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Linear Time Logic FO-LTL(Rlin)

1 Closed formulae

Syntax and semantics on a trace
Verification algorithm, parameter search by scanning

2 Constraints with variables

Syntax and semantics by validity domains
Constraint Solving algorithm for trace analysis

3 Continuous satisfaction degree

Parameter optimization by evolutionary algorithm
Robustness measure
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Linear Time Logic LTL(R) over Traces

Trace (experiment or simulation):

State variables: time, concentration [A], derivative d [A]/dt.
Atomic propositions: arithmetic expressions over state variables
Temporal operators: X, F, G, U, R

Minimum threshold reachability: F([A] > 0.2)
Minimum threshold stability: G([A] > 0.2)
Reachability of stable state: FG([A] > 0.2)
Local maximum reachability: F(d [A]/dt ≥ 0 ∧ Xd [A]/dt ≤ 0)
Oscillations oscil(A,n) if at least n derivative sign changes
Curve fitting

F(Time = 1 ∧ [M] = 0.05 ∧ F(Time = 2 ∧ [M] = 0.12 ∧ [M] = 0.12 ∧ F(Time = 3 ∧ [M] = 0.25)))
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Semantics of LTL(R) over finite traces

Completion of finite traces with an infinite loop on the last state.

π |= φ for a proposition φ if φ holds in the first state of π
π |= Xφ if π1 |= φ
π |= Fφ if ∃k ≥ 0 πk |= φ
π |= Gφ if ∀k ≥ 0 πk |= φ
π |= φ U ψ if ∃k ≥ 0 πk |= ψ ∧ ∀j < k πj |= φ
π |= φ R ψ if ∀k ≥ 0 πk |= ψ ∨ ∃j < k πj |= φ

φ releases ψ if ψ is always true or until φ becomes true

Duality: ¬(φ U ψ) = (¬φ R ¬ψ), ¬ F φ = G ¬φ, ¬Xφ = X¬φ,

Expressiveness: Gφ = false R φ, Fφ = true U φ,

Negation free formulae: expressed with ∧, ∨, X, F, G, U, R with
negations eliminated down to atomic propositions.
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LTL(R) Verification Algorithm

Input: A finite trace π and a LTL(R) formula φ
Output: whether or not π |= φ

1 Complete the trace with a loop on the last state
2 Iteratively label the states with the sub-formulae of φ that are

true:

Label the states with the atomic propositions that are true,
Add Xφ to the immediate predecessors of states labeled by φ,
Add φ U ψ to the predecessors of states labelled by ψ while
they satisfy φ,
Add φ R ψ to the last state if it is labelled by ψ, to the states
labelled by φ and ψ, and to their predecessors while ψ holds

3 Return true if the initial state is labelled by φ, and false
otherwise
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Parameter Search by Scanning

input: a reaction systems R(k) with n parameters k given with
range [k i , k i ], step size si and an LTL(R) formula φ
output: parameter values v such that π(v) |= φ where π(v) is a
simulation trace of R(v) or fail

1 Scan the parameter value space Πn
1[k i , k i ] with a fixed step

size si for each parameter ki
2 Test whether π(v) |= φ by model checking

3 Return the first value set v which satisfies f

Exponential complexity in O(s1 ∗ . . . sn)

Continuous optimization procedure ? need a continuous
satisfaction degree (fitness function) for LTL(R) formulae
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Yeast Cell Cycle Control [Tyson 91]

k1 for _ => Cyclin.

k2*[Cyclin] for Cyclin => _.

k8*[Cdc2] for Cdc2 => Cdc2~{p1}.

k9*[Cdc2~{p1}] for Cdc2~{p1} => Cdc2.

k3*[Cyclin]*[Cdc2~{p1}] for Cyclin+Cdc2~{p1} => Cdc2~{p1}-Cyclin~{p1}.

k4p*[Cdc2~{p1}-Cyclin~{p1}] for Cdc2~{p1}-Cyclin~{p1} => Cdc2-Cyclin~{p1}.

