solutions: S, S', ...:

multiset of molecules linear expression with stoichiometric coefficients: $c_1 * A_1 + ... + c_n * A_n$

Reactions given with rate functions: f for S => S'

Mass Action Law Kinetics

Assumption: infinite diffusion speed, dilute solutions, low concentrations

Law: The number of reactions per time unit is proportional to the number of reactant molecules present in the solution

The rate of a reaction **A** + **B** => **C** is **k***[**A**]*[**B**] for some reaction rate constant k

Continuous semantics: the time evolution of concentrations obeys the ODE

dA/dt = -k A B dB/dt = -k A B dC/dt = k A B

Stochastic semantics: SSA with same assumption of perfect diffusion

• infinite diffusion speed

Multi-agent semantics: simulation of diffusion

• finite diffusion speed for macromolecules

Interpretation of Rate Constants

<u>Complexation rate constant</u>: *probability of reaction upon collision* specificity, affinity, position of matching surfaces and energy of bonds

Decomplexation rate constant: total energy of the bonds

Diffusion speeds:

small molecules > substrates > enzymes cells are 10-100µm long, full of compartments average travel in one random walk for one enzyme: 1 µm in 1s, 2µm in 4s, 10µm in 100s

500000 random collisions per second with a substrate concentration of 10⁻⁵ 50000 random collisions per second with a substrate concentration of 10⁻⁶ *Possibility of fast computations compared to DNA computation*

Reaction Rate Functions

Mass action law kinetics k*A for A => B k*A*B for A+B => C k*A^m*B^n for m*A + n*B => R

Guldberg and Waage, 1864

Henry 1903,

Michaelis and Menten 1913

Henri-Michaelis-Menten kinetics Vm*A/(Km+A) for A => B

Hill kinetics Vm*A^n/(Km+A^n) for A => B

Archibald Hill 1910

Origin and justification of these other rate functions? come from reductions of mass action law CRNs

Bioregul 2019

François Fages

Continuous Semantics of a CRN

To a set of reactions { f_i for $S_i => S'_i$ }_{i=1,...,n} given with rate functions f_i

one associates the Ordinary Differential Equations (ODE) over {A₁,..., A_k} $\frac{dA_k}{dt} = \sum_{i=1}^{n} (r_i(A_k) - I_i(A_k)) * f_i = \sum_{i=1}^{n} m_i(A_k) * f_i$ where $I_i(A)$ is the stoichiometric coefficient of A in S_i $r_i(A)$ is the stoichiometric coefficient of A in S'_i $m_i = r_i - I_i$ is the net stoichiometric vector of reaction i

In matrix form: $\dot{x} = M.f(x)$

Solution x(t) by numerical integration Steady states: concentrations x such that M.f(x) = 0 non-linear problem Elementary modes: fluxes v such that M.v = 0 linear problem

Bioregul 2019

Numerical Integration Methods

dX/dt = f(X) with initial conditions X_0

Idea: discretize time t_0 , $t_1=t_0+\Delta t$, $t_2=t_1+\Delta t$, ... and compute a trace (t_0,X_0) , (t_1,X_1) , ..., (t_n,X_n) ...

Forward *Euler*'s method: t_{i+1}=t_i+ Δt X_{i+1}=X_i+f(X_i)*Δt estimation error(X_{i+1})=|f(X_i)-f(X_{i+1})]*Δt
Midpoint method (*Runge-Kutta*): intermediate computation at Δt/2
Adaptive step size: Δt_{i+1}= Δt_i/2 while error>error_{max}, otherwise Δt_{i+1}= 2*Δt_i
Implicit method (*Rosenbrock*): solve X_{i+1}=X_i+f(X_{i+1})*Δt by root finding
Biocham-3: Rosenbrock method implemented in Prolog
Biocham-4: GSL library with implicit method by default, not as good as Biocham-3 → back to Biocham-3 implementation
+ Events: hybrid systems (both continuous ODE and discrete event transitions)

