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Mathematical models in biology : what for ?

Different purposes =⇒ different approaches

* Models as intelligent “Data Base” to store biological
knowledge

* Models as tools for establishing causality chains

* Models as design tools for synthetic biology

* Models as guidelines for the choice of experiments

For the 3 last purposes, models can deviate from biological
descriptions, while remaining very useful, because they are
dedicated to the question under consideration.

“Kleenex” models. . .
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Static Graph v.s. Dynamic Behaviour

Difficulty to predict the result of combined regulations

Difficulty to measure the strength of a given regulation

Example of “competitor” circuits

Multistationarity ?
Homeostasy ?

—

+

+
mucus

+ Alginate Muc-B

Many underlying qualitative models : ≈ 700 qualitative
behaviours
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Mathematical Models and Simulation

1 Rigorously encode sensible knowledge, into ODEs for
instance

2 I A few parameters are approximatively known
I Some parameters are limited to some intervals
I Many parameters are a priori unknown

3 Perform lot of simulations, compare results with known
behaviours, and propose some credible values of the
unknown parameters which produce robust acceptable
behaviours

4 Perform additional simulations reflecting novel situations
5 If they predict interesting behaviours, propose new

biological experiments
6 Better tune the model parameters and try to go further

. . . not my cup of tea . . .
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Mathematical Models and Validation

“Large scale” simulations are not the only way to use a computer.
There are computer aided environments which help :

I designing simplified models that can be analytically solved
I avoiding models that can be “tuned” ad libitum
I constraining models according to experimental data
I validating models with a reasonable number of

experiments
I defining only models that could be experimentally refuted
I proving refutability w.r.t. experimental capabilities

To establish a methodology “dry” models ↔ “wet”
experiments one needs to assist reasonning capabilities.
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Formal Logic : syntax/semantics/deduction

gold=Computer

green=Mathematics

correctness

Rules
proof

Semantics
Models

Syntax

Deduction
proved=satisfied

completeness

Formulae

cyan=Computer Science

M |= ϕ

Φ ` ϕ

satisfaction
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Multivalued Regulatory Graphs

Derivatives are sigmoids
w.r.t. the source gene

x

y

 

+
x

x

0
τ

ẏ
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Multivalued Regulatory Graphs

Derivatives are sigmoids
w.r.t. the source gene
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First simplification : piecewise linear

Approximate sigmoids as step functions :

x3
τ3

ẏ

x1
τ1

ẏ

x2
τ2

ẏ

x4
τ4

ẏ
y

x1

x2

x3

x4
−

+
+

−

Presence of an activator = Absence of an inhibitor
dy
dt = k0 + k1.1x1>τ1 + k2.1x2>τ2 + k3.1x3<τ3 + k4.1x4<τ4 − γ.y
Solutions of the form Ce−γt + Σ1ki

γ whose limt→∞ is Σ1ki
γ

As many such equations as genes in the interaction graph
In each hypercube, all the trajectories have a unique attractive
point, which can be outside de hypercube
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Discrete Gene Networks (Thomas & Snoussi)

y
1

ẋ

x
1 20

ẋ ẏ

Ky

1 2

—
x y

+

1
No help : Kx
x helps : Kx,x Ky,x

Absent y helps : Kx,y
Both : Kx,xy

+

0

In each state,
a variable v tries to
go toward the interval
numbered Kv ,ω :
the one containing Σ1ki

γ

(x,y) Focal Point
(0,0) (Kx ,y ,Ky )
(0,1) (Kx ,Ky )
(1,0) (Kx ,xy ,Ky )
(1,1) (Kx ,x ,Ky )
(2,0) (Kx ,xy ,Ky ,x )
(2,1) (Kx ,x ,Ky ,x )

Presence of an activator = Absence of an inhibitor = A resource
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State Graphs

(x,y) Focal Point
(0,0) (Kx,y ,Ky )=(2,1)
(0,1) (Kx ,Ky )=(0,1)
(1,0) (Kx,xy ,Ky )=(2,1)
(1,1) (Kx,x ,Ky )=(2,1)
(2,0) (Kx,xy ,Ky,x )=(2,1)
(2,1) (Kx,x ,Ky,x )=(2,1)

y

x

0

1 (1,1)(0,1)

