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Linear Time Logic FO-LTL(RR/;,)

@ Closed formulae
e Syntax and semantics on a trace
o Verification algorithm, parameter search by scanning
@ Constraints with variables
e Syntax and semantics by validity domains
e Constraint Solving algorithm for trace analysis
© Continuous satisfaction degree
e Parameter optimization by evolutionary algorithm
o Robustness measure
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Closed formulae

Linear Time Logic LTL(IR) over Traces

Trace (experiment or simulation): g 20

State variables: time, concentration [A], derivative d[A]/dt.
Atomic propositions: arithmetic expressions over state variables
Temporal operators: X, F, G, U, R
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Closed formulae

Linear Time Logic LTL(IR) over Traces

Trace (experiment or simulation): g 20

State variables: time, concentration [A], derivative d[A]/dt.
Atomic propositions: arithmetic expressions over state variables
Temporal operators: X, F, G, U, R

Minimum threshold reachability: F([A] > 0.2)

Minimum threshold stability: G([A] > 0.2)

Reachability of stable state: FG([A] > 0.2)

Local maximum reachability: F(d[A]/dt > 0 A Xd[A]/dt < 0)
Oscillations oscil(A,n) if at least n derivative sign changes
Curve fitting

F(Time = 1 A [M] = 0.05 A F(Time = 2 A [M] = 0.12 A [M] = 0.12 A F(Time = 3 A [M] = 0.25)))
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Closed formulae

Semantics of LTL(R) over finite traces

Completion of finite traces with an infinite loop on the last state.

5/79



Closed formulae

Semantics of LTL(R) over finite traces

Completion of finite traces with an infinite loop on the last state.

7 = ¢ for a proposition ¢ if ¢ holds in the first state of 7
TEXeifrl = ¢
TEFpif Ik>07k=¢
TEGoifVk>07k = o
TEoUYiIfIk>0rk EyYAYj<kn=¢
TE(RYIFVE>0nk=yvIi<kn=o¢

¢ releases 1 if 1 is always true or until ¢ becomes true
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Closed formulae

Semantics of LTL(R) over finite traces

Completion of finite traces with an infinite loop on the last state.

7 = ¢ for a proposition ¢ if ¢ holds in the first state of 7
TEXeifrl = ¢
TEFpif Ik>07k=¢
TEGoifVk>07k = o
TEoUYiIfIk>0rk EyYAYj<kn=¢
TE(RYIFVE>0nk=yvIi<kn=o¢

¢ releases 1 if 1 is always true or until ¢ becomes true

Duality: ~(¢ U ) = (= R ~¢)), = F ¢ = G —¢, =X¢ = X,
Expressiveness: G¢ = false R ¢, F¢ = true U ¢,
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Closed formulae

Semantics of LTL(R) over finite traces

Completion of finite traces with an infinite loop on the last state.

7 = ¢ for a proposition ¢ if ¢ holds in the first state of 7
TEXeifrl = ¢
TEFpif Ik>07k=¢
TEGoifVk>07k = o
TEoUYiIfIk>0rk EyYAYj<kn=¢
TE(RYIFVE>0nk=yvIi<kn=o¢

¢ releases 1 if 1 is always true or until ¢ becomes true

Duality: ~(¢ U ) = (= R ~¢)), = F ¢ = G —¢, =X¢ = X,
Expressiveness: G¢ = false R ¢, F¢ = true U ¢,

Negation free formulae: expressed with A, V, X, F, G, U, R with
negations eliminated down to atomic propositions.
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LTL(R) Verification Algorithm

Input: A finite trace m and a LTL(R) formula ¢
Output: whether or not 7 = ¢
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Closed formulae

LTL(R) Verification Algorithm

Input: A finite trace m and a LTL(R) formula ¢
Output: whether or not 7 = ¢

@ Complete the trace with a loop on the last state
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Closed formulae

LTL(R) Verification Algorithm

Input: A finite trace m and a LTL(R) formula ¢
Output: whether or not 7 = ¢

@ Complete the trace with a loop on the last state

@ lteratively label the states with the sub-formulae of ¢ that are
true:

o Label the states with the atomic propositions that are true,
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Closed formulae

LTL(R) Verification Algorithm

Input: A finite trace m and a LTL(R) formula ¢
Output: whether or not 7 = ¢

@ Complete the trace with a loop on the last state

@ lteratively label the states with the sub-formulae of ¢ that are
true:

o Label the states with the atomic propositions that are true,
e Add X¢ to the immediate predecessors of states labeled by ¢,
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Closed formulae

