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MAPK Signaling Network: 30 reactions 18 species [Huang Ferrel PNAS 1996]
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MAPK	Signalling Cascade



MAPK	Input/Output Function

Dose-response diagrams alias Bifurcation diagrams
biocham: load(library:examples/mapk/mapk).

biocham: dose_response(‘E1',1.0e-6,1e-4,200).
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MAPK implements the function of an analog/digital converter in the cell.
How would one program !"

#	%	!"
with reactions ?

What does it mean to compute with real numbers ? 

MAPK responses as Hill function  !"

#	%	!"

[Huang Ferrel 96 PNAS]
n ≈ 4.9 at 3rd level
n ≈ 1.7 at 2nd level
n = 1 at 1st level (Michaelis-Menten)



Computable	Real	Numbers and	Functions
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Classical definitions of computable analysis based on Turing machines

Definition. A real number r is computable if there exists a Turing machine with
Input: precision pÎN
Output: rational number qÎQ with | r-q |<2-p

Examples. Rational numbers, limits of computable Cauchy sequences π,	e,	…

Definition. A real function f:R®R is computable if there exists a Turing machine 
that computes f(x) with an oracle for x.
Examples. Polynomials, trigonometric functions, …

Counter-examples. x=0, ⌈x⌉ are not computable (undecidable on x=0.000…) 
discontinuous functions

Analog encoding e(w) of decision problems by f: accept w if f(e(w)) ≥1 reject if ≤-1



Analog	Computer?	Differential	Analyzer	[Bush	1931]

Underlying principles: Lord Kelvin, 1876 
First ever built: Vannevar Bush, MIT, 1931 

Applications: from gunfire control up to aircraft design 
– Intensively used by the U.S. and Japanese armies during world war II
– Electronic versions from late 40s, used until 70s 
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Shannon’s General Purpose Analog Computer

The GPAC is a mathematical abstraction from Claude
Shannon (1941) of the Di↵erential Analyzers.

[Graça Costa 03]: This corresponds to polynomial Ordinary
Di↵erential Equations (pODEs), i.e.

y0 = p(t, y)

y(t
0

) = y
0

where
I p is a (vector of) polynomials.
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A machine from 20th Century: Di↵erential analyzers

Vannevar Bush’s 1938 mechanical

Di↵erential Analyser

Underlying principles: Lord
Kelvin 1876.

First ever built: V. Bush
1931 at MIT.

Applications: from gunfire
control up to aircraft design

Intensively used during U.S.
war e↵ort.

Electronic versions from late
40s, used until 70s
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General	Purpose	Analog	Computer	[Shannon	1941]
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Shannon’s formalization of the Differential Analyser by GPAC circuits
A time function if GPAC-generated if it is the output of some unit of a
GPAC circuit built from:
1. Constant unit
2. Sum unit
3. Product unit
4. Integral ∫𝑥	𝑑𝑦�

� unit

What does this GPAC circuit compute ?

𝑦1 =
𝑑𝑦
𝑑𝑡

𝑑𝑦1
𝑑𝑡 = −𝑦	 = 	𝑦’’

if 𝑦(0) = 1, 𝑦1(0) = 0
𝑦(𝑡) = 𝑐𝑜𝑠 𝑡 𝑦1(𝑡) = 𝑠𝑖𝑛(𝑡)	



CRN	Implementation	of	GPAC	Units
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Mass action law kinetics reaction network with output concentration stabilizing 
on the result of the operation applied to the input concentrations

Positive constant units: molecular concentrations

Product unit  𝑧 = 𝑥. 𝑦 Sum unit 𝑧 = 𝑥 + 𝑦	 Time integral z = ∫𝑥	𝑑𝑡�
� unit

𝑥 + 𝑦	
C.!.D

		𝑥 + 𝑦 + 𝑧
z	
C.E
	_

𝑑𝑧
𝑑𝑡 = 𝑘(𝑥𝑦 − 𝑧)