(0,0) (1,0) (2,0)

(2,1)

0 1 2y

x

0

1 (1,1)

(1,0) (2,0)

(2,1)

(0,0)

(0,1)

0 1 2
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State Graphs
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“desynchronization” −→
by units of Manhattan distance
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Multistationarity vs. positive cycles

I A cycle in the interaction graph is positive if
it contains an even number of inhibitions

I Theorem : if the state graph exhibits several
attraction basins then there is at least one
positive cycle in the interaction graph

I Was a conjecture from the 70’s to 2004 ;
proved by Adrien Richard (and by Christophe
Soulé for the continuous case)

x

z

x

y−
−

+

+
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Oscillations vs. negative cycles

I A cycle in the interaction graph is negative if
it contains a odd number of inhibitions

I Thomas conjecture : if the state graph
exhibits an homeostasy (stable oscillations)
then there is at least one negative cycle in
the interaction graph

I Was a conjecture from the 70’s to ≈2010.
Counter-examples have been found (A.
Richard, J.-P. Comet, P. Ruet)

x

z

x

y−
+

−

+

Nonetheless it remains a very useful tip in practice when
modelling biological examples !
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Characteristic state of a cycle

Helps characterizing the saddle point (resp. center of the
oscillations) of the behaviour “driven” by a positive (resp.
negative) cycle.

x1
x2s1 x3

x4

s2 s3 s4 xi = threshold
si − 1 | si

Whatever the sign of xi → xi+1, for some set of resources ω
one should have Kxi+1,ω < si+1 6 Kxi+1,ωxi , all along the

cycle

but it remains a heuristic, at least for negative cycles. . .
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Thomas parameters : exponential number

2i parameters
where i is the in-degree of the gene

∏
genes

(o + 1)2i possible parameter values

where o is the out degree of each gene

a b c

d

+ + −
2 1 3

Kd , {a, b, c}
Kd , {b, c}
Kd , {a, c}
Kd , {a, b}Kd , ∅

Kd , {a}
Kd , {b}
Kd , {c}

Yeast≈7000 genes Human≈25000 genes Rice≈40000 genes
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Multiplexes : encode cooperation knowledge

“Proteins of a and b form a complex before acting on d . . . ”

a b c

d

+ + −
2 1 3

a b c

dKd , ∅
Kd , {a}
Kd , {b}
Kd , {c}

Kd , {a, c}
Kd , {a, b}

Kd , {b, c}
Kd , {a, b, c}

3ma2 ∧ b1

Kd , ∅
Kd , {m}

Kd , {c}
Kd , {m, c}

multiplex name = m
multiplex formula ≡ a2 ∧ b1
abbreviation :
vi ≡ (v ≥ i)

−

8 → 4 parameters
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Any propositional formula + remove sign

“. . . and c inhibits d whatever a or b”

m′m ∧ ¬c3

a b

ma2 ∧ b1

c

ma2 ∧ b1 ∧ ¬c3

dKd , ∅ Kd , {m}

a b c

d

+ + −
2 1 3

Kd , ∅
Kd , {a}
Kd , {b}
Kd , {c}

Kd , {a, c}
Kd , {a, b}

Kd , {b, c}
Kd , {a, b, c}

dKd , ∅ Kd , {m′}

a b c

8 −→ 2 parameters,

(o + 1)8 → (o + 1)2 parameterizations
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The main problem

Exhaustively identify the sets of (integer) parameters
that cope with known behaviours from biological

experiments

Solution = perform reverse engineering via formal logic

I 2003 : enumeration + CTL + model checking
(Bernot,Comet,Pérès,Richard)

I 2005 : path derivatives + model checking (Batt,De Jong)
I 2005 : PROLOG with constraints (Trilling,Corblin,Fanchon)
I 2007 : symbolic execution + LTL (Mateus,Le Gall,Comet)
I 2011 : traces + enumeration

+ CTL + model checking (Siebert,Bockmayr)
I 2015 : genetically modified Hoare logic

+ constraint solving (Bernot,Comet,Roux,Khalis,Richard)
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Time has a tree structure. . .

y

x

0

1 (1,1)

(1,0) (2,0)

(2,1)

(0,0)

(0,1)

0 1 2

As many possible state graphs
as possible parameter sets. . .
(huge number)

. . . from each initial state :

(2,1)

(2,1)(1,1)

(2,0)

(1,0)

(0,1)

(0,0)
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CTL = Computation Tree Logic

Atoms = comparaisons : (x=2) (y>0) . . .

