Méthodes Formelles pour la Biologie des Systèmes

Modeling Behaviours in Temporal Logic

Qualitative semantics: applies to very large systems without knowing reaction rates How to query the asynchronous non-deterministic Boolean dynamics ?

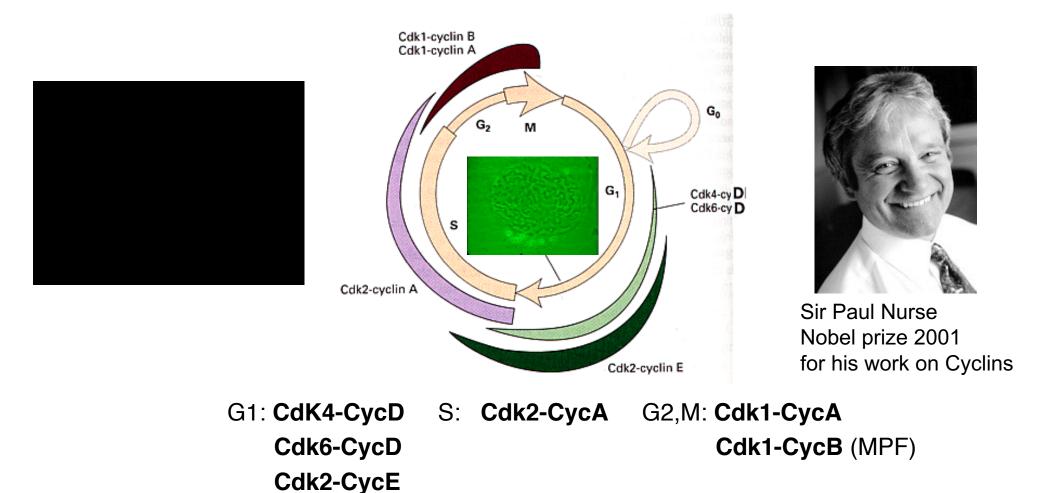
- 1. Example of Kohn's map of the mammalian cell cycle
- 2. Computation Tree Logic CTL query language
- 3. State-based model-checking algorithm
- 4. Symbolic model-checking algorithm
- 5. Model reduction preserving CTL properties

Quantitative semantics:

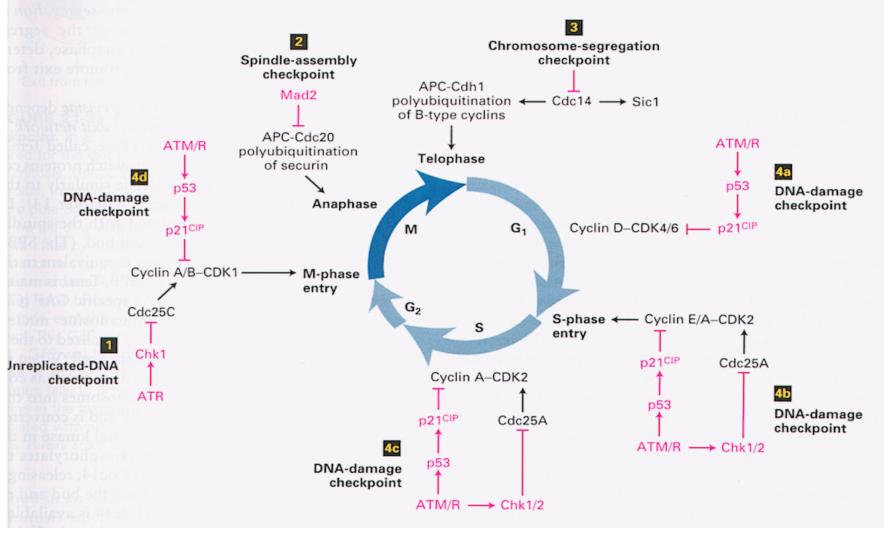
How to generalize to quantitative continuous/stochastic semantics ?