k4*[Cdc2-Cyclin~{p1}]^2*[Cdc2~{p1}-Cyclin~{p1}] for

Cdc2~{p1}-Cyclin~{p1} =[Cdc2-Cyclin~{p1}]=> Cdc2-Cyclin~{p1}.

k5*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1} => Cdc2~{p1}-Cyclin~{p1}.

k6*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1} => Cdc2+Cyclin~{p1}.

k7*[Cyclin~{p1}] for Cyclin~{p1} => _.

parameter(k1,0.015). parameter(k2,0.015). parameter(k3,200).

parameter(k4p,0.018). parameter(k4,180). parameter(k5,0).

parameter(k6,1). parameter(k7,0.6). parameter(k8,100).parameter(k9,100).

present(Cdc2,1).
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Learning Oscillations

biocham: search_parameters([k3,k4],[(0,200),(0,200)],20,

oscil(Cdc2-Cyclin~{p1},3),150).

First values found :

parameter(k3,10).

parameter(k4,70).
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Learning Oscillations

biocham: search_parameters([k3,k4],[(0,200),(0,200)],20,

oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150).

First values found :

parameter(k3,10).

parameter(k4,120).
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Learning Oscillations

biocham: search_parameters([k3,k4],[(0,200),(0,200)],20,

period(Cdc2-Cyclin~{p1},35), 150).

First values found:

parameter(k3,10).

parameter(k4,280).
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True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well
adapted to several problems :

parameter search, optimization and control of continuous
models

quantitative estimation of robustness

sensitivity analyses
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True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well
adapted to several problems :

parameter search, optimization and control of continuous
models

quantitative estimation of robustness

sensitivity analyses

→ need for a continuous degree of satisfaction of temporal logic
formulae

How far is the system from verifying the specification ?
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Model-Checking Generalized to Constraint Solving

QFLTL(R)

Φ*=F([A]≥x 
       ∧F([A]≤y))

Constraint solving

the formula is true for any 
x≤10 ∧ y≥2

Φ=F([A]≥7 
       ∧F([A]≤0))

Model-checking

the formula is false

LTL(R)

Dφ∗(T )
2

10

[A]

time

T
y

xφ

Dφ∗(T )

vd=2  sd=1/3
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[A]

time

T
y

xφ

Dφ∗(T )
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Validity domain Dφ∗(T ) of free variables in φ∗

Violation degree vd(T , φ) = distance(val(φ),Dφ∗(T ))
Satisfaction degree sd(T , φ) = 1

1+vd(T ,φ) ∈ [0, 1]
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FO-LTL(Rlin) Constraints with Variables

Free variables x , y , . . .

Linear constraints as atomic propositions

Logical quantifiers ∀x ∃y
Temporal operators: X, F, G, U , R

Minimum value m: G([A] ≥ m)
Minimum amplitude a: ∃v F([A] ≤ v) ∧ F([A] ≥ v + a)

Crossing at time t: F([A] > [B] ∧ X([A] ≤ [B] ∧ Time = t))
Timing constraints
G(Time ≤ t1⇒ [A] < 1 ∧ Time ≥ t2⇒ [A] > 10) ∧ t2− t1 < 60

Oscillations oscil(A,n) if at least n derivative sign changes
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Validity Domains of Free Variables

FO-LTL(Rlin) formula φ(y) with free variables y

The validity domain of φ(y) in a trace T is the set of values x for
which φ(x) holds: DT ,φ(y) = {x ∈ Rv | T |= φ(x)}

For linear constraints over R, validity domains can be represented
as finite unions of polyhedra

polyhedra for conjunctions,

union for disjunction,

complementation for negation,

projection for ∃

BIOCHAM uses the Parma Polyhedral Library PPL
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Inductive Definition of Validity Domains

The validity domain D(s0,...,sn),φ of the free variables of φ on a
trace T = (s0, ..., sn) is the vector Ds0,φ of least domains satisfying