Logical connectives : (ϕ1 ∧ ϕ2) (ϕ1 =⇒ ϕ2) · · ·
Temporal modalities : made of 2 characters

first character second character
A = for All path choices X = neXt state

F = for some Future state
E = there Exist a choice G = for all future states (Globally)

U = Until

AX(y = 1) : the concentration level of y belongs to the interval 1 in
all states directly following the considered initial state.

EG(x = 0) : there exists at least one path from the considered initial
state where x always belongs to its lower interval.
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Temporal Connectives of CTL

neXt state :
EXϕ : ϕ can be satisfied in a next state
AXϕ : ϕ is always satisfied in the next states

eventually in the Future :
EFϕ : ϕ can be satisfied in the future
AFϕ : ϕ will be satisfied at some state in the future

Globally :
EGϕ : ϕ can be an invariant in the future
AGϕ : ϕ is necessarilly an invariant in the future

Until :
E [ψUϕ] : there exist a path where ψ is satisfied until a state

where ϕ is satisfied
A[ψUϕ] : ψ is always satisfied until some state where ϕ is

satisfied
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Semantics of Temporal Connectives

(after : ϕ , after : ψ )

t+1

ϕ

AXϕ

ϕ
ϕ

ϕ
ϕ
ϕ

ϕt+1

ϕ

EXϕ

t t
t ϕ t

t+k

EFϕ

........................
AGϕ

...

EGϕ

...

AFϕ

ϕ

ϕ
ϕ

ϕ ϕ

E [ψUϕ] A[ψUϕ]

............
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CTL to encode Biological Properties

Common properties :
“functionality” of a sub-graph

Special role of “feedback loops”
—

y
+

+ x
1 2

1

– positive : multistationnarity (even number of — )
– negative : homeostasy (odd number of — )

y

x

y

x

(0,1) (2,1)(1,1)

(2,0)(0,0) (1,0) (0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)

Characteristic properties :
{

(x = 2) =⇒ AG(¬(x = 0))
(x = 0) =⇒ AG(¬(x = 2))

They express “the positive feedback loop is functional”
(satisfaction of these formulas relies on the parameters K...)
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Model Checking

I Efficiently computes all the states of a state graph which
satisfy a given formula : { η | M |=η ϕ }.

I Efficiently select the models which globally satisfy a given
formula.

Intensively used :
I to find the set of all possible discrete parameter values
I to check models under construction w.r.t. known
behaviours (one often gets an empty set of parameter
values !)

I and to prove the consistency of a biological hypothesis
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Model Checking for CTL

Computes all the states of a discrete state graph that satisfy a
given formula : { η | M |=η ϕ }.

Idea 1 : work on the state graph instead of the path trees.

Idea 2 : check first the atoms of ϕ and then check the
connectives of ϕ with a bottom-up computation strategy.

Idea 3 : (computational optimization) group some cases
together using BDDs (Binary Decision Diagrams).

Example : (x = 0) =⇒ AG(¬(x = 2))

Obsession : travel the state graph as less as possible
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(x = 0) =⇒ AG(¬(x = 2))

x=0 x=2
z
¬(x = 2)

z

x

y

x

y

and AG(¬(x = 2)) ?

. . . one should travel all the paths from any green box and
check if successive boxes are green : too many boxes to visit.
Trick : AG(¬(x = 2)) is equivalent to ¬EF (x = 2)
start from the red boxes and follow the transitions backward.
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Simplifications driven by the hypothesis

Biologists spend money and time for experiments because they
have a hypothesis ϕ in mind that they want to test. . .

. . . Successive simplified views of the studied biological object
and of the hypothesis :

Model
M1

satisfies
ϕ1

⇐⇒
Model
M2

satisfies
ϕ2

⇐⇒
Model
M3

satisfies
ϕ3

⇐⇒ . . .



