Méthodes Formelles pour la Biologie des Systèmes

François Fages
Project-Team Lifeware
http://lifeware.inria.fr/

Institut National de Recherche en Informatique et Automatique
Inria Saclay – Ile de France
Two Lectures

Formal Methods for Systems Biology
1. Introduction to Chemical Reaction Networks (CRNs)
 TD enzymatic Lotka-Volterra oscillator
2. Continuous semantics by ordinary differential equations
 TD enzyme kinetics
3. Formal behaviours in temporal logics and model-checking
 TD robustness and parameter search

The Cell: a Chemical Analog Computer
1. Turing completeness of continuous CRNs
 TD synthesis of oscillators and switches
2. Logical circuits for diagnosis
 TD doctor in the cell
Biochemical Kinetics

Study of the concentration of chemical substances as a function of time.

Molecular species: A_1, \ldots, A_m

$|A|$=Number of molecules A

$[A]$= $|A|$ / Volume (e.g. unit ML^{-1}) Concentration of A in the solution

noted also A by abuse of notation

Molecular solutions: S, S', \ldots:

multiset of molecules

linear expression with stoichiometric coefficients: $c_1 \cdot A_1 + \ldots + c_n \cdot A_n$

Reactions given with rate functions: f for $S \Rightarrow S'$
Mass Action Law Kinetics

Assumption: infinite diffusion speed, dilute solutions, low concentrations

Law: The number of reactions per time unit is proportional to the number of reactant molecules present in the solution

The rate of a reaction $A + B \rightarrow C$ is $k[A][B]$ for some reaction rate constant k

Continuous semantics: the time evolution of concentrations obeys the ODE

$\frac{dA}{dt} = -kA\,B$ \quad $\frac{dB}{dt} = -kA\,B$ \quad $\frac{dC}{dt} = kA\,B$

Stochastic semantics: SSA with same assumption of perfect diffusion

- infinite diffusion speed

Multi-agent semantics: simulation of diffusion

- finite diffusion speed for macromolecules
Interpretation of Rate Constants

Complexation rate constant: *probability of reaction upon collision*

specificity, affinity, position of matching surfaces and energy of bonds

Decomplexation rate constant: *total energy of the bonds*

Diffusion speeds:
small molecules > substrates > enzymes
cells are 10-100µm long, full of compartments
average travel in one random walk for one enzyme:

1 µm in 1s, 2µm in 4s, 10µm in 100s

500000 random collisions per second with a substrate concentration of 10^{-5}
50000 random collisions per second with a substrate concentration of 10^{-6}

Possibility of fast computations compared to DNA computation
Reaction Rate Functions

Mass action law kinetics
\[k*A \text{ for } A \rightarrow B \]
\[k*A*B \text{ for } A+B \rightarrow C \]
\[k*A^m*B^n \text{ for } m*A + n*B \rightarrow R \]

Henri-Michaelis-Menten kinetics
\[V_m*A/(K_m+A) \text{ for } A \rightarrow B \]

Hill kinetics
\[V_m*A^n/(K_m+A^n) \text{ for } A \rightarrow B \]

Origin and justification of these other rate functions?
come from reductions of mass action law CRNs
Continuous Semantics of a CRN

To a set of reactions \(\{ f_i \text{ for } S_i \rightarrow S_i' \}_{i=1,\ldots,n} \) given with rate functions \(f_i \)

one associates the Ordinary Differential Equations (ODE) over \(\{A_1,\ldots,A_k\} \)

\[
\frac{dA_k}{dt} = \sum_{i=1}^{n} (r_i(A_k) - l_i(A_k)) * f_i = \sum_{i=1}^{n} m_i(A_k) * f_i
\]

where \(l_i(A) \) is the stoichiometric coefficient of \(A \) in \(S_i \)

\(r_i(A) \) is the stoichiometric coefficient of \(A \) in \(S_i' \)

\(m_i = r_i - l_i \) is the net stoichiometric vector of reaction \(i \)

In matrix form: \(\dot{x} = M.f(x) \)

Solution \(x(t) \) by numerical integration

Steady states: concentrations \(x \) such that \(M.f(x) = 0 \) non-linear problem

Elementary modes: fluxes \(v \) such that \(M.v = 0 \) linear problem
Numerical Integration Methods

\[\frac{dX}{dt} = f(X) \text{ with initial conditions } X_0 \]

Idea: discretize time \(t_0, t_1 = t_0 + \Delta t, t_2 = t_1 + \Delta t, \ldots \) and compute a trace
\((t_0, X_0), (t_1, X_1), \ldots, (t_n, X_n)\)…

Forward Euler’s method: \(t_{i+1} = t_i + \Delta t \) \(X_{i+1} = X_i + f(X_i) \Delta t \)

estimation error \((X_{i+1}) = |f(X_i) - f(X_{i+1})| \Delta t \)

Midpoint method (Runge-Kutta): intermediate computation at \(\Delta t/2 \)