LTL(R) Verification Algorithm

Input: A finite trace m and a LTL(R) formula ¢
Output: whether or not 7 = ¢

@ Complete the trace with a loop on the last state
@ lteratively label the states with the sub-formulae of ¢ that are
true:
o Label the states with the atomic propositions that are true,
e Add X¢ to the immediate predecessors of states labeled by ¢,
e Add ¢ U 9 to the predecessors of states labelled by ¥ while
they satisfy ¢,
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Closed formulae

LTL(R) Verification Algorithm

Input: A finite trace m and a LTL(R) formula ¢
Output: whether or not 7 = ¢

@ Complete the trace with a loop on the last state

@ lteratively label the states with the sub-formulae of ¢ that are
true:

o Label the states with the atomic propositions that are true,

e Add X¢ to the immediate predecessors of states labeled by ¢,

e Add ¢ U 9 to the predecessors of states labelled by ¥ while
they satisfy ¢,

e Add ¢ R % to the last state if it is labelled by 1, to the states
labelled by ¢ and 1, and to their predecessors while 1) holds
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Closed formulae

LTL(R) Verification Algorithm

Input: A finite trace m and a LTL(R) formula ¢
Output: whether or not 7 = ¢

@ Complete the trace with a loop on the last state
@ lteratively label the states with the sub-formulae of ¢ that are
true:
o Label the states with the atomic propositions that are true,
e Add X¢ to the immediate predecessors of states labeled by ¢,
e Add ¢ U 9 to the predecessors of states labelled by ¥ while
they satisfy ¢,
e Add ¢ R % to the last state if it is labelled by 1, to the states
labelled by ¢ and 1, and to their predecessors while 1) holds

© Return true if the initial state is labelled by ¢, and false
otherwise
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Closed formulae

Parameter Search by Scanning

input: a reaction systems R(k) with n parameters k given with
range [k;, ki, step size s; and an LTL(R) formula ¢

output: parameter values v such that w(v) = ¢ where 7(v) is a
simulation trace of R(v) or fail
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Closed formulae

Parameter Search by Scanning

input: a reaction systems R(k) with n parameters k given with
range [k;, ki, step size s; and an LTL(R) formula ¢

output: parameter values v such that w(v) = ¢ where 7(v) is a
simulation trace of R(v) or fail

© Scan the parameter value space M7[k;, k;] with a fixed step
size s; for each parameter k;

@ Test whether 7(v) = ¢ by model checking

© Return the first value set v which satisfies f
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Closed formulae

Parameter Search by Scanning

input: a reaction systems R(k) with n parameters k given with
range [k;, ki, step size s; and an LTL(R) formula ¢

output: parameter values v such that w(v) = ¢ where 7(v) is a
simulation trace of R(v) or fail

© Scan the parameter value space M7[k;, k;] with a fixed step
size s; for each parameter k;

@ Test whether 7(v) = ¢ by model checking
© Return the first value set v which satisfies f

Exponential complexity in O(sy * .. .s,)
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Closed formulae

Parameter Search by Scanning

input: a reaction systems R(k) with n parameters k given with
range [k;, ki, step size s; and an LTL(R) formula ¢

output: parameter values v such that w(v) = ¢ where 7(v) is a
simulation trace of R(v) or fail

© Scan the parameter value space M7[k;, k;] with a fixed step
size s; for each parameter k;

@ Test whether 7(v) = ¢ by model checking
© Return the first value set v which satisfies f

Exponential complexity in O(sy * .. .s,)

Continuous optimization procedure ? need a continuous
satisfaction degree (fitness function) for LTL(R) formulae
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Closed formulae

Yeast Cell Cycle Control [Tyson 91]

k1 for _ => Cyclin. /

! P
k2+[Cyclin] for Cyclin => _. LR

a5 9|8
k8% [Cdc2] for Cdc2 => Cdc2~{p1}.