Formal
methods

J-P Comet
G. Bernot

Introduction
Thomas
CTL
Checking hyp
Hoare
Extracting
Timed
Environments

32/75

Simplifications via gene removing (Naldi)

−

−

+

+
−

+

−

−

−

+ −

+

−

−

−

+

−

−

− +

−

+

b

c

e

a
e

b c
d remove a

c

e
d
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a
e

dremovea d
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Simplifications via level folding

folding

0

0 1 2 x

1

2

y

folding
1

0

0 1

y

x

0

0 1 2 x

2

1

3

3 4
ρx = 0 ρx = 2ρx = 1

ρy = 0

ρy = 1

ρy = 2
2

1

0

0 1 2 x

y
y
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Simplifications via subgraphs

Embeddings of Regulatory Networks :

x

y

z
t

u

v

x

y

z
t

u

v

Preserved behaviour ?Studied behaviour

Necessary and sufficient condition on the local dynamics of the
“input frontier”

. . . Also fusion of genes, etc.
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Standard Hoare logic : swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

→ triple “{P}program{Q}”
precondition P, postcondition Q
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Standard Hoare logic : swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}

→ “P =⇒ (weakest precondition)” ?



Formal
methods

J-P Comet
G. Bernot

Introduction
Thomas
CTL
Checking hyp
Hoare
Extracting
Timed
Environments

36/75

Standard Hoare logic : swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

{(aux = x0) ∧ (x = y0)}

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}

→ backward proof strategy
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Standard Hoare logic : swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

{(x = x0) ∧ (y = y0)}
{(aux = x0) ∧ (y = y0)}
{(aux = x0) ∧ (x = y0)}

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}
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Standard Hoare logic : swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

{P}p1; p2{Q}
{P}p1{Q′} {Q′}p2{Q}

;

{Q[v ← expr ]} v := expr {Q}
:={(x = x0) ∧ (y = y0)}

{(aux = x0) ∧ (y = y0)}
{(aux = x0) ∧ (x = y0)}

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}
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Standard Hoare logic : swap(x,y)

y   := aux

aux := x  ;

x    := y   ;

{P}a1; a2; a3{Q}

{Q1}a3{Q}{P}a1; a2{Q1}

{Q2}a2{Q1}{Q3}a1{Q2}
:=:=

:=

;

;

{P}p1; p2{Q}
{P}p1{Q′} {Q′}p2{Q}

;

{Q[v ← expr ]} v := expr {Q}
:={(x = x0) ∧ (y = y0)}

{(aux = x0) ∧ (y = y0)}
{(aux = x0) ∧ (x = y0)}

{(x = x0) ∧ (y = y0)}

{(y = x0) ∧ (x = y0)}
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Standard Hoare logic : abs(x)

r   := x

r    := −x

{(e ∧ Q1) ∨ (¬e ∧ Q2)} if e then p1 else p2 {Q}

{Q2}p2{Q}{Q1}p1{Q}
if

{(x = x0)}
{(

(x < 0) ∧
(−x ≥ 0) ∧
((−x)2 = x2

0 )

)
∨

(
(x ≥ 0) ∧
(x ≥ 0) ∧
(x2 = x2

0 )

)}

{(r ≥ 0) ∧ (r2 = x2
0 )}

else :

if (x<0) :

Also :

While loop : {e∧I}p{I} (¬e∧I)=⇒Q
{I}while e with I do p{Q}

Empty program : P=⇒Q
{P}ε{Q} use sparingly : loses weakest precondition !
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Assertion language (Pre/Post)

Terms : v gene | n ∈ N | Kv ,{··· } parameter symbols | + |
−

atoms : t > t ′ | t < t ′ | t = t ′ | . . .
Connectives : ¬ | ∧ | ∨ | =⇒
Example :

(a 6 3 ∧ d + 1 < Kd ,{m,c}) ∨ (Kd ,{c} < Kd ,{m,c} ∧ c > 3)

From multiplexes to assertions : flattening

. . .

m1ϕ1 mnϕn

ϕm

m2ϕ2

m

ϕm ≡ ϕm[mi ← ϕi ] for all i and recursively
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Assertions that formalize Thomas’framework