= 0	when	𝑧 = 𝑥. 𝑦

x	
!
→ 		𝑥 + 𝑧

𝑑𝑧
𝑑𝑡 = 𝑥

z=∫ 𝑥	𝑑𝑡I
J

x	
C.!
		𝑥 + 𝑧

	𝑦	
C.D
		𝑦 + 𝑧

	𝑧	
C.E
		_

𝑑𝑧
𝑑𝑡 = 	𝑘(𝑥 + 𝑦 − 𝑧)
							= 	0	when	𝑧 = 𝑥 + 𝑦



Polynomial	ODE	Initial	Value	Problems	(PIVP)	

Graça and Costa 2003’s formalization of Shannon‘s GPAC

Definition. A real time function f:R+®R is GPAC-generable iff there exist a 
vector of polynomials pÎRn[Rn] and of initial values y(0)ÎRn

and a solution function y:R+®Rn such that y’(t)=p(y(t))	and f(t)=y1(t)

Closure properties: 
f+g, f-g, f.g, 1/f, ,f ◦g, y s.t. y′ =f(y) are GPAC-generable if f, g are. 

A GPAC-generated function must be analytic (locally convergent power series)
Famous analytic non-GPAC-generable functions [Shannon 41] 
• Euler’s Gamma function Γ(𝑥) = ∫ 𝑡!S1𝑒SU𝑑𝑡V

J 	[Hölder1887] 

• Riemann’s Zeta function 𝜁(𝑥) 	= 	∑ 1
CY
		V

CZJ [Hilbert]
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Definition. [Graça Costa 03 J. Complexity] A real function f:R®R is PIVP-computable
if there exists vectors of polynomials pÎRn[Rn] and qÎRn[R] and 
a function y: Rn ®Rn such that y’(t)=p(y(t))	, y(0)=q(x)	and |y1(t)-f(x)|<y2(t)
with y\(t) ≥ 0 decreasing for t>1 and lim

`→V
y\(t) = 0

Example. cos(4)

Theorem (analog characterization of Turing computability).
[Bournez Campagnolo Graça Hainry 07 J. Complex]]

A real function is computable (by Turing machine) iff it is PIVP-computable.

PIVP-Computable	Functions	f(x)
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Time in ODE is a bad measure of complexity
• Exponential speedup by changing time variable 𝑡a = 𝑒U

• But price to pay in the amplitude of 𝑡a

A computational complexity measure should combine time and space-amplitude 
• length in the n dimensions of the trajectory to compute the result

Theorem [Pouly PhD thesis 2015, Bournez Graca Pouly 16 ICALP] 

A real function is computable in P iff it is PIVP-computable with a trajectory of 
polynomial length (i.e. polynomial time and polynomial amplitude)

Analog	characterization	of	Ptime
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Turing	Completeness	of	Continuous	CRN?

• Mass action law kinetics
– polynomial ODEs
– PIVP computation by simulation

• Molecular concentration are positive real values
– Restriction to positive dynamical systems ?

• Elementary reactions with at most two reactant
– Restriction PIVP of degree at most 2 ?

Strong Turing Completeness of Continuous Chemical Reaction Networks and 
Compilation of Mixed Analog-Digital Programs, CMSB 2017

François Fages, Guillaume Le Guludec
Olivier Bournez 2, Amaury Pouly 2

2 LIX, Ecole Polytechnique, Palaiseau, France
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Turing	Completeness	of	Continuous	CRNs	1/3

Lemma (positive systems) Any PIVP-computable function can be encoded by 
a PIVP of double dimension on R+, preserving polynomial length complexity.

Proof. Encode yiÎR by y-
i y+

iÎR+ such that yi = y+
i - y-

i at each time
(encoding used in [Oishi Klavins 2011] for linear I/O systems)

Let pi(y+
1, y-

1,…, y+
n, y-

n) = pi[y = y+
i - y-

i] and pi = p+
i - p-

i

y+
i‘ = q+

i - fi y+
i y-

i y+
i(0) = max(0, yi(0))

y-
i ‘ = q-

i - fi y+
i y-

i y-
i(0) = max(0, -yi(0))

Where fi =q+
i +q-

i are positive coefficient polynomials fi≧ max(q+
i , q-

i )

• Fast annihilation reactions:   y+
i + y−

i		
fi→		_

• n-ary catalytic synthesis reactions for each monomial m+
i,j	

in p+
i	
, m−

i,j	
in p−

i	
:  

Mi, j
+ 				m+

i,j						y+
i +	Mi, j

+

Mi, j
− 					m−

i,j 					y+
i +	Mi, j

−
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Turing	Completeness	of	Continuous	CRNs	2/3

Lemma (quadratic systems) [Carothers Parker Sochacki Warne 2005] 

Any PIVP can be encoded by a PIVP of degree £ 2.