Dsi ,c(x) = {v ∈ Rk | si |= c[v/x ]} for a constraint c(x),

Dsi ,φ∧ψ = Dsi ,φ ∩ Dsi ,ψ, and Dsi ,φ∨ψ = Dsi ,φ ∪ Dsi ,ψ,

Dsi ,¬φ = { Dsi ,φ,

Dsi ,∃xφ = ΠxDsi ,φ, and Dsi ,∀xφ = Dsi ,¬∃x¬φ,

Dsi ,Xφ = Dsi+1,φ if i < n, and Dsn,Xφ = Dsn,φ,

Dsi ,Fφ =
⋃n

j=i Dsj ,φ, and Dsi ,Gφ =
⋂n

j=i Dsj ,φ,

Dsi ,φ U ψ =
⋃n

j=i (Dsj ,ψ ∩
⋂j−1

k=i Dsk ,φ).

where { is the set complement operator over domains, and Πx is
the domain projection operator out of x , restoring domain R for x .
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The validity domain D(s0,...,sn),φ of the free variables of φ on a
trace T = (s0, ..., sn) is the vector Ds0,φ of least domains satisfying

Dsi ,c(x) = {v ∈ Rk | si |= c[v/x ]} for a constraint c(x),
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Dsi ,Xφ = Dsi+1,φ if i < n, and Dsn,Xφ = Dsn,φ,

Dsi ,Fφ =
⋃n

j=i Dsj ,φ, and Dsi ,Gφ =
⋂n

j=i Dsj ,φ,

Dsi ,φ U ψ =
⋃n

j=i (Dsj ,ψ ∩
⋂j−1

k=i Dsk ,φ).

where { is the set complement operator over domains, and

Πx is
the domain projection operator out of x , restoring domain R for x .
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Complexity with Bound Constraints only FO-LTL(Rbox)

Bound constraints x ≥ b, x ≤ b define boxes Ri ∈ Rv . Let the
size of a union of boxes D be the least k s.t.D =

⋃k
i=1Ri .

Proposition (complexity of the validity domain)

The validity domain of an FO-LTL(Rbox ) formula of size f on v
variables on a trace of length n is a union of boxes of size
O((nf )2v ).

Proof.

One bound constraint produces at most n bounds. We have at
most nf bounds, O((nf )2) intervals and O((nf )2v ) boxes.

Ex. F([A] + 1 = u ∨ · · · ∨ [A] + f = u) can create O(nf ) values for u.
F([A1]+1 = X1∨ ...∨ [A1]+ f = X1)∧ . . .∧F([Av ]+1 = Xv ∨ ...∨ [Av ]+ f = Xv )

has a validity domain of O((nf )v ) points.
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Yeast Cell Cycle Control [Tyson 91]

domains (G ( ( [MPF]>=v )&([MPF]=<v+a ) ) ) .
v + a >= 0 . 8 3 7 5 5 7 , v =< 0.0016107
Time e l a p s e d : 48 ms

domains ( maxAmpl ( [MPF] , [ a ] ) ) .
a >= 0.835946
Time e l a p s e d : 0 ms

domains ( d i s t a n c e S u c c P e a k s (MPF, d ) ) .
d = 23.3555
|
d = 23.1196
|
d = 23.0935
|
d = 23.119
Time e l a p s e d : 330 ms
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Violation degree of an LTL formula

Violation degree vd(T , φ) and satisfaction degree sd(T , φ)

In the variable space of φ∗, φ is a single point var(φ).
vd(T , φ) = minv∈Dφ∗ (T )d(v , var(φ)) sd(T , φ) = 1

1+vd(T ,φ) ∈ [0, 1]

[A]

time

(✕)
(✓)

(✕)

vd=0

vd=2

vd=2√2

= F([A]≥6 ∧ F([A]≤5))        

= F([A]≥6 ∧ F([A]≤0))

= F([A]≥12 ∧ F([A]≤0))