- 1. First-order FO-LTL(Rlin) on finite traces
- 2. FO-LTL(Rlin) constraint solving

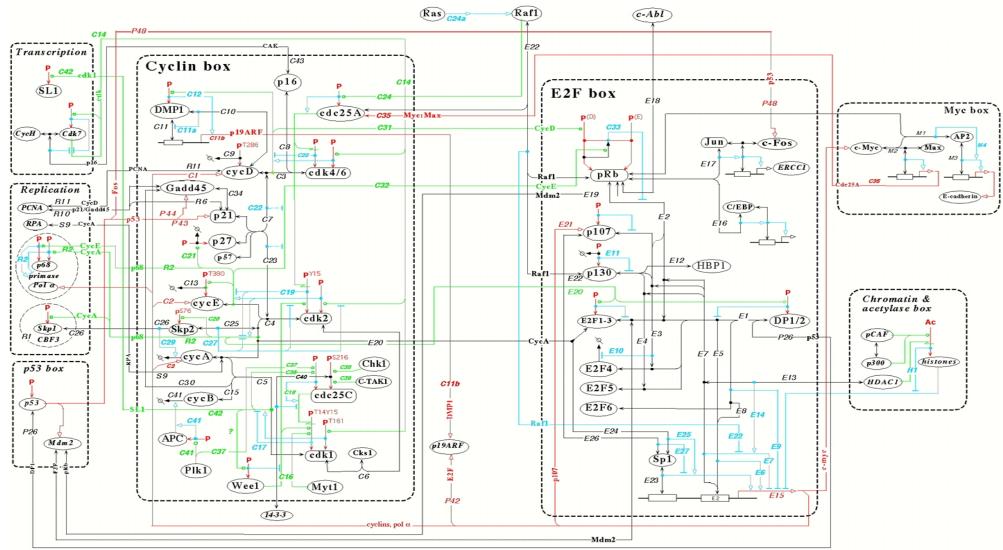
Cell Division Cycle G0 \rightarrow G1 \rightarrow <u>Synthesis</u> \rightarrow G2 \rightarrow <u>Mitosis</u>



Cell Division Cycle Control



Mammalian Cell Cycle Control Map [Kohn 99]

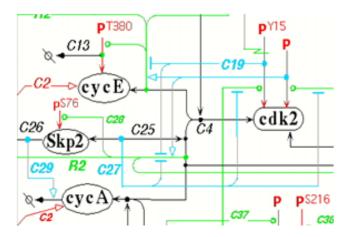


Kohn's map detail for Cdk2

E.g. complexation of cdk2 with cycA and cycE

Kohn's map:

- \rightarrow 732 reactions
- \rightarrow 165 proteins and genes
- \rightarrow 532 variables



How to analyze a transition system over 2⁵³² states ? and 2^{2⁵³²} sets of states ? Symbolic model-checking

Represent a set of states by a Boolean constraint:

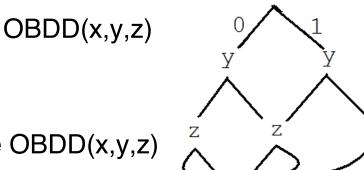
- *True*: full set of 2⁵³² states,
- False: empty set,
- *M*: set of 2⁵³¹ states where M is present,
- $M_{V} \neg N$: set of 3.2⁵³⁰ states with M present or N absent
- etc.

Ordered Binary Decision Diagrams OBDD

Ordered Binary Decision Diagrams OBDD [Bryant 85] are decision graphs

- With fixed ordering of variables by levels
- And compressed in binary graphs with maximum sharing of common subtrees

Example: $(x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x)$

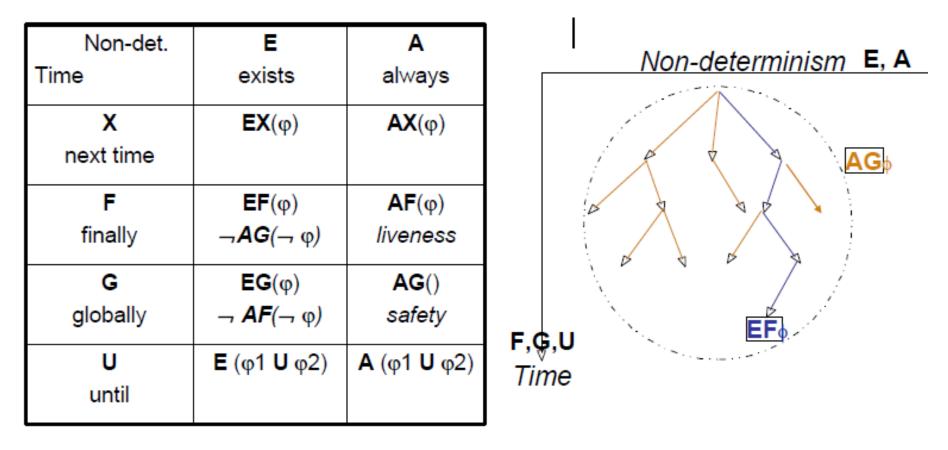


 $(x \lor \neg z) \land (z \lor \neg y) \land (y \lor \neg x)$ has the same OBDD(x,y,z)and is indeed equivalent