An enzyme E binds to a substrate S to catalyze the formation of product P: $E+S \rightarrow^{c1} C \rightarrow^{c3} E+P$ $E+S \leftarrow^{c2} C$ Mass action law kinetics ODE:

dE/dt =

An enzyme E binds to a substrate S to catalyze the formation of product P: E+S \rightarrow^{c1} C \rightarrow^{c3} E+P E+S \leftarrow^{c2} C

Mass action law kinetics ODE:

 $dE/dt = -c_1ES + (c_2 + c_3)C$ dS/dt =

An enzyme E binds to a substrate S to catalyze the formation of product P: E+S \rightarrow^{c1} C \rightarrow^{c3} E+P E+S \leftarrow^{c2} C

Mass action law kinetics ODE:

 $dE/dt = -c_1ES+(c_2+c_3)C$ $dS/dt = -c_1ES+c_2C$ dC/dt =

An enzyme E binds to a substrate S to catalyze the formation of product P: $E+S \rightarrow^{c1} C \rightarrow^{c3} E+P$ $E+S \leftarrow^{c2} C$

Mass action law kinetics ODE:

 $dE/dt = -c_1ES+(c_2+c_3)C$ $dS/dt = -c_1ES+c_2C$ $dC/dt = c_1ES-(c_3+c_2)C$ dP/dt =

An enzyme E binds to a substrate S to catalyze the formation of product P: $E+S \rightarrow^{c1} C \rightarrow^{c3} E+P$ $E+S \leftarrow^{c2} C$

Mass action law kinetics ODE:

 $dE/dt = -c_1ES+(c_2+c_3)C$ $dS/dt = -c_1ES+c_2C$ $dC/dt = c_1ES-(c_3+c_2)C$ $dP/dt = c_3C$

Two conservation laws (i.e. species s.t. $\sum_{i=1}^{n} Mi = constant$ since $\sum_{i=1}^{n} dMi/dt = 0$):

An enzyme E binds to a substrate S to catalyze the formation of product P: E+S \rightarrow^{c1} C \rightarrow^{c3} E+P

E+S ←^{c2} C

Mass action law kinetics ODE:

 $dE/dt = -c_1ES+(c_2+c_3)C$ $dS/dt = -c_1ES+c_2C$ $dC/dt = c_1ES-(c_3+c_2)C$ $dP/dt = c_3C$

Two conservation laws (i.e. species s.t. $\sum_{i=1}^{n} Mi = constant$ since $\sum_{i=1}^{n} dMi/dt = 0$):

 $E+C=constant=E_0+C_0$, $S+C+P=constant=S_0+C_0+P_0$,

we can eliminate E and P and get the equivalent parametric system

 $dS/dt = -c_1(E_0 + C_0 - C)S + c_2C$

 $dC/dt = c_1(E_0+C_0)S-(c_1S+c_2+c_3)C$

we shall further assume $C_0=0$, $P_0=0$

Slow/Fast Time Scales

Hydrolysis of benzoyl-L-arginine ethyl ester by trypsin (protein of 247 amino acids) present(E,1e-8). present(S,1e-5). E << Sparameter(c1=4e6, c2=25, c3=15). c1 >> c2, c3c1*E*S for E+S => C. c2*C for C => E+S . c3*C for C => E+P.

Complex formation 5e-9 in 0.1s

Product formation 1e-5 in 400s

Michaelis Menten Reduction

Assume dC/dt=0...

Vm*S/(Km+S) for S => P. parameter(E0=1e-8). function(Vm=c2*E0). function(Km= (c2+c3)/c1).