Proof. Introduce variable vi1,…,in for each possible monomial y1
i1…yn

in

We have y1 =v1,0…,0,	y2 =v0,1,0…,0 ,…					

y’i is of degree one in vi1,…,in

𝑣a𝑖1, … , 𝑖𝑛
= ∑ 𝑖𝑘	𝑣𝑖1, … , 𝑖CS1	, … , 𝑖h		

	𝑦a𝑘h
CZ1 is of degree at most 2.

i.e. trade high dimension for low degrees.

(yet algorithm of possibly exponential complexity)
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Turing	Completeness	of	Continuous	CRNs	3/3

Theorem (Turing completeness of continuous CRNs) [F Le Guludec Bournez Pouly CMSB 2017]

Any computable function over the reals can be computed by a continuous CRN 
over a finite set of molecular species (no polymerization, no locations)
Proof: By previous lemmas, any PIVP-computable function can be encoded by a 
PIVP of degree at most 2 with positive variables. A positive PIVP of degree at most 
2 can be represented by an elementary CRN with at most 2 reactants per reaction.

In this view, the (protein) concentrations are the information carriers.

The programs of a cell are implicitly defined by 
• the set of all possible reactions with the proteins encoded in its genome
• and the chemicals of the environment.

Program change is determined by gene expression (= metaprogram).
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Turing	Completeness of	CRNs

Stochastic sem.

ODE
semantics

Petri Net sem.

Boolean sem.

Reaction set
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Petri Net: Not Turing complete without
• Test of absence (Petri net inhibitor arc)
• or polymerisation reactions
[Cardelli Zavatero MSCS 2010, Cook et al 2009]

• or unbounded nested membranes
[Berry Boudol CHAM 1994, Paun Rozenberg TCS 2002, 
Busi Gorrieri CMSB 2005]

Stochastic CRN: Simulation of a 
Turing machine with a small 
probability of error

[Cook, Soloveichik, Winfree, Bruck 2009]

DIfferential CRN: Universality but 
for non uniform computability: 
∀function ∀input ∃circuit 
computing the result [Magnosco 1997 
Phys Rev Helmfelt Weinberger PNAS 1991]

Strong Turing completeness
∀function ∃circuit computing ∀input 
[F. Le Guludec Bournez Pouly 2017 CMSB]



CRN,	SBML,	Biocham Compared	with	Kappa

CRN:
– interactions at the molecular species level
– no polymerization reaction
– reachability decidable with discrete semantics (Petri net)
– model-checking decidable with Boolean semantics 
– Turing complete with continuous semantics

Kappa: 
– interactions at the molecular binding sites level (e.g. protein domains)
– more expressive graph rewriting language (polymerization)
– reachability, model-checking undecidable (approximations by abstractions)
– Turing complete discrete semantics

Biocham (BIOCHemical Abstract Machine)
– CRN structure description language [compatible with SBML]
– CRN behaviour description language [based on temporal logic CTL, FO-LTL(Rlin)]
– CRN analysis and CRN synthesis tools
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Abstract	CRN	Normal	Form

Theorem 
A real function is computable (respectively in polynomial time) 
if and only if it is computable by a system of elementary reactions of the form

_ => z          or x => x+z or x+y => x+y+z
plus annihilation reactions x+y => _ with mass action law kinetics
(respectively with trajectories of polynomial length as a function of both the 
unary precision and the argument values).
Proof Close analysis of the encoding used in the lemmas (positive monomials)

Intermediate CRN: Replace abstract reactions by realistic reactions
• activation (e.g. phosphorylation) instead of formal synthesis
• complexation instead of formal annihilation

Concrete CRN: Search in database of real enzymes (e.g. BRENDA,…)
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Biocham-4	Compiler	of	PIVP	in	CRN