φa

φb

φc

(x,y)= F([A]≥x ∧ F([A]≤y))φ∗

(6,5)φ∗

(6,0)φ∗

(12,0)φ∗

y

x

(10,2)
φa

φb φc

Dφ∗(T )

10

2

T
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2

T

6
5

51 / 79



Closed formulae Satisfaction degree Variables Parameter optimization Robustness

Violation degree of an LTL formula

Violation degree vd(T , φ) and satisfaction degree sd(T , φ)
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Violation degree of an LTL formula

Violation degree vd(T , φ) and satisfaction degree sd(T , φ)

In the variable space of φ∗, φ is a single point var(φ).
vd(T , φ) = minv∈Dφ∗ (T )d(v , var(φ)) sd(T , φ) = 1

1+vd(T ,φ) ∈ [0, 1]

[A]

time

(✕)
(✓)

(✕)

vd=0

vd=2

vd=2√2

= F([A]≥6 ∧ F([A]≤5))        

= F([A]≥6 ∧ F([A]≤0))

= F([A]≥12 ∧ F([A]≤0))

φa

φb

φc

(x,y)= F([A]≥x ∧ F([A]≤y))φ∗

(6,5)φ∗
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(12,0)φ∗

y

x

(10,2)
φa

φb φc

Dφ∗(T )
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2
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0

53 / 79



Closed formulae Satisfaction degree Variables Parameter optimization Robustness

LTL Continuous Satisfaction Landscape

Example with :

yeast cell cycle model [Tyson PNAS 91]

oscillation of at least 0.3

φ∗: F( [A]≥x) ∧ F([A]≤y); amplitude x-y≥0.3

k
4

k6

.

.Violation degree in parameter space

. .

.

pA pB

pC

Proc. Natl. Acad. Sci. USA 88 (1991)

1000r

E 1001

10I

0.1 1.0

k6 min1
10

FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.

so k6 abruptly increases 2-fold. Continued cell growth causes
k6(t) again to decrease, and the cycle repeats itself. The
interplay between the control system, cell growth, and DNA
replication generates periodic changes in k6(t) and periodic
bursts of MPF activity with a cycle time identical to the
mass-doubling time of the growing cell.

Figs. 2 and 3 demonstrate that, depending on the values of
k4 and k6, the cell cycle regulatory system exhibits three

b

0.4
a 100

0 20 40 60 80 100 0 20 40 60 80 100

t, min t, min

different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
growth-controlled bursts of MPF activity in proliferating
somatic cells.

Midblastula Traiisiton

A possible developmental scenario is illustrated by the path
1 ... 5 in Fig. 2. Upon fertilization, the metaphase-arrested
egg (at point 1) is stimulated to rapid cell divisions (2) by an
increase in the activity of the enzyme catalyzing step 6 (28).
During the early embryonic cell cycles (2-+ 3), the regulatory
system is executing autonomous oscillations, and the control
parameters, k4 and k6, increase as the nuclear genes coding
for these enzymes are activated. At midblastula (3), auton-
omous oscillations cease, and the regulatory system enters
the excitable domain. Cell division now becomes growth
controlled. As cells grow, k6 decreases (inhibitor diluted)
and/or k4 increases (activator accumulates), which drives the
regulatory system back into domain B (4 -S 5). The subse-
quent burst of MPF activity triggers mitosis, causes k6 to
increase (inhibitor synthesis) and/or k4 to decrease (activator
degradation), and brings the regulatory system back into the
excitable domain (5 -* 4).
Although there is a clear and abrupt lengthening of inter-

division times at MBT, there is no visible increase in cell
volume immediately thereafter (6, 20), so how can we enter-
tain the idea that cell division becomes growth controlled
after MBT? In the paradigm ofgrowth control ofcell division,
cell "size" is never precisely specified, because no one
knows what molecules, structures, or properties are used by
cells to monitor their size. Thus, even though post-MBT cells