OBDD provide canonical forms for Boolean formulas OBDD decide not only SAT in NP but also TAUT in co-NP

Computation Tree Logic CTL

Temporal logics extend classical logic with modal operators for time and nondeterminism. Introduced for program verification by [Pnueli 77]



Kohn's Map Model-Checking

BIOCHAM NuSMV symbolic model-checker time in seconds [Chabrier Fages 2003 CMSB]

Initial state G2	Query:	Time:
	compiling	29
Reachability G1	EF CycE	2
Reachability G1	EF CycD	1.9
Checkpoint for mitosis complex		2.2
Oscillations CycA	EG ((EF ¬ CycA) ∧ (EF CycA))	31.8
Osciallations CycB	EG ((EF ¬ CycB) ∧ (EF CycB)) false in Kohn's map ! (omission of CycB synthesis)	6

Kripke Semantics of CTL*

A Kripke structure K=(S,R) is a set S of states with a total relation R \subseteq SxS The truth of a formula ϕ in a state s or on a path π of K is defined by:

$$s \models \phi$$
 if ϕ is a proposition true in s

 $s \models E \phi$ if there is a path π starting from s such that $\pi \models \phi$

 $s \models A \phi$ if for every path π starting from s such that $\pi \models \phi$

 $\pi\vDash \varphi$ for a state formula φ if $s\vDash \varphi$ where s is the first state of π

 $\pi \vDash X \phi$ if $\pi^1 \vDash \phi$ where π^1 is the suffix of π without its first state

$$\pi \models \mathbf{F} \Leftrightarrow \text{if } \exists k \ge 0 \text{ such that } \pi^k \models \phi \text{ where } \pi^k \text{ is the } k^{\text{th}} \text{ suffix of } \pi$$

$$\pi \vDash \mathbf{G} \phi \text{ if } \forall k \ge 0, \ \pi^k \vDash \phi$$

$$\pi \vDash \phi_1 \mathbf{U} \phi_2 \text{ if } \exists \mathbf{k} \ge \mathbf{0} \ \pi^{\mathbf{k}} \vDash \phi_2 \land \forall \mathbf{j} < \mathbf{k} \ \pi^{\mathbf{j}} \vDash \phi_1$$

 $\pi \vDash \phi_1 \mathbf{R} \phi_2 \text{ if } \forall \mathbf{k} \ge \mathbf{0} \ \pi^{\mathbf{k}} \vDash \phi_2 \lor \exists \mathbf{j} < \mathbf{k} \ \pi^{\mathbf{j}} \vDash \phi_1$

 $\textit{Duality:} \neg \mathsf{E}\phi = \mathsf{A} \neg \phi , \ \neg \mathsf{F}\phi = \mathsf{G} \neg \phi , \neg \mathsf{X}\phi = \mathsf{X} \neg \phi , \ \neg (\phi_1 \mathsf{U} \phi_2) = \neg \phi_1 \mathsf{R} \neg \phi_2$

Minimal Set of CTL* Operators

- Logical connectives:
- Path quantifier:
- Temporal operators:

E "exists" X "next" U "until"

 \mathbf{V}

Abbreviations (duality):

$\mathbf{A}\phi = \neg \mathbf{E} \neg \phi$	"always"
$\mathbf{G}\phi = \neg \mathbf{F} \neg \phi$	"globally"
$\phi_1 \mathbf{R} \phi_2 = \neg (\neg \phi_1 \mathbf{U} \neg \phi_2)$	"release"
$\mathbf{F}\phi = true \mathbf{U} \phi$	"finally"

CTL Fragment of CTL*

In CTL, each temporal operator must be preceded by a path quantifier

Any CTL formula is thus a state formula and can be identified to the set of states which satisfy it

 $\phi \cong \{s \in S : s \vDash \phi\} \text{ [Emerson 90]}$

Basis of three operators: **EX**, **EG**, **EU** others defined by duality:

- **EF** ϕ = **E**(true **U** ϕ)
- **AX** $\phi = \neg$ **EX** $\neg \phi$
- **AF** $\phi = \neg$ **EG** $\neg \phi$
- **AG** $\phi = \neg \mathbf{EF} \neg \phi$