ω is the set of ressources of v :
Φω

v ≡ (
∧

m ∈ ω

ϕm ) ∧ (
∧

m ∈ G−1(v)\ω
¬ϕm )

v can increase :
Φ+

v ≡
∧

ω⊂G−1(v)
(Φω

v =⇒ Kv ,ω > v)

v can decrease :
Φ−v ≡

∧
ω⊂G−1(v)

(Φω
v =⇒ Kv ,ω < v)
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Trace specifications

I x+ | x− | x := n | assert(ϕ)
I p1; p2; · · · ; pn

I if ϕ then p1 else p2
I while ϕ with ψ do p
I ∀(p1, p2, · · · , pn)
I ∃(p1, p2, · · · , pn)

Examples :
I b+; c+; b−

c
b t

I ∃(b+, b−, c+, c−, ε)
I while (b < 2) with (c > 0)

do ∃(b+, b−, ∀((c−; a−), c+)) od ;
b−
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Genetic, a la Hoare, inference rules

Incrementation rule : { Φ+
v ∧ Q[v←v+1] } v+ {Q}

Decrementation rule : { Φ−v ∧ Q[v←v−1] } v− {Q}

Assertion rule : { ϕ∧Q } assert(ϕ) {Q}

Universal quantifier rule : {P1}p1{Q} {P2}p2{Q}
{P1∧P2} ∀(p1,p2) {Q}

Existential quantifier rule : {P1}p1{Q} {P2}p2{Q}
{P1∨P2} ∃(p1,p2) {Q}
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Example : Feedforward “loop”

Uri Alon most frequent regulatory network patterns

+
1

a b

c

+

1

1

−
a

c

b

l
a > 1

a > 1
σ

¬(c > 1)
λ

Behaviour of b after switching a from off to on ?

Simple off→on→off behaviour of b with the help of c :

{(a = 1 ∧ b = 0 ∧ c = 0)} b+ ; c+ ; b − {b = 0}

possible if and only if :
Kb,{σ,λ} = 1 ∧ Kc,{l} = 1 ∧ Kb,{σ} = 0
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Feedforward example (continued)

off→on→off behaviour of b without the help of c :

{(a = 1 ∧ b = 0 ∧ c = 0)} b+ ; b − {b = 0}


b = 0
((c > 1) ∧ (a < 1)) =⇒ ((Kb = 1) ∧ (Kb = 0))
((c > 1) ∧ (a > 1)) =⇒ ((Kb,σ = 1) ∧ (Kb,σ = 0))
((c < 1) ∧ (a < 1)) =⇒ ((Kb,λ = 1) ∧ (Kb,λ = 0))
((c < 1) ∧ (a > 1)) =⇒ ((Kb,σλ = 1) ∧ (Kb,σλ = 0))


not

satisfiable !
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Feedforward example (continued)

Although b+; c+; b− is possible, if c becomes “on” before b,
then b will never be able to get “on”

Proof by refutation :{
a = 1 ∧ b = 0 ∧ c = 1 ∧
Kb,σλ = 1 ∧ Kc,l = 1 ∧ Kb,σ = 0

}

while b < 1 with I do ∃(b+, b−, c+, c−){
b = 1

}

the triple is inconsistent, whatever the loop invariant I !
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Cell cycle in mammals

I A 22 gene model reduced to 5 variables using multiplexes

EPB

En

A

− 1

− 1

− 1 − 1
+ 1

+ 1

− 1

multiplex (m)

SK

+ 1 + 1+ 2 + 1

¬(En > 1︸︷︷︸
ϕl

∨ (EP > 1 ∧ En > 1)︸ ︷︷ ︸
ϕr

)

SK = Cyclin E/Cdk2, Cyclin H/Cdk7
A = Cyclin A/Cdk1
B = Cyclin B/Cdk1
En = APCG1, CKI (p21, p27), Wee1
EP = APCM , Phosphatases

I 48 states, 26 parameters, 339 738 624 possible valuations,
12 trace specifications and a few temporal properties
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Cell cycle in mammals (continued)

I 13 parameters have been entirely identified (50%) and
only 8192 valuations remain possible according to the
generated constraints (0.002%)

I Additional reachability constraints (e.g. endoreplication
and quiescent phase) have been necessary, on an extended
hybrid extension of the Thomas’ framework, to identify
(almost) all parameters

I This initial Hoare logic identification step was crucial : it
gave us the sign of the derivatives in all the (reachable)
states
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Correctness, Completeness and Decidability

I If there is a proof tree for {P}p{Q} then for each initial
state satisfying P, there are traces in the regulatory
network that realize the trace specification p, and for all of
them, if terminating, they satisfy Q at the end.