Adaptive step size: \(\Delta t_{i+1} = \Delta t_i / 2 \) while error > error max, otherwise \(\Delta t_{i+1} = 2 \Delta t_i \)

Implicit method (Rosenbrock): solve \(X_{i+1} = X_i + f(X_{i+1}) \Delta t \) by root finding

Biocham-3: Rosenbrock method implemented in Prolog
Biocham-4: GSL library with implicit method by default,
not as good as Biocham-3 \(\rightarrow \) back to Biocham-3 implementation

+ Events: hybrid systems (both continuous ODE and discrete event transitions)
Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:

\[E + S \stackrel{c_1}{\rightarrow} C \stackrel{c_3}{\rightarrow} E + P \]
\[E + S \stackrel{c_2}{\leftarrow} C \]

Mass action law kinetics ODE:

\[\frac{dE}{dt} = \]
Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:

\[E+S \xrightarrow{c_1} C \xrightarrow{c_3} E+P \]
\[E+S \xleftarrow{c_2} C \]

Mass action law kinetics ODE:

\[\frac{dE}{dt} = -c_1 ES + (c_2 + c_3)C \]
\[\frac{dS}{dt} = \]
Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:

$$E+S \rightarrow^{c_1} C \rightarrow^{c_3} E+P$$
$$E+S \leftarrow^{c_2} C$$

Mass action law kinetics ODE:

$$\frac{dE}{dt} = -c_1 ES + (c_2 + c_3)C$$
$$\frac{dS}{dt} = -c_1 ES + c_2 C$$
$$\frac{dC}{dt} =$$
Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:

\[E + S \rightarrow^{c_1} C \rightarrow^{c_3} E + P \]
\[E + S \leftarrow^{c_2} C \]

Mass action law kinetics ODE:

\[\frac{dE}{dt} = -c_1 ES + (c_2 + c_3)C \]
\[\frac{dS}{dt} = -c_1 ES + c_2 C \]
\[\frac{dC}{dt} = c_1 ES - (c_3 + c_2)C \]
\[\frac{dP}{dt} = \]
Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:

\[E + S \rightarrow^{c_1} C \rightarrow^{c_3} E + P \]
\[E + S \leftarrow^{c_2} C \]

Mass action law kinetics ODE:

\[\frac{dE}{dt} = -c_1 ES + (c_2 + c_3)C \]
\[\frac{dS}{dt} = -c_1 ES + c_2 C \]
\[\frac{dC}{dt} = c_1 ES - (c_3 + c_2)C \]
\[\frac{dP}{dt} = c_3 C \]

Two conservation laws (i.e. species s.t. \(\sum_{i=1}^{n} M_i = \text{constant} \) since \(\sum_{i=1}^{n} dM_i/dt = 0 \):
Single Enzymatic Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:
\[E+S \rightarrow^{c_1} C \rightarrow^{c_3} E+P \]
\[E+S \leftarrow^{c_2} C \]

Mass action law kinetics ODE:
\[
\begin{align*}
 \frac{dE}{dt} &= -c_1 ES + (c_2+c_3)C \\
 \frac{dS}{dt} &= -c_1 ES + c_2 C \\
 \frac{dC}{dt} &= c_1 ES - (c_3+c_2)C \\
 \frac{dP}{dt} &= c_3 C
\end{align*}
\]

Two conservation laws (i.e. species s.t. \(\sum_{i=1}^{n} M_i = \text{constant} \) since \(\sum_{i=1}^{n} \frac{dM_i}{dt} = 0 \):)
\[E+C=\text{constant}=E_0+C_0, \quad S+C+P=\text{constant}=S_0+C_0+P_0, \]
we can eliminate E and P and get the equivalent parametric system
\[
\begin{align*}
 \frac{dS}{dt} &= -c_1(E_0+C_0-C)S + c_2 C \\
 \frac{dC}{dt} &= c_1(E_0+C_0)S - (c_1S+c_2+c_3)C
\end{align*}
\]
we shall further assume \(C_0=0, \ P_0=0 \)
Bioregul 2019

François Fages

Slow/Fast Time Scales

Hydrolysis of benzoyl-L-arginine ethyl ester by trypsin (protein of 247 amino acids) present(E,1e-8). present(S,1e-5). \(E \ll S \)

parameter(c1=4e6, c2=25, c3=15). \(c1 \gg c2, c3 \)

\(c1*E*S \) for \(E+S \Rightarrow C \). \(c2*C \) for \(C \Rightarrow E+S \). \(c3*C \) for \(C \Rightarrow E+P \).

Complex formation 5e-9 in 0.1s Product formation 1e-5 in 400s

[Graphs showing the kinetics of complex and product formation]
Michaelis Menten Reduction

Assume $\frac{dC}{dt}=0$...

\[Vm \times \frac{S}{(Km+S)} \quad \text{for} \quad S \rightarrow P. \]

parameter($E0=1e-8$).

function($Vm=c2\times E0$).

function($Km = (c2+c3)/c1$).