LTL Fragment of CTL*

Linear Time Logic (LTL) formulae are of the form $A\phi$ where ϕ contains no path quantifier, only temporal operators

Basis of two operators: X, U

- The LTL formula $A(FG \phi)$ is not expressible in CTL $AF(AG \phi)$ is stronger, e.g. false on $p \longrightarrow \neg p \longrightarrow p$ $AF(EG \phi)$ is weaker, e.g. true on $p \longrightarrow \neg p$
- The CTL formula $EF(AG \phi)$ is not expressible in LTL
- LTL and CTL are strict fragments of CTL*

Dynamic programming algorithm for computing, in a *finite* Kripke structure K, the set of states satisfying a CTL formula: $\{s \in K : s \models \phi\}$.

Dynamic programming algorithm for computing, in a *finite* Kripke structure K, the set of states satisfying a CTL formula: $\{s \in K : s \models \phi\}$.

Represent K explicitly as a finite graph and iteratively label the nodes with the subformulas of ϕ that are true in that node:

- Add ϕ to the states satisfying ϕ
- Add EF φ (EX φ) to

Dynamic programming algorithm for computing, in a *finite* Kripke structure K, the set of states satisfying a CTL formula: $\{s \in K : s \models \phi\}$.

Represent K explicitly as a finite graph and iteratively label the nodes with the subformulas of ϕ that are true in that node:

- Add ϕ to the states satisfying ϕ
- Add **EF** ϕ (**EX** ϕ) to the (immediate) predecessors of states labeled by ϕ
- Add **E**(φ1 **U** φ2) to

Dynamic programming algorithm for computing, in a *finite* Kripke structure K, the set of states satisfying a CTL formula: $\{s \in K : s \models \phi\}$.

Represent K explicitly as a finite graph and iteratively label the nodes with the subformulas of ϕ that are true in that node:

- Add ϕ to the states satisfying ϕ
- Add $\textbf{EF}~\phi~(\textbf{EX}~\phi)$ to the (immediate) predecessors of states labeled by ϕ
- Add $E(\phi 1 \ U \ \phi 2)$ to the predecessor states of $\phi 2$ while they satisfy $\phi 1$

Dynamic programming algorithm for computing, in a *finite* Kripke structure K, the set of states satisfying a CTL formula: $\{s \in K : s \models \phi\}$.

Represent K explicitly as a finite graph and iteratively label the nodes with the subformulas of ϕ that are true in that node:

- Add ϕ to the states satisfying ϕ
- Add $\textbf{EF}~\phi~(\textbf{EX}~\phi)$ to the (immediate) predecessors of states labeled by ϕ
- Add $E(\phi_1 \ U \ \phi_2)$ to the predecessor states of ϕ_2 while they satisfy ϕ_1
- Add EG φ to the states of the subgraph satisfying φ which are on a path to a non trivial (i.e. containing at least one edge) strongly connected component.

Space and time in

Bioregul 2019

Dynamic programming algorithm for computing, in a *finite* Kripke structure K, the set of states satisfying a CTL formula: $\{s \in K : s \models \phi\}$.

Represent K explicitly as a finite graph and iteratively label the nodes with the subformulas of ϕ that are true in that node:

- Add ϕ to the states satisfying ϕ
- Add **EF** ϕ (**EX** ϕ) to the (immediate) predecessors of states labeled by ϕ
- Add $E(\phi_1 \ U \ \phi_2)$ to the predecessor states of ϕ_2 while they satisfy ϕ_1
- Add EG φ to the states of the subgraph satisfying φ which are on a path to a non trivial (i.e. containing at least one edge) strongly connected component.

Space and time in O(IKI*Iol), CTL model-checking is Ptime-complete

Dynamic programming algorithm for computing, in a *finite* Kripke structure K, the set of states satisfying a CTL formula: $\{s \in K : s \models \phi\}$.

Represent K explicitly as a finite graph and iteratively label the nodes with the subformulas of ϕ that are true in that node:

- Add ϕ to the states satisfying ϕ
- Add $\textbf{EF}~\phi~(\textbf{EX}~\phi)$ to the (immediate) predecessors of states labeled by ϕ
- Add $E(\phi 1 \ U \ \phi 2)$ to the predecessor states of $\phi 2$ while they satisfy $\phi 1$
- Add EG φ to the states of the subgraph satisfying φ which are on a path to a non trivial (i.e. containing at least one edge) strongly connected component.