• Definition of mathematical functions and expressions by PIVPs

• No error control (no y2 component)
– Annihilation reactions with “sufficiently high” kinetic rate constant fast

• Dual rail variables (x_p, x_m)
– brute force algorithm (lemma 1)
– recently added: lazy introduction of negative variables

• PIVP binomialization (rewriting with degree at most 2)
– recently introduced option (lemma 2)
– on-going NP-hardness proof and heuristics

Bioregul	2019 François	Fages



Compilation	of	the	Cosine(t)	function
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biocham: compile_from_expression(cos,time,f).
_ =[z_p]=> f_p.   z_m+z_p => _. 
_ =[z_m]=> f_m.   f_m+f_p => _. 

 _ =[f_m]=> z_p.
 _ =[f_p]=> z_m. 
present(f_p,1). 

d(f_p)/dt = z_p-k*f_m*f_p 
d(f_m)/dt = z_m-k*f_m*f_p 
d(z_p)/dt = f_m-k*z_m*z_p 
d(z_m)/dt = f_p-k*z_m*z_p
f_p(0)=1  



Compilation	of	the	Cosine(x)	Function
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biocham: present(x_p, 4). 
biocham: compile_from_expression(cos,x,f). 
 present(f_p, 1).
 _=[g_m]=>g_p. _=[g_m+f_m]=>z_p.
 _=[x_p]=>g_p. _=[g_p+f_p]=>z_p.
 _=[g_p]=>g_m. _=[x_p+f_m]=>z_p.
 _=[x_m]=>g_m. _=[x_m+f_p]=>z_p.
 _=[g_m+z_p]=>f_p. _=[g_m+f_p]=>z_m.
 _=[g_p+z_m]=>f_p.  _=[g_p+f_m]=>z_m.
 _=[x_m+z_m]=>f_p.  _=[x_m+f_m]=>z_m.
 _=[x_p+z_p]=>f_p. _=[x_p+f_p]=>z_m.
 _=[g_m+z_m]=>f_m. _=[x_p+f_p]=>z_m.
 _=[g_p+z_p]=>f_m. _=[x_m+z_p]=>f_m. 

PIVP	that	generates	f(g(t))
with	 lim

USV
𝑔 𝑡 = 𝑥

𝑔′(𝑡) = 𝑥 − 𝑔(𝑡) 	
𝑔 𝑡 = 𝑥 + 𝑥0 − 𝑥 𝑒SU

𝑓	𝑜	𝑔 ’ = 𝑓’	𝑜	𝑔 . 𝑔’



Sigmoid	Functions
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_=>HT. 
HT=[HT]=>_. 

_=[S]=>S. 
S=[S]=>_. 
present(S,0.001).

_=>T. 
1/ (1+T^2) for _/T=>AT

NH1=[NH1]=>_. 
_=[2*NH1]=>H1. 
present(NH1,1). 
MA(2)for NH2=[T+NH2]=>_. 
MA(2)for _=[T+2*NH2]=>H2. 
present(NH2,1). 
MA(5)for NH5=[4*T+NH5]=>_. 
MA(5)for _=[4*T+2*NH5]=>H5.  
present(NH5,1).

Hyperbolic tangent
d(HT)/dt=1-HT^2

Logistic
d(S)/dt=S-S^2

Arc tangent
d(T)/dt=1
d(AT)/dt=1/ (1+T^2)

Hill functions order 1,2,5
d(H1)/dt=NH1^2
d(NH1)/dt= -NH1^2

d(H2)/dt=2*T*NH2^2
d(NH2)/dt= - (2*T*NH2^2)

d(H5)/dt=5*T^4*NH5^2
d(NH5)/dt= - (5*T^4*NH5^2)



Logical	Gates

A,B ∈ {0,1}

And C = A /\ B           
A+B => C dC/dt = A.B                    [C] = min([A],[B])
C(0)=0                  dA/dt=dB/dt = -A.B

Or C = A \/ B           
A => C                  dC/dt = A+B                    [C] = [A]+[B]
B => C                 dA/dt = -A
C(0)=0                 dB/dt = -B

Not C = ￢ A     
C+A => _              dC/dt = -C.A                   [C] = max([C0]-[A], 0)
C(0)=1                  dA/dt = -C.A
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Sequentiality and	Iteration

