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Two Lectures

Formal Methods for Systems Biology
1. Introduction to Chemical Reaction Networks (CRNs)

TD enzymatic Lotka-Volterra oscillator
2. Continuous semantics by ordinary differential equations

TD enzyme kinetics
3. Formal behaviours in temporal logics and model-checking

TD robustness and parameter search

The Cell: a Chemical Analog Computer
1. Turing completeness of continuous CRNs

TD synthesis of oscillators and switches
2. Logical circuits for diagnosis

TD doctor in the cell
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Biochemical Kinetics

Study of the concentration of chemical substances as a function of time.

Molecular species: A1 ,…, Am

|A|=Number of molecules A
[A]= |A| / Volume  (e.g. unit ML-1) Concentration of A in the solution 

noted also A by abuse of notation

Molecular solutions: S, S’, …: 
multiset of molecules
linear expression with stoichiometric coefficients: c1 *A1 +…+ cn * An

Reactions given with rate functions: f for S => S’
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Mass Action Law Kinetics

Assumption: infinite diffusion speed, dilute solutions, low concentrations

Law: The number of reactions per time unit is proportional to the number of 
reactant molecules present in the solution

The rate of a reaction A + B => C is k*[A]*[B] for some reaction rate constant k

Continuous semantics: the time evolution of concentrations obeys the ODE
dA/dt = -k A B      dB/dt = -k A B      dC/dt = k A B 

Stochastic semantics: SSA with same assumption of perfect diffusion 
• infinite diffusion speed 

Multi-agent semantics: simulation of diffusion
• finite diffusion speed for macromolecules
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Interpretation of Rate Constants

Complexation rate constant: probability of reaction upon collision
specificity, affinity, position of matching surfaces and energy of bonds

Decomplexation rate constant: total energy of the bonds

Diffusion speeds:
small molecules > substrates > enzymes
cells are 10-100μm long, full of compartments
average travel in one random walk for one enzyme: 

1 μm in 1s, 2μm in 4s, 10μm in 100s
500000 random collisions per second with a substrate concentration of 10-5 

50000 random collisions per second with a substrate concentration of 10-6

Possibility of fast computations compared to DNA computation



Bioregul 2019 François	Fages

Reaction Rate Functions

Mass action law kinetics
k*A for A => B
k*A*B for A+B => C
k*A^m*B^n for m*A + n*B => R

Henri-Michaelis-Menten kinetics
Vm*A/(Km+A) for A => B

Hill kinetics
Vm*A^n/(Km+A^n) for A => B

Origin and justification of these other rate functions?
come from reductions of mass action law CRNs 

Guldberg and Waage, 1864

Henry 1903,                   Michaelis and Menten 1913

Archibald Hill 1910
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Continuous Semantics of a CRN

To a set of reactions { fi for  Si  => S’i }i=1,…,n given with rate functions fi

one associates the Ordinary Differential Equations (ODE) over {A1 ,…, Ak}
dAk/dt = Σn

i=1 ( ri(Ak) - li(Ak) ) * fi =   Σn
i=1 mi(Ak) * fi

where li(A)      is the stoichiometric coefficient of A in Si

ri(A) is the stoichiometric coefficient of A in S’i
mi=ri – li is the net stoichiometric vector of reaction i

In matrix form: 𝑥̇ = 𝑀. 𝑓(𝑥)

Solution x(t) by numerical integration
Steady states: concentrations x such that 𝑀. 𝑓(𝑥) = 0	non-linear problem
Elementary modes: fluxes v such that 𝑀. 𝑣 = 0	linear problem
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Numerical Integration Methods
dX/dt = f(X) with initial conditions X0

Idea: discretize time t0, t1=t0+Δt, t2=t1+Δt, … and compute a trace 
(t0,X0), (t1,X1), …, (tn,Xn)…

Forward Euler’s method: ti+1=ti+ Δt     Xi+1=Xi+f(Xi)*Δt
estimation error(Xi+1)=|f(Xi)-f(Xi+1)|*Δt

Midpoint method (Runge-Kutta): intermediate computation at Δt/2
Adaptive step size: Δti+1= Δti/2 while error>errormax, otherwise Δti+1= 2*Δti
Implicit method (Rosenbrock): solve Xi+1=Xi+f(Xi+1)*Δt by root finding

Biocham-3: Rosenbrock method implemented in Prolog
Biocham-4: GSL library with implicit method by default, 

not as good as Biocham-3 à back to Biocham-3 implementation
+ Events: hybrid systems (both continuous ODE and discrete event transitions)
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Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:
E+S àc1 C àc3 E+P
E+S ßc2 C

Mass action law kinetics ODE:
dE/dt =



Bioregul 2019 François	Fages

Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:
E+S àc1 C àc3 E+P
E+S ßc2 C

Mass action law kinetics ODE:
dE/dt = -c1ES+(c2+c3)C
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Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:
E+S àc1 C àc3 E+P
E+S ßc2 C