Slightly different early trajectory in 0.1s

Same trajectory in 400 s

TD2: Enzyme Kinetics

BIOCHAM-4: version online http://lifeware.inria.fr/biocham4/online/

Michaelis-Menten enzymatic reaction CRN

- · CRN of 3 reactions with mass action law kinetics
- Real parameter values for the hydrolysis of benzoyl-L-arginine ethyl ester by trypsin (protein of 247 amino acids)

```
In [1]: present(E,z). parameter(z=1e-8).
present(S,s). parameter(s=1e-5).
absent(C).
absent(P).
```

```
In [2]: parameter(k1=4e6, k2=25, k3=15).
```

In [3]: k1*E*S for E+S => C.
 k2*C for C => E+S.
 k3*C for C => E+P.

Quasi-Steady State Approximation (QSSA)

<u>Assume quasi-steady state</u> $dC/dt \simeq 0 \simeq c_1 E_0 S - (c_1 S + c_2 + c_3)C$

Then C = $c_1E_0S/(c_1S+c_2+c_3)$ = $E_0S/(K_m+S)$ where $K_m=(c_2+c_3)/c_1$ substrate concentration with half maximum velocity

Substrate concentration [S]

We get $dP/dt = -dS/dt = -c_1(E_0+C_0-C)S+c_2C$ = V_mS / (K_m+S) where V_m= c₃E₀ maximum velocity at saturing substrate concentration

<u>Michaelis-Menten kinetics</u>: $V_m S / (K_m + S)$ for S => PC and E are eliminated but sometimes E is re-injected as a variable... $c_3 * E * S / (K_m + S)$ for S + E => E + P

(Weak) Justification by Preservation of Time Scales

Taking k⁻¹ as time scale of e^{-kt} (i.e. decrease of e⁻¹ \approx 1/3 in k⁻¹ time) gives in the Trypsin example 1/(10⁻⁵.4.10⁶+25+15)=1/80 =0.0125s

Validity Condition of QSSA

When the time scale of S is much longer than the time scale of C... S varies from S₀ to 0 $| dS/dt = -c_1(E_0-C)S + c_2C |$ is maximal when S=S₀, C=C₀ Time scale of S $\approx 1/(c_1E_0)$

In the Trypsin example 1/(4.10⁶. 10⁻⁸)≈25s

Validity condition: $c_1E_0 \ll k = c_1S_0+c_2+c_3$ (e.g. Trypsin: 4.10⁻² << 80) i.e. QSSA valid when $E_0 \ll S_0+K_m$

in particular when $E_0 << S_0$ [Briggs and Haldane 1925]

Better justification by approximation in all time points [Tikhonov theorem]

Bioregul 2019

Quasi-Equilibrium Approximation (QE)

Assume reaction equilibrium $c_1ES \approx c_2C$ (fast complexation/decomplexation cycle)From $E=E_0$ -C we get $c_1E_0S-c_1CS = c_2C$ $E+S \rightarrow c^1 C \rightarrow c^3 E+P$ $c_3 < < c_2$ $C = c_1E_0S/(c_2+c_1S)$ $E+S \leftarrow c^2 C$ $E+S \leftarrow c^2 C$ $C = E_0S/(K_d+S)$ where $K_d=c_2/c_1$ substrate concentration with half maximum velocity

```
Hence dP/dt = -dS/dt = V_mS / (K_d+S)
where V_m = c_3 E_0
maximum velocity at saturing substrate concentration
```

<u>Michaelis-Menten quasi-equilibrium kinetics</u>: $V_m S / (K_d+S)$ for S => Pjustified when complex equilibrium reached on a fast time scale $c_3/c_2 <<1$

Conclusion

Michaelis-Menten kinetics, Hill kinetics of order *n* and more general kinetics come from reductions of elementary CRNs with Mass Action law kinetics

QSS approximation: projection on slow dynamics variables

fast dynamics species E, C act as slaves of slow species S

QE approximation: elimination of fast reaction equilibria

The slow/fast separation of the CRN dynamics may change over time

- resulting in a hybrid automaton of piece-wise reduced CRNs
- helps to understand the CRN dynamics

Using Michaelis-Menten kinetics in a CRN may be not justified (and wrong)