cyclin}-P i 3 k]
k9% [Cdc2”{p1}] for Cdc2"{p1} => Cdc2. feac2]
p
k3% [Cyclin] *[Cdc2"{p1}] for Cyclin+Cdc2 {p1} => Cdc2~{p1}-Cyclin~{pi}. k
2

k4p*[Cdc2"{p1}-Cyclin~{p1}] for Cdc2"{p1}-Cyclin~{p1} => Cdc2-Cyclin~{pi}. o;// K\sa

k4x[Cdc2-Cyclin~{p1}] "2*[Cdc2"{p1}-Cyclin~{p1}] for
Cdc2~{p1}-Cyclin~{p1} =[Cdc2-Cyclin~{p1}]=> Cdc2-Cyclin~{pi}.

k5% [Cdc2-Cyclin“{p1}] for Cdc2-Cyclin~{pl} => Cdc2~{p1}-Cyclin~{p1}.
k6% [Cdc2-Cyclin™{p1}] for Cdc2-Cyclin~{p1} => Cdc2+Cyclin~{pi1}.
k7*[Cyclin™{p1}] for Cyclin~{pi1} => _.

parameter(k1,0.015) . parameter(k2,0.015). parameter(k3,200).
parameter (k4p,0.018) . parameter(k4,180). parameter(k5,0).

parameter(k6,1). parameter(k7,0.6). parameter(k8,100).parameter(k9,100).

present(Cdc2,1) .
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Closed formulae

Learning Oscillations

biocham: search_parameters([k3,k4], [(0,200),(0,200)]1,20,
oscil(Cdc2-Cyclin~{p1},3),150).

First values found :

parameter(k3,10). ot —EE gy

cdoz”(pL)

parameter (k4,70) . oo |
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Closed formulae

Learning Oscillations

biocham: search_parameters([k3,k4], [(0,200),(0,200)]1,20,
0scil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]1>0.15), 150).

First values found :

e-s Cdo2
parameter(k3,10). ot —EE gy
parameter(k4,120) . oo |

o

E‘ 1
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Closed formulae

Learning Oscillations

biocham: search_parameters([k3,k4], [(0,200),(0,200)]1,20,
period(Cdc2-Cyclin~{p1},35), 150).

First values found:

parameter(k3,10). ot —EE gy

cdoz”(pL)

parameter (k4,280) . oo |

o
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Satisfaction degree

True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well
adapted to several problems :

@ parameter search, optimization and control of continuous
models

@ quantitative estimation of robustness

@ sensitivity analyses
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Satisfaction degree

True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well
adapted to several problems :

@ parameter search, optimization and control of continuous
models

@ quantitative estimation of robustness

@ sensitivity analyses

— need for a continuous degree of satisfaction of temporal logic
formulae

How far is the system from verifying the specification ?
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Satisfaction degree

Model-Checking Generalized to Constraint Solving

LTL(R)

O=F([Al27
AF([A]<0))

/
Model-checking

the formula is false
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Satisfaction degree

Model-Checking Generalized to Constraint Solving

>time
LTL(R) QFLTL(R)
O=F([A]z7 O*=F([Al=x
AF([A]=0)) AF([Al=y))
e ~

Model-checking Constraint solving

the formula is true for any
x<10 A y=2

the formula is false
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Satisfaction degree

Model-Checking Generalized to Constraint Solving

time + T
LTL(R) CQF LTL(R) ¢
O=F(Alz7 | O*=F([Al=x
AF([A]<0)) AF([Al=y))
~ ! ~
Model-checking | Constraint solving
! N

i the formula is true for any

the formula is false x<10 A y=2

Validity domain Dy-(T) of free variables in ¢*
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Satisfaction degree

Model-Checking Generalized to Constraint Solving

time + T
LTL(R) CQF LTL(R) ¢
O=F(Alz7 | O*=F([Al=x
AF([A]<0)) AF([Al=y))
~ ! ~
Model-checking | Constraint solving
! N

: i the formula is true for any
the formula is false  vd=2 sd=1/3 ! x<10 A y=2

Validity domain Dy-(T) of free variables in ¢*
Violation degree vd( T, ¢) = distance(val(¢), Dy+(T))
Satisfaction degree sd(T,¢) = ﬁ(ﬂﬁ) € [0,1]
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Variables

FO-LTL(RRj;,) Constraints with Variables

Free variables x, y, ...

Linear constraints as atomic propositions
Logical quantifiers ¥x Jy

Temporal operators: X, F, G, U, R
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Variables

FO-LTL(RRj;,) Constraints with Variables

Free variables x, y, ...