1.	Asynchronous (precondition)	CRN	programming
[Huang	Jiang	Huang	Cheng	2012	ICCAD]

[Huang	Huang	Chiang	Jiang	Fages 2013	IWBDA]

2.	Synchronous (clock)	CRN	programming
[ Vasic, Soloveichik, Khurshid 2018	CRN++]



Cell	Division	Cycle	Program

while true {growing; replication; verification; mitosis}

à compilation of sequentiality and loops with program control variables
à 50 reactions
à 13 variables

Cyclins D, E, A, B as necessary markers for implementing sequentiality
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From	Abstract	to	Concrete	CRN

Theorem 
A real function is computable (respectively in polynomial time) 
if and only if it is computable by a system of elementary reactions of the form

_ => z          or x => x+z or x+y => x+y+z
plus annihilation reactions x+y => _ with mass action law kinetics
(respectively with trajectories of polynomial length as a function of both the 
unary precision and the argument values).
Proof Close analysis of the encoding used in the lemmas (positive monomials)

Intermediate CRN: Replace abstract reactions by realistic reactions
• activation (e.g. phosphorylation) instead of formal synthesis
• complexation instead of formal annihilation

Concrete CRN: Search in database of real enzymes (e.g. BRENDA,…)
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Computer-Aided	Biochemical	Programming	of	
Synthetic	Micro-reactors	as	Diagnostic	Devices

Alexis	Courbet 1,	Patrick	Amar 2,	François	Fages 3,	
Eric Renard 4,	Franck	Molina 1

1 Sys2diag	UMR9005	CNRS/ALCEDIAG, Montpellier	
2 LRI, Université	Paris	Sud	-	UMR	CNRS	8623, Orsay	
3 http://lifeware.inria.fr,	Inria Saclay	IdF,	Palaiseau
4 INSERM	1411, Montpellier	University Hospital



Protosensor CRN	Design	Workflow
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Diabetes	Differential	Diagnostic	Algorithm
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Reactions	for	Implementing	Logical	Gates

And C = A /\ B           A+B => C [C] = min([A],[B])

Or C = A \/ B           A => C                  [C] = [A]+[B]
B => C

Not C = ￢ A     C+A => _              [C] = max([C0]-[A], 0)
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Microfluidic	Assembly	and	Validation	in	Human	Urine
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Doctor	in	the	Cell
http://lifeware.inria.fr/biocham4/online/
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Conclusion	1/2
• Binary reaction systems over a finite set of molecules (without polymerization) 

are Turing-complete under the differential semantics
– PIVP definition of computable function
– Notion of computational complexity as trajectory length of stabilizing PIVPs

• Analog compiler in CRN [Biocham v4] 
– Input: Function specification by PIVP, mixed digital-analog program
– Output: system of binary reactions with mass action law kinetics 
– Exact characterization of the result for an ideal fluid implementation
– Difficult to compare to natural circuits for similar functions

• Real implementation in artificial vesicles [Molina’s lab CNRS-Alcediag]

• Alternative design by evolution/learning:                        CRN   ⟷ Function  

– Artificial evolution of CRNs [Degrand Hemery F 2019] ↻
– Nature algorithms for learning [Valliant 2013] Mutations
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Conclusion	2/2:	CRN	Design	Methods	in	Biocham

• Quantitative Temporal Logic Workflow
Input: 1. CRN structure (+ kinetic parameters)

2. Behavior specification with FO-LTL(ℝlin) formulae
à Verification with continuous satisfaction degree in [0,1]
à Parameter sensivity and model robustness wrt parameter perturbations
à Parameter search by continuous optimization (CMA-ES), robustness optimization

• Polynomial ODE Initial Value Problem PIVP Workflow 
Input: Real valued function specification by PIVP
à CRN structure with kinetic parameters: exact result (error control)

• Artificial Evolution/Learning Workflow
Input: time series data (finite traces)
à CRN structure with kinetic parameters: approximate result 
à genetic alg. + param. opt. [Elisabeth Degrand, Mathieu Hemery] (curve fitting)
à statistical unsupervised learning of reactions [Julien Martinelli, Jeremy Grignard]
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