C

r k6' min-1

0 100 200 300 400 500

t, min

FIG. 3. Dynamical behavior of the cdc2-cyclin model. The curves are total cyclin ([YT] = [Y] + [YP] + [pM] + [M]) and active MPF [Ml
relative to total cdc2 ([CT] = [C2] + [CP] + [pM] + [MI). The differential equations in Table 1, for the parameter values in Table 2, were solved
numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
solution that is asymptotically stable with respect to small perturbations in any of the dynamical variables. (b) Excitable steady state for k4 =
180 min 1, k6 = 2 min' (point + in Fig. 2). Notice that the ordinate is a logarithmic scale. The steady state of low MPF activity ([M]/[CT]
= 0.0074, [YT]/[CT] = 0.566) is stable with respect to small perturbations of MPF activity (at 1 and 2) but a sufficiently large perturbation of
[Ml (at 3) triggers a transient activation of MPF and subsequent destruction of cyclin. The regulatory system then recovers to the stable steady
state. (c) Parameter values as in b except that k6 is now a function of time (oscillating near point + in Fig. 2). See text for an explanation of
the rules for k6(Q). Notice that the period between cell divisions (bursts in MPF activity) is identical to the mass-doubling time (Td = 116 min
in this simulation). Simulations with different values of Td (not shown) demonstrate that the period between MPF bursts is typically equal to
the mass-doubling time-i.e., the cell division cycle is growth controlled under these circumstances. Growth control can also be achieved
(simulations not shown), holding k6 constant, by assuming that k4 increases with time between divisions and decreases abruptly after an MPF
burst.

7330 Cell Biology: Tyson

Bifurcation diagram LTL satisfaction diagram
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Searching kinetic parameter values from LTL specifications

simple model of the yeast cell cycle from [Tyson PNAS 91]

models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)

0
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0.5

 0  20  40  60  80  100  120  140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}
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Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0.3

p p∗
[MPF]

Pb : find values of 8 parameters such that amplitude is ≥ 0.3
φ∗: F( [A]≥v) ∧ F([A]≤y)
amplitude z=x-y
goal : z = 0.3

Solution found after 30s (100 calls to the fitness function)
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Searching kinetic parameter values from LTL specifications

simple model of the yeast cell cycle from [Tyson PNAS 91]

models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)
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Covariance Matrix Adaptation Evolutionary Strategy

CMA-ES maximizes a black box fitness function (here sd(φ)) in
continuous domain (k) [Hansen Osermeier 01, Hansen 08]

probabilistic neighborhood: multivariate normal distribution
evaluation of covariance matrix by sampling (e.g. 50 best of
100 simulations)
move and distribution update according to covariance matrix
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Covariance Matrix Adaptation Evolutionary Strategy
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Searching Parameter Values from Period Constraints in
LTL
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p p∗
[MPF]

Pb : find values of 8 parameters such that period is 20
φ∗:F(MPFlocalmaximum ∧Time=t1∧ F(MPFlocalmaximum

∧Time=t2) )
( with MPFlocalmaximum : d([MPF])/dt>0 ∧ X(d([MPF])/dt≤0) )

period z=t2-t1
goal z=20

Solution found after 60s (200 calls to the fitness function)
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Searching Parameter Values from Period Constraints in
LTL
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period z=t2-t1
goal z=20

Solution found after 60s (200 calls to the fitness function)

63 / 79



Closed formulae Satisfaction degree Variables Parameter optimization Robustness

Searching Parameter Values from Period Constraints in
LTL

0

0.1

0.2

0.3

0.4

0.5

 0  20  40  60  80  100  120  140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0

0.1

0.2

0.3

0.4

0.5

 0  20  40  60  80  100  120  140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

p p∗
[MPF]

Pb : find values of 8 parameters such that period is 20
φ∗:F(MPFlocalmaximum ∧Time=t1∧ F(MPFlocalmaximum

∧Time=t2) )
( with MPFlocalmaximum : d([MPF])/dt>0 ∧ X(d([MPF])/dt≤0) )

period z=t2-t1
goal z=20

Solution found after 60s (200 calls to the fitness function)