Linear constraints as atomic propositions
Logical quantifiers ¥x Jy

Temporal operators: X, F, G, U, R

Minimum value m: G([A] > m)
Minimum amplitude a: 3v F([A] < v) AF([A] > v + a)
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Variables

FO-LTL(RRj;,) Constraints with Variables

@ Free variables x, y, ...

@ Linear constraints as atomic propositions
@ Logical quantifiers Vx dy

@ Temporal operators: X, F, G, U, R

Minimum value m: G([A] > m)
Minimum amplitude a: 3v F([A] < v) AF([A] > v + a)

Crossing at time t: F([A] > [B] A X([A] < [B] A Time = t))

Timing constraints
G(Time < tl = [A] < 1A Time > t2 = [A] > 10) A t2 — t1 < 60
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Variables

FO-LTL(RRj;,) Constraints with Variables

Free variables x, y, ...

Linear constraints as atomic propositions
Logical quantifiers ¥x Jy

Temporal operators: X, F, G, U, R

Minimum value m: G([A] > m)
Minimum amplitude a: 3v F([A] < v) AF([A] > v + a)

Crossing at time t: F([A] > [B] A X([A] < [B] A Time = t))
Timing constraints

G(Time < tl = [A] < 1A Time > t2 = [A] > 10) A t2 — t1 < 60

Oscillations oscil(A,n) if at least n derivative sign changes
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Validity Domains of Free Variables

FO-LTL(RRji,) formula ¢(y) with free variables y

The validity domain of ¢(y) in a trace T is the set of values x for
which ¢(x) holds: D1 4) = {x €ER" | T = ¢(x)}
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Variables

Validity Domains of Free Variables

FO-LTL(RRji,) formula ¢(y) with free variables y

The validity domain of ¢(y) in a trace T is the set of values x for
which ¢(x) holds: D1 4) = {x €ER" | T = ¢(x)}

For linear constraints over R, validity domains can be represented
as finite unions of polyhedra

@ polyhedra for conjunctions,
@ union for disjunction,
@ complementation for negation,

@ projection for 3
BIOCHAM uses the Parma Polyhedral Library PPL
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Variables

Inductive Definition of Validity Domains

The validity domain D(g; . s.),¢ of the free variables of ¢ on a
trace T = (sp, ..., Sn) is the vector Dy, 4 of least domains satisfying
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Variables

Inductive Definition of Validity Domains

The validity domain D(g; . s.),¢ of the free variables of ¢ on a
trace T = (sp, ..., Sn) is the vector Dy, 4 of least domains satisfying

Dy, c(x) = {v € R¥ | 5 |= c[v/x]} for a constraint c(x),
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Variables

Inductive Definition of Validity Domains

The validity domain D(g; . s.),¢ of the free variables of ¢ on a
trace T = (sp, ..., Sn) is the vector Dy, 4 of least domains satisfying

Dy, c(x) = {v € R¥ | 5 |= c[v/x]} for a constraint c(x),

Ds; onyp = Ds; 9 N Dy, ., and Ds; ¢vyp = Ds;,9 U Ds, 4,
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Variables

Inductive Definition of Validity Domains

The validity domain D(g; . s.),¢ of the free variables of ¢ on a
trace T = (sp, ..., Sn) is the vector Dy, 4 of least domains satisfying

Dy, c(x) = {v € R¥ | 5 |= c[v/x]} for a constraint c(x),
Ds; ¢ny = Ds9 N Dg; g, and D gy = Ds; 6 U D,
Dg ¢ = C Dg;. 1

where [ is the set complement operator over domains, and
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Variables

Inductive Definition of Validity Domains

The validity domain D(g; . s.),¢ of the free variables of ¢ on a
trace T = (sp, ..., Sn) is the vector Dy, 4 of least domains satisfying

Dy, c(x) = {v € R¥ | 5 |= c[v/x]} for a constraint c(x),
Ds; ¢ny = Ds9 N Dg; g, and D gy = Ds; 6 U D,
Dg ¢ = C Dg;. 1

Ds; ax¢ = MNxDs; ¢, and Dg, yxp = Ds; ~3x-¢,

where [ is the set complement operator over domains, and Iy is
the domain projection operator out of x, restoring domain R for x.
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Variables

Inductive Definition of Validity Domains

The validity domain D(g; . s.),¢ of the free variables of ¢ on a
trace T = (sp, ..., Sn) is the vector Dy, 4 of least domains satisfying

Dy, c(x) = {v € R¥ | 5 |= c[v/x]} for a constraint c(x),
Ds, spp = Ds;. ¢ N Ds, 5, and Dy, gy = Ds; 4 U Dg, y,
Ds, —p = C Dy, 4,

Dy, 3x¢ = NxDs; ¢, and Ds, yvxp = Ds; ~3x-4.