Slightly different early trajectory in 0.1s
Same trajectory in 400 s
TD2: Enzyme Kinetics

BIOCHAM-4: version online http://lifeware.inria.fr/biocham4/online/

Michaelis-Menten enzymatic reaction CRN

- CRN of 3 reactions with mass action law kinetics
- Real parameter values for the hydrolysis of benzoyl-L-arginine ethyl ester by trypsin (protein of 247 amino acids)

In [1]: `present(E,z). parameter(z=1e-8).
present(S,s). parameter(s=1e-5).
absent(C).
absent(P).

In [2]: `parameter(k1=4e6, k2=25, k3=15).

In [3]: k1*E*S for E+S => C.
k2*C for C => E+S.
k3*C for C => E+P.`
Quasi-Steady State Approximation (QSSA)

Assume quasi-steady state $\frac{dC}{dt} \simeq 0 \simeq c_1 E_0 S - (c_1 S + c_2 + c_3) C$

Then $C = \frac{c_1 E_0 S}{c_1 S + c_2 + c_3}$

$= \frac{E_0 S}{K_m + S}$

where $K_m = \frac{c_2 + c_3}{c_1}$

substrate concentration with half maximum velocity

We get $\frac{dP}{dt} = -\frac{dS}{dt} = -c_1 (E_0 + C_0 - C) S + c_2 C$

$= \frac{V_m S}{K_m + S}$ where $V_m = c_3 E_0$

maximum velocity at saturating substrate concentration

Michaelis-Menten kinetics: $\frac{V_m S}{K_m + S}$ for $S \Rightarrow P$

C and E are eliminated but sometimes E is re-injected as a variable…

$c_3 * E * S / (K_m + S)$ for $S + E \Rightarrow E + P$
(Weak) Justification by Preservation of Time Scales

"Time taken for a significant change"

Time scale of $f(t) \approx \frac{f_{\text{max}} - f_{\text{min}}}{|\frac{df}{dt}|_{\text{max}}}$

Time scale of $C(t) \approx \frac{5e^{-8}}{4e^{-8}/0.01} = \frac{1}{80}$

Formally, suppose $S(t) = S_0$ we get

$$\frac{dC}{dt} = c_1(E_0 + C_0)S_0 - (c_1S_0 + c_2 + c_3)C$$

$$C(t) = (C_0 - \overline{C}) e^{-kt} + \overline{C} \text{ where } k = c_1S_0 + c_2 + c_3 \text{ and } \overline{C} = \frac{(E_0 + C_0)S_0}{K_m + S_0}$$

Taking k^{-1} as time scale of e^{-kt} (i.e. decrease of $e^{-1}\approx 1/3$ in k^{-1} time) gives in the Trypsin example $1/(10^{-5}\cdot 4\cdot 10^6 + 25 + 15) = 1/80 = 0.0125s$
Validity Condition of QSSA

When the time scale of S is much longer than the time scale of C...

S varies from S_0 to 0

$|dS/dt = -c_1(E_0-C)S + c_2C |$ is maximal when $S=S_0$, $C=C_0$

Time scale of $S \approx 1/(c_1E_0)$

In the Trypsin example $1/(4.10^6 \cdot 10^{-8}) \approx 25s$

Validity condition: $c_1E_0 << k = c_1S_0 + c_2 + c_3$ (e.g. Trypsin: $4.10^{-2} << 80$)

i.e. QSSA valid when $E_0 << S_0 + K_m$

in particular when $E_0 << S_0$ [Briggs and Haldane 1925]

Better justification by approximation in all time points [Tikhonov theorem]
Quasi-Equilibrium Approximation (QE)

Assume reaction equilibrium \(c_1 E S \approx c_2 C \) (fast complexation/decomplexation cycle)

From \(E = E_0 - C \) we get \(c_1 E_0 S - c_1 CS = c_2 C \)

\[C = c_1 E_0 S / (c_2 + c_1 S) \]

\[C = E_0 S / (K_d + S) \]

where \(K_d = c_2 / c_1 \)

substrate concentration with half maximum velocity

Hence \(dP / dt = -dS / dt = V_m S / (K_d + S) \)

where \(V_m = c_3 E_0 \)

maximum velocity at saturating substrate concentration

Michaelis-Menten quasi-equilibrium kinetics:

\[V_m S / (K_d + S) \text{ for } S \rightarrow P \]

justified when complex equilibrium reached on a fast time scale \(c_3 / c_2 << 1 \)
Conclusion

Michaelis-Menten kinetics, Hill kinetics of order n and more general kinetics come from reductions of elementary CRNs with Mass Action law kinetics.

QSS approximation: projection on slow dynamics variables
- fast dynamics species E, C act as slaves of slow species S

QE approximation: elimination of fast reaction equilibria

The slow/fast separation of the CRN dynamics may change over time
- resulting in a hybrid automaton of piece-wise reduced CRNs
- helps to understand the CRN dynamics

Using Michaelis-Menten kinetics in a CRN may be not justified (and wrong)