Mass action law kinetics ODE:
dE/dt = -c1ES+(c2+c3)C
dS/dt = -c1ES+c2C
dC/dt = c1ES-(c3+c2)C
dP/dt = c3C

Two conservation laws (i.e. species s.t. Σn
i=1Mi = constant since Σn

i=1 dMi/dt = 0):
E+C=constant=E0+C0,    S+C+P=constant=S0+C0+P0,

we can eliminate E and P and get the equivalent parametric system
dS/dt = -c1(E0+C0-C)S+c2C
dC/dt = c1(E0+C0)S-(c1S+c2+c3)C we shall further assume C0=0, P0=0
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Slow/Fast Time Scales
Hydrolysis of benzoyl-L-arginine ethyl ester by trypsin (protein of 247 amino acids)
present(E,1e-8). present(S,1e-5).  E << S
parameter(c1=4e6, c2=25, c3=15).   c1 >> c2, c3
c1*E*S for E+S => C.    c2*C for C => E+S .      c3*C  for C => E+P.

Complex formation 5e-9 in 0.1s                  Product formation 1e-5 in 400s
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Michaelis Menten Reduction
Assume dC/dt=0… Vm*S/(Km+S)  for S => P.           

parameter(E0=1e-8).    
function(Vm=c2*E0).   

function(Km= (c2+c3)/c1).

Slightly different early trajectory in 0.1s   Same trajectory in 400 s
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TD2: Enzyme Kinetics

BIOCHAM-4: version online http://lifeware.inria.fr/biocham4/online/
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Assume quasi-steady state dC/dt ≃ 0 ≃ c1E0S-(c1S+c2+c3)C

Then C = c1E0S/(c1S+c2+c3) 
= E0S/(Km+S)  

where Km=(c2+c3)/c1 

substrate concentration with half maximum velocity

We get dP/dt = -dS/dt = -c1(E0+C0-C)S+c2C 
= VmS / (Km+S) where Vm= c3E0 

maximum velocity at saturing substrate concentration

Michaelis-Menten kinetics: VmS /(Km+S) for S => P

C and E are eliminated but sometimes E is re-injected as a variable…
c3*E*S /(Km+S) for S+E => E+P

Quasi-Steady State Approximation (QSSA)
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(Weak) Justification by 
Preservation of Time Scales

“Time taken for a significant change” 

Time scale of f(t) ≈ ,-./	0,-12
|4546|-./

Time scale of C(t) ≈ 5e−8
4e−8/0.01 = >

?@

Formally, suppose S(t)=S0 we get
dC/dt = c1(E0+C0)S0 - (c1S0+c2+c3) C 
C(t) = (C0-C) e-kt + C	 where k= c1S0+c2+c3 and C	= (E0+C0)S0/(Km+S0)

Taking k-1 as time scale of e-kt (i.e. decrease of e-1≈1/3 in k-1 time) 
gives in the Trypsin example 1/(10-5.4.106+25+15)=1/80 =0.0125s
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Validity Condition of QSSA 

When the time scale of S is much longer than the time scale of C…
S varies from S0 to 0 
| dS/dt = -c1(E0-C)S+ c2C | is maximal when S=S0 , C=C0

Time scale of S ≈ 1/(c1E0) 

In the Trypsin example 1/(4.106. 10-8)≈25s

Validity condition: c1E0 << k = c1S0+c2+c3 (e.g. Trypsin: 4.10-2<<80)
i.e. QSSA valid when E0 << S0+Km

in particular when E0<<S0 [Briggs and Haldane 1925]

Better justification by approximation in all time points [Tikhonov theorem]
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Assume reaction equilibrium c1ES≃c2C     (fast complexation/decomplexation cycle)
From E=E0-C we get c1E0S-c1CS = c2C            E+S àc1 C àc3 E+P        c3<<c2

C = c1E0S/(c2+c1S)                                             E+S ßc2 C
C = E0S/(Kd+S)  
where Kd=c2/c1 

substrate concentration with half maximum velocity

Hence dP/dt = -dS/dt = VmS / (Kd+S) 
where Vm= c3E0 

maximum velocity at saturing substrate concentration

Michaelis-Menten quasi-equilibrium kinetics:    VmS /(Kd+S) for S => P

justified when complex equilibrium reached on a fast time scale  c3/c2 <<1

Quasi-Equilibrium Approximation (QE)
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Conclusion

Michaelis-Menten kinetics, Hill kinetics of order n and more general kinetics
come from reductions of elementary CRNs with Mass Action law kinetics 

QSS approximation: projection on slow dynamics variables
– fast dynamics species E, C act as slaves of slow species S

QE approximation: elimination of fast reaction equilibria

The slow/fast separation of the CRN dynamics may change over time
– resulting in a hybrid automaton of piece-wise reduced CRNs
– helps to understand the CRN dynamics

Using Michaelis-Menten kinetics in a CRN may be not justified (and wrong)