Ds; x¢ = Ds;,1,6 if i < n, and D, x4 = Ds, ¢,

where [ is the set complement operator over domains, and Iy is
the domain projection operator out of x, restoring domain R for x.
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Variables

Inductive Definition of Validity Domains

The validity domain D(g; . s.),¢ of the free variables of ¢ on a
trace T = (sp, ..., Sn) is the vector Dy, 4 of least domains satisfying

D, c(x) = {v e R¥ | s; = c[v/x]} for a constraint c(x),
Ds, spp = Ds;. ¢ N Ds, 5, and Dy, gy = Ds; 4 U Dg, y,
Ds, —p = C Dy, 4,

Ds; 3xp = NxDs; ¢, and Ds, yxp = Ds; ~3x-¢»

Ds; x¢ = Ds;,1,6 if i < n, and D, x4 = Ds, ¢,

Ds,kp = U[_; D5, and Ds, 66 = (i=; Ds;

where [ is the set complement operator over domains, and Iy is
the domain projection operator out of x, restoring domain R for x.
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Variables

Inductive Definition of Validity Domains

The validity domain D(g; . s.),¢ of the free variables of ¢ on a
trace T = (sp, ..., Sn) is the vector Dy, 4 of least domains satisfying

Dy, c(x) = {v € R¥ | 5 |= c[v/x]} for a constraint c(x),
Ds, spp = Ds;. ¢ N Ds, 5, and Dy, gy = Ds; 4 U Dg, y,
Ds, —p = C Dy, 4,

Ds; ax¢ = MNxDs; ¢, and Dg, yxp = Ds; ~3x-¢,

Ds; x¢ = Ds;,1,6 if i < n, and D, x4 = Ds, ¢,

Ds,kp = U[_; D5, and Ds, 66 = (i=; Ds;

Dspuy = le:i(l)%yw r]f1i13}79a0¢)-

where [ is the set complement operator over domains, and Iy is
the domain projection operator out of x, restoring domain R for x.
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Variables

Complexity with Bound Constraints only FO-LTL(IRpy)

Bound constraints x > b, x < b define boxes R; € RY. Let the
size of a union of boxes D be the least k s.t.D = Ufle Ri.
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Variables

Complexity with Bound Constraints only FO-LTL(IRpy)

Bound constraints x > b, x < b define boxes R; € RY. Let the
size of a union of boxes D be the least k s.t.D = Ufle Ri.

Proposition (complexity of the validity domain)

The validity domain of an FO-LTL(Rpox ) formula of size f on v
variables on a trace of length n is a union of boxes of size

O((nf)?).
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Variables

Complexity with Bound Constraints only FO-LTL(IRpy)

Bound constraints x > b, x < b define boxes R; € RY. Let the
size of a union of boxes D be the least k s.t.D = Uf‘zl Ri.

Proposition (complexity of the validity domain)

The validity domain of an FO-LTL(Rpox ) formula of size f on v
variables on a trace of length n is a union of boxes of size

O((nf)?v).
One bound constraint produces at most n bounds. We have at
most nf bounds, O((nf)?) intervals and O((nf)?") boxes. O

V.
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Variables

Complexity with Bound Constraints only FO-LTL(IRpy)

Bound constraints x > b, x < b define boxes R; € RY. Let the
size of a union of boxes D be the least k s.t.D = Uf‘zl Ri.

Proposition (complexity of the validity domain)

The validity domain of an FO-LTL(Rpox ) formula of size f on v
variables on a trace of length n is a union of boxes of size

O((nf)?v).
One bound constraint produces at most n bounds. We have at
most nf bounds, O((nf)?) intervals and O((nf)?") boxes. O

V.

Ex. F(JA|+1=uV---V[A] + f = u) can create O(nf) values for u.
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Variables

Complexity with Bound Constraints only FO-LTL(IRpy)

Bound constraints x > b, x < b define boxes R; € RY. Let the
size of a union of boxes D be the least k s.t.D = Uf‘zl Ri.