64 / 79



Closed formulae Satisfaction degree Variables Parameter optimization Robustness

Oscillations in MAPK signal transduction cascade

MAPK signaling model [Huang Ferrel PNAS 96]

search for oscillations in 37 dimensions (30 parameters and
7 initial conditions)
Solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]

No negative feedback in the reaction graph, but negative
circuits in the influence graph
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search for oscillations in 37 dimensions (30 parameters and
7 initial conditions)
Solution found after 3 min (200 calls to the fitness function)
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No negative feedback in the reaction graph, but negative
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Oscillations in MAPK signal transduction cascade

MAPK signaling model [Huang Ferrel PNAS 96]

search for oscillations in 37 dimensions (30 parameters and
7 initial conditions)
Solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]

No negative feedback in the reaction graph, but negative
circuits in the influence graph 67 / 79



Closed formulae Satisfaction degree Variables Parameter optimization Robustness

Robustness Measure Definition

Robustness defined with respect to :

a biological system

a functionality property Da

a set P of perturbations

General notion of robustness proposed in [Kitano MSB 07]:

Ra,P =

∫
p∈P

Da(p) prob(p) dp

Computational measure of robustness w.r.t. LTL(R) spec:

Rφ,P =
∑
p∈P

sd(T (p), φ) prob(p) dp

where T (p) is the trace obtained by numerical integration of
the ODE for perturbation p
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Robustness analysis w.r.t parameter perturbations

Example with :

cell cycle model [Tyson PNAS 91]

oscillation of amplitude at least 0.2

φ∗: F( [A]≥x) ∧ F([A]≤y) ; amplitude x-y≥0.2

parameters normally distributed, µ = pref , CV=0.2

k
4

k6

.

.Violation degree in parameter space

. .

.

pA pB

pC

Proc. Natl. Acad. Sci. USA 88 (1991)
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FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.

so k6 abruptly increases 2-fold. Continued cell growth causes
k6(t) again to decrease, and the cycle repeats itself. The
interplay between the control system, cell growth, and DNA
replication generates periodic changes in k6(t) and periodic
bursts of MPF activity with a cycle time identical to the
mass-doubling time of the growing cell.

Figs. 2 and 3 demonstrate that, depending on the values of
k4 and k6, the cell cycle regulatory system exhibits three

b

0.4
a 100

0 20 40 60 80 100 0 20 40 60 80 100

t, min t, min

different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
growth-controlled bursts of MPF activity in proliferating
somatic cells.

Midblastula Traiisiton

A possible developmental scenario is illustrated by the path
1 ... 5 in Fig. 2. Upon fertilization, the metaphase-arrested
egg (at point 1) is stimulated to rapid cell divisions (2) by an
increase in the activity of the enzyme catalyzing step 6 (28).
During the early embryonic cell cycles (2-+ 3), the regulatory
system is executing autonomous oscillations, and the control
parameters, k4 and k6, increase as the nuclear genes coding
for these enzymes are activated. At midblastula (3), auton-
omous oscillations cease, and the regulatory system enters
the excitable domain. Cell division now becomes growth
controlled. As cells grow, k6 decreases (inhibitor diluted)
and/or k4 increases (activator accumulates), which drives the
regulatory system back into domain B (4 -S 5). The subse-
quent burst of MPF activity triggers mitosis, causes k6 to
increase (inhibitor synthesis) and/or k4 to decrease (activator
degradation), and brings the regulatory system back into the
excitable domain (5 -* 4).
Although there is a clear and abrupt lengthening of inter-

division times at MBT, there is no visible increase in cell
volume immediately thereafter (6, 20), so how can we enter-
tain the idea that cell division becomes growth controlled
after MBT? In the paradigm ofgrowth control ofcell division,
cell "size" is never precisely specified, because no one
knows what molecules, structures, or properties are used by
cells to monitor their size. Thus, even though post-MBT cells