Space and time in O(IKI*Iol), CTL model-checking is Ptime-complete

Exercise: apply it to show EG((EF $\neg P$) ^ (EF P)) on

Bioregul 2019

Ρ

Symbolic CTL Model-Checking Algorithm

- Represent a set of states by a boolean constraint c(V) over state variables V e.g. $p \lor \neg q$ represents the set of all states where p is present and q absent
- Represent the transition relation by a boolean constraint r(V,V') \bigcirc \bigcirc e.g. the constraint $p \lor (\neg p \land \neg p')$ represents the transition graph $p \rightarrow \neg p$
- Represent CTL operators by constraint transformers
 e.g. [EX(c)] = ∃V' r(V,V') ∧ c[V'/V] ≜ ex(c)
 constraint of being one immediate predecessor r(V,V') of a state satisfying c(V')

e.g.
$$[AX(c)] = \forall V' r(V, V') \Rightarrow c[V'/V] \triangleq ax(c)$$

constraint of having all successors r(V,V') satisfying c(V')

Logical Paradigm for Systems Biology

Use of model-checking algorithms [Lincoln et al. 02] [Chabrier Fages 03] [Bernot et al. 04]... Biological process model = State Transition System K Biological property = Temporal Logic Formula φ Model validation = model-checking K, s \models ? φ Model reduction = model-checking K'? \subseteq K K', s $\models \varphi$ Static experiment design = model-checking K, s? $\models \varphi$ Model functions = true formulae enumeration K, s $\models \varphi$? Model Inference, dyn. exp. design = constraint solving K?, s? $\models \varphi$

Generalizations to quantitative temporal logics

- FO-LTL(R_{lin}) [Rizk, Batt, F, Soliman 09] MTL [Donze Maler 12] parameter search, robustness
- SAT modulo ODE [Gao Clarke 2012] formal verification on parameter range
- Continuous CRN design K?, s? \models reachable(stable($y \approx \frac{x^4}{c+x^4}$)

TD8 MAPK Signalling

http://lifeware.inria.fr/biocham4/online/

In [12]: check_ctl(query:checkpoint2(PP_KK,PP_K)).

Out[12]: checkpoint2(PP_KK, PP_K) is true

In [13]: check_ctl(query:checkpoint2(PP_KK_KKPase,PP_K)).

Out[13]: checkpoint2(PP_KK_KKPase, PP_K) is false

In [14]: check_ctl(query:checkpoint2(PP_KK_KKPase,PP_K), nusmv_counter_example:yes).

Out[14]: Trace:

E1	E1_KKK	E2	E2_P_KK	к	к	KK	KKK	KKPase	KKPase_H	PP_KK	KKPas
e_P_KK	KPase	KPase_P	P_K	KPase_P	K	PP_KK	PP_KK_K	PP_KK_P_	K	P_K	P_KK
	P_KKK	P_KKK_K	ĸ	P_KKK_P_	_KK	PP_K	PP_KK_KF	Pase			
TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

checkpoint2(PP_KK_KKPase,PP_K) is false

In [15]: reduce_model.

Out[15]: removed [(r1a_d1*'E1_KKK'for'E1_KKK'=>'KKK'+'E1'),(r2a_d2*'E2_P_KKK'for'E2_P_KKK'=>'P_KK K'+'E2'),(r3a_d3*'P_KKK_KK'for'P_KKK_KK'=>'KK'+'P_KKK'),(r4a_d4*'KKPase_P_KK'for'KKPase_P_K K'=>'P_KK'+'KKPase'),(r5a_d5*'P_KKK_P_KK'for'P_KKK_P_KK'=>'P_KK'+'P_KKK'),(r6a_d6*'KKPase_P P_KK'for'KKPase_PP_KK'=>'PP_KK'+'KKPase'),(r7a_d7*'PP_KK_K'for'PP_KK_K'=>'K'+'PP_KK'),(r8a_ d8*'KPase_P_K'for'KPase_P_K'=>'P_K'+'KPase'),(r9a_d9*'PP_KK_P_K'for'PP_KK_P_K'=>'P_K'+'PP_K K'),(r10a_d10*'KPase_PP_K'for'KPase_PP_K'=>'PP_K'+'KPase')]

Bioregul 2019

François Fages