Proposition (complexity of the validity domain)

The validity domain of an FO-LTL(Rpox ) formula of size f on v
variables on a trace of length n is a union of boxes of size

O((nf)?).

| A

Proof.
One bound constraint produces at most n bounds. We have at
most nf bounds, O((nf)?) intervals and O((nf)?") boxes. O

V.

Ex. F(JA|+1=uV---V[A] + f = u) can create O(nf) values for u.
F([Al]+1 = XiV..V[Ai]+f = X)A.. . AF(JA]+1 =X V.. V[A]+f = X))
has a validity domain of O((nf)") points.
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Variables

Yeast Cell Cycle Control [Tyson 91]

domains (G(([MPF|>=v)&([MPFl=<v+a))).
v + a >= 0.8375567, v =< 0.0016107
Time elapsed : 48 ms

domains (maxAmpl ([MPF] ,[a])).
a >= 0.835946
Time elapsed : 0 ms

omains(distanceSuccPeaks (MPF,d)).
= 23.3555

= 23.1196

= 23.119

d
d
|
d
|
d = 23.0935
|
d
Time elapsed : 330 ms
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Variables

Violation degree of an LTL formula

Violation degree vd( T, ¢) and satisfaction degree sd( T, ¢

In the variable space of ¢*, ¢ is a single point var().
vd(T, ) = minveD¢*(T)d(V7 var(¢)) sd(T,¢) = H—T(Td)) € [0,1]

@"(xy)= F(1Alx A F([Alsy))

®T65) vd=0 )
®6,0) vd=2 (X)
¢*(1 2.0) vd=2v2 (X) 50/79

®q =F(Al26 A F([Al<5))
@p =F(A]26 A F([Al<0))
¢ =F(Al212 A F([A]<0))



Variables

Violation degree of an LTL formula

Violation degree vd( T, ¢) and satisfaction degree sd( T, ¢
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Variables

Violation degree of an LTL formula
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Variables

Violation degree of an LTL formula

Violation degree vd( T, ¢) and satisfaction degree sd( T, ¢

In the variable space of ¢*, ¢ is a single point var().
vd(T, ) = minveD¢*(T)d(V7 var(¢)) sd(T,¢) = H—T(Td)) € [0,1]

@"(xy)= F(1Alx A F([Alsy))

®T65) vd=0 )
®6,0) vd=2 (X)
¢*(1 2.0) vd=2v2 (X) 53/79

®q =F(Al26 A F([Al<5))
@p =F(A]26 A F([Al<0))
¢ =F(Al212 A F([A]<0))



Variables

LTL Continuous Satisfaction Landscape

Example with :
@ yeast cell cycle model [Tyson PNAS 91]
@ oscillation of at least 0.3
¢*: F( [A]>x) A F([A]<y); amplitude x-y>0.3

- Violation degree in parameter space
1000 100 —

o1 10 0
ks,min" " “
Bifurcation diagram LTL satisfaction diagram
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Parameter optimization

Searching kinetic parameter values from LTL specifications

@ simple model of the yeast cell cycle from [Tyson PNAS 91]
e models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)
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Parameter optimization

Searching kinetic parameter values from LTL specifications

@ simple model of the yeast cell cycle from [Tyson PNAS 91]
e models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)

@ Pb : find values of 8 parameters such that amplitude is > 0.3
¢*: F([Al2v) A F([AI<y)
amplitude z=x-y
goal : z=0.3
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Parameter optimization

Searching kinetic parameter values from LTL specifications

@ simple model of the yeast cell cycle from [Tyson PNAS 91]
e models Cdc2 and Cyclin interactions (6 variables, 8 kinetic
parameters)

P—>p"

@ Pb : find values of 8 parameters such that amplitude is > 0.3
¢*: F([Al2v) A F([AI<y)
amplitude z=x-y
goal : z=0.3

@ Solution found after 30s (100 calls to the fitness function)
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Parameter optimization

Covariance Matrix Adaptation Evolutionary Strategy

CMA-ES maximizes a black box fitness function (here sd(¢)) in
continuous domain (k) [Hansen Osermeier 01, Hansen 08]

58 /79



Parameter optimization

Covariance Matrix Adaptation Evolutionary Strategy

CMA-ES maximizes a black box fitness function (here sd(¢)) in
continuous domain (k) [Hansen Osermeier 01, Hansen 08]

@ probabilistic neighborhood: multivariate normal distribution
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Parameter optimization

Covariance Matrix Adaptation Evolutionary Strategy

CMA-ES maximizes a black box fitness function (here sd(¢)) in
continuous domain (k) [Hansen Osermeier 01, Hansen 08]