C

r k6' min-1

0 100 200 300 400 500

t, min

FIG. 3. Dynamical behavior of the cdc2-cyclin model. The curves are total cyclin ([YT] = [Y] + [YP] + [pM] + [M]) and active MPF [Ml
relative to total cdc2 ([CT] = [C2] + [CP] + [pM] + [MI). The differential equations in Table 1, for the parameter values in Table 2, were solved
numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
solution that is asymptotically stable with respect to small perturbations in any of the dynamical variables. (b) Excitable steady state for k4 =
180 min 1, k6 = 2 min' (point + in Fig. 2). Notice that the ordinate is a logarithmic scale. The steady state of low MPF activity ([M]/[CT]
= 0.0074, [YT]/[CT] = 0.566) is stable with respect to small perturbations of MPF activity (at 1 and 2) but a sufficiently large perturbation of
[Ml (at 3) triggers a transient activation of MPF and subsequent destruction of cyclin. The regulatory system then recovers to the stable steady
state. (c) Parameter values as in b except that k6 is now a function of time (oscillating near point + in Fig. 2). See text for an explanation of
the rules for k6(Q). Notice that the period between cell divisions (bursts in MPF activity) is identical to the mass-doubling time (Td = 116 min
in this simulation). Simulations with different values of Td (not shown) demonstrate that the period between MPF bursts is typically equal to
the mass-doubling time-i.e., the cell division cycle is growth controlled under these circumstances. Growth control can also be achieved
(simulations not shown), holding k6 constant, by assuming that k4 increases with time between divisions and decreases abruptly after an MPF
burst.

7330 Cell Biology: Tyson

Rφ,pA = 0.83, Rφ,pB = 0.43, Rφ,pC = 0.49
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Application to Synthetic Biology in E. Coli

Cascade of transcriptional inhibitions added to E.coli [Weiss 05 pnas]

input small molecule aTc output protein EYFP

Specification: EYFP has to remain below 103 for at least 150mn
then exceeds 105 after at most 450 min.,
and switches from low to high levels in less than 150 min.
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Specifying the expected behavior in FO-LTL(R)

The timing specifications can be formalized in temporal logic as
follows:

φ(t1, t2) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > 150 ∧ t2 < 450 ∧ t2 − t1 < 150

which is abstracted into

φ(t1, t2, b1, b2, b3) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > b1 ∧ t2 < b2 ∧ t2 − t1 < b3

for computing validity domains for b1, b2, b3

with the objective b1 = 150, b2 = 450, b3 = 150
for computing the satisfaction degree in a given trace.
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Improving robustness

Variance-based global sensitivity indices Si = Var(E(R|Pi ))
Var(R) ∈ [0, 1]

Sγ 20.2 % Sκeyfp ,γ 8.7 %
Sκeyfp 7.4 % SκcI ,γ 6.2 %
SκcI 6.1 % Sκ0

cI
,γ 5.0 %

Sκ0
lacI

3.3 % Sκ0
cI
,κeyfp

2.8 %

Sκ0
cI

2.0 % SκcI ,κeyfp 1.8 %

SκlacI 1.5 % Sκ0
eyfp

,γ 1.5 %

Sκ0
eyfp

0.9 % Sκ0
cI
,κcI

1.1 %

SuaTc 0.4 % Sκ0
cI
,κlacI

0.5 %

total first order 40.7 % total second order 31.2 %

degradation factor γ has the strongest impact on the cascade.
aTc variations have a very low impact
sensitivity to regulated κeyfp EYFP production more important
than basal κ0

eyfp

basal production of EYFP is due to an incomplete repression of the
promoter by CI (high effect of κcI ) rather than a constitutive
leakage of the promoter (low effect of κ0

eyfp).
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Improving robustness
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TD9 Protocell optimization

FO-LTL(Rlin) trace analysis

FO-LTL(Rlin) quantitative model-checking

sensitivity

robustness

parameter search
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