@ probabilistic neighborhood: multivariate normal distribution
@ evaluation of covariance matrix by sampling (e.g. 50 best of
100 simulations)
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Parameter optimization

Covariance Matrix Adaptation Evolutionary Strategy

CMA-ES maximizes a black box fitness function (here sd(¢)) in
continuous domain (k) [Hansen Osermeier 01, Hansen 08]

@ probabilistic neighborhood: multivariate normal distribution

@ evaluation of covariance matrix by sampling (e.g. 50 best of
100 simulations)

@ move and distribution update according to covariance matrix

Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6
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Parameter optimization

Searching Parameter Values from Period Constraints in

LTL
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Parameter optimization

Searching Parameter Values from Period Constraints in

LTL

@ Pb : find values of 8 parameters such that period is 20
QS*:F(MPFlocalmaximum ATime=t1A F(MPFIocalmaximum
ATime=t2) )

( with MPF jocaimaximum © d([MPF])/dt>0 A X(d([MPF])/dt<0) )
period z=t2-t1
goal z=20
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Parameter optimization

Searching Parameter Values from Period Constraints in

LTL

P——>p e

[\S V o s L
E) w0 o E) © E) ) w2

@ Pb : find values of 8 parameters such that period is 20
QS*:F(MPFlocalmaximum ATime=t1A F(MPFIocalmaximum
ATime=t2) )

( with MPF jocaimaximum : d([MPF])/dt>0 A X(d([MPF])/dt<0) )
period z=t2-t1
goal z=20
@ Solution found after 60s (200 calls to the fitness function)
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Parameter optimization

Oscillations in MAPK signal transduction cascade

o MAPK signaling model [Huang Ferrel PNAS 96]
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Parameter optimization

Oscillations in MAPK signal transduction cascade

o MAPK signaling model [Huang Ferrel PNAS 96]

e

) Jj
o - L
0 m w00 o o

e search for oscillations in 37 dimensions (30 parameters and
7 initial conditions)
Solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]
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Parameter optimization

Oscillations in MAPK signal transduction cascade

o MAPK signaling model [Huang Ferrel PNAS 96]

s

) Jj
0 —
o 200 w00 o

e search for oscillations in 37 dimensions (30 parameters and
7 initial conditions)
Solution found after 3 min (200 calls to the fitness function)
Oscillations already observed by simulation [Qiao et al. 07]
@ No negative feedback in the reaction graph, but negative
circuits in the influence graph 67/79



Robustness

Robustness Measure Definition

Robustness defined with respect to :
@ a biological system
@ a functionality property D,
@ a set P of perturbations

General notion of robustness proposed in [Kitano MSB 07]:

Rap = / Da(p) prob(p) dp
peP
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Robustness

Robustness Measure Definition

Robustness defined with respect to :
@ a biological system
@ a functionality property D,
@ a set P of perturbations

@ General notion of robustness proposed in [Kitano MSB 07]:
Rap = [ Dulp) problp) do
peP
e Computational measure of robustness w.r.t. LTL(R) spec:

Rop =Y _sd(T(p), o) prob(p) dp
peP

where T(p) is the trace obtained by numerical integration of
the ODE for perturbation p
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Robustness

Robustness analysis w.r.t parameter perturbations

Example with :
o cell cycle model [Tyson PNAS 91]
@ oscillation of amplitude at least 0.2
¢*: F( [A]>x) A F([A]<y) ; amplitude x-y>0.2
@ parameters normally distributed, = prer, CV=0.2

1000 Violation degree in parameter space

01 10 10
1

k6' min

Reppn = 0.83, Ry pp = 043, Ry, = 0.49
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Robustness

Application to Synthetic Biology in E. Coli

Cascade of transcriptional inhibitions added to E.coli [Weiss 05 pnas]

input small molecule aTc output protein EYFP
aTc
!
’—o TetR ‘ Lacl ‘ = CI | EYFP
tetR lael ol ‘ eyfp

fluorescence

time

Specification: EYFP has to remain below 103 for at least 150mn
then exceeds 10° after at most 450 min.,
and switches from low to high levels in less than 150 min.
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Robustness

Specifying the expected behavior in FO-LTL(R)

The timing specifications can be formalized in temporal logic as
follows:

o(t1, 1) = G(time < t; — [EYFP] < 10%)
A G(time > t, — [EYFP] > 10°)
A t1 > 150 A tr <450 At — £ < 150
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Robustness

Specifying the expected behavior in FO-LTL(R)

The timing specifications can be formalized in temporal logic as
follows:

o(t1, 1) = G(time < t; — [EYFP] < 10%)
A G(time > t, — [EYFP] > 10°)
A t1 > 150 A tr <450 At — £ < 150

which is abstracted into

¢(t1, tr, b1, by, b3) = G(time <t — [EYFP] < 103)
A G(time > t — [EYFP] > 10°)
A 1 >blAt < by ANty — 1t < b3

for computing validity domains for by, by, b3

with the objective by = 150, b, = 450, b3 = 150
for computing the satisfaction degree in a given trace.
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Robustness

Improving robustness

Variance-based global sensitivity indices S; = %{ﬁ)’:’)) € [0,1]
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Robustness

Improving robustness

Variance-based global sensitivity indices S; = Var(E(RIP)) ¢ [0, 1]

Var(R)
Sy 20.2% S,ieyfp,q 8.7%
SK/eyr'p 7.4% Ska v 6.2%
Sky 6.1% SHS,W 5.0%
K0 33% Sﬁglv’ﬁeyfp 2.8%
5“?:/ 2.0% Sﬁclﬁeyfp 1.8%
Sk et 1.5% S,.0 1.5%
0 oo 0

Sﬁgyfp 0.9% R0, 1.1%
SUaTc 0.4% “gp"‘lacl 0.5%
total first order | 40.7% || total second order | 31.2%

degradation factor « has the strongest impact on the cascade.
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Robustness

Improving robustness

Variance-based global sensitivity indices S; = Var(E(RIP)) ¢ [0, 1]

Var(R)
Sy 20.2% S,ieyfp,q 8.7%
SK/eyr'p 7.4% Ska v 6.2%
Sky 6.1% SHS,W 5.0%
K0 33% Sﬁglv’ﬁeyfp 2.8%
5“?:/ 2.0% Sﬁclﬁeyfp 1.8%
Sk et 1.5% S,.0 1.5%
0 oo 0

Sﬁgyfp 0.9% R0, 1.1%
SUaTc 0.4% “gp"‘lacl 0.5%
total first order | 40.7% || total second order | 31.2%

degradation factor « has the strongest impact on the cascade.
aTc variations have a very low impact
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Robustness

Improving robustness

Variance-based global sensitivity indices S; = Var(E(RIP)) ¢ [0, 1]

Var(R)
Sy 20.2% S,ieyfp,q 8.7%
SK/eyr'p 7.4% Ska v 6.2%
Sky 6.1% SHS,W 5.0%
K0 33% Sﬁﬂ,vmyrp 2.8%
5”?:/ 2.0% Sﬁclﬁeyfp 1.8%
Sk et 1.5% S,.0 1.5%
0 oo 0

Sﬁgyfp 0.9% R0, 1.1%
Su,7e 0.4% R0, et 0.5%
total first order | 40.7% || total second order | 31.2%

degradation factor « has the strongest impact on the cascade.
aTc variations have a very low impact
sensitivity to regulated ke, EYFP production more important

0
than basal Keyfo
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Robustness

Improving robustness

Variance-based global sensitivity indices S; = Var(E(RIP)) ¢ [0, 1]

Var(R)
Sy 20.2% Sneyfp,fy 8.7%
Smeyfp 7.4% Ska v 6.2%
Sky 6.1% Sn",,y 5.0%
K0 33% Sﬁﬂ,vmyrp 2.8%
5”01 2.0% Sﬁclﬁeyfp 1.8%
Sk et 1.5% K0~y 1.5%
eyfp’

S0 0.9% - 1.1%
eyfp o cl 2Pl o
Su,7e 0.4% R0, et 05%

total first order | 40.7% || total second order | 31.2%

degradation factor « has the strongest impact on the cascade.

aTc variations have a very low impact

sensitivity to regulated ke, EYFP production more important
than basal figyfp

basal production of EYFP is due to an incomplete repression of the
promoter by Cl (high effect of k) rather than a constitutive
leakage of the promoter (low effect of x0 . ).

eyfp
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Robustness

TD9 Protocell optimization

FO-LTL(RIin) trace analysis

FO-LTL(RIin) quantitative model-checking
sensitivity

robustness

parameter search
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