I If for each initial state satisfying P there are traces that
realize p in the regulatory network and if they all satisfy Q
at the end, then there exists a proof tree for {P}p{Q}.

I There is a simple algorithm to compute, for each Q, the
minimal loop invariant I such that
{I}while e with I do p{Q}.
(However well chosen slightly non minimal invariants can
considerably simplify the proof tree. . . )
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Outline

1 Formal logic and dynamic models for biology

2 Discrete models for gene networks according to R. Thomas

3 Regulatory networks and temporal logic

4 Models as mediums for checking biological hypotheses

5 Genetically modified Hoare logic, and examples

6 Extracting interesting experiments from models

7 Taking into account time

8 Environments
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Generation of biological experiments

Set of all the formulas :

ϕ = hypothesis

ϕ
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Generation of biological experiments

Set of all the formulas :

ϕ = hypothesis
Obs = possible experiments

Obs

ϕ
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Generation of biological experiments

Set of all the formulas :

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences

Obs

ϕ
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Generation of biological experiments

Set of all the formulas :

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences
S = sensible experiments

Obs

ϕ

S
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Generation of biological experiments

Set of all the formulas :

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences
S = sensible experiments

Refutability :
S =⇒ ϕ ?

Obs

ϕ

S
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Generation of biological experiments

Set of all the formulas :

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences
S = sensible experiments

Refutability :
S =⇒ ϕ ?

Best refutations :
Choice of experiments in S ?
. . . optimisations

Obs

ϕ

S
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Example : Mucus Production in P. aeruginosa

Capture:

operon

self−inducer

abstract

behaviour

—

+
AlgU MucB

mucus

+

+

membrane

AlgU

MucB

AlgU

AlgU

MucB. . . . . .
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How to validate a multistationnarity

M : (unknown thresholds)

—

+

+
mucus

+ Alginate Muc-B

Φ :
{

(Alginate = 2) =⇒ AG(Alginate = 2) (hypothesis)
(Alginate = 0) =⇒ AG(Alginate < 2) (knowledge)

Assume that only mucus can be observed :
Lemma : AG(Alginate = 2)⇐⇒ AF AG(mucus = 1)
(. . . formal proof by computer . . . )

→ To validate : (Alginate = 2) =⇒ AF AG(mucus = 1)
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(Alginate = 2) =⇒ AF AG(mucus = 1)

A =⇒ B true false
true true false
false true true

Karl Popper :
to validate = to try to refute

thus A=false is useless
experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state Alginate = 2.
If the state is not directly controlable we need to prove lemmas :

(something reachable) =⇒ (Alginate = 2)

General form of a test :

(something reachable) =⇒ (something observable)
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Extraction of experiment schemes

I Question :
What is the experiment to do to reduce the set of coherent
models ? (equiprobable / non-equiprobable models)

I model checking :

F1 F2 . . . Ff

M1 1 1 . . . 0
M2 1 0 . . . 0
. . . . . . . . . . . . . . .
Mm 0 1 . . . 0

I choose Fi that balances the following probabilities :
µi = p({Mj |Mj |= Fi}) and µi = p({Mj |Mj 6|= Fi})

One has to try to minimise E [µ(remainded models) after exp.]

I min(µi × µi + µi × µi ) = min(µ2i + (1− µi )2)
I min(1− 2µi + 2µ2i )
I minimum in 1/2
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Extraction of experiment schemes

experiment

schema
experiment

experiment

schema
experiment

experiment

schema
experimentset of remaining

models

models

set of remaining

set of remaining

models

coherent

models

1
 m

o
d

el

1
 m

o
d

el

1
 m

o
d

el

1
 m

o
d

el

1
 m

o
d

el

1
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1
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1
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1
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coherent

models
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ϕ2

ψ3ψ1 ψ2 ψn

ϕ1 ϕ3
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Extraction of experiment schemes

I What are the n experiments to do to reduce the set of
coherent models ? (order, decision tree)

I previous strategy doesn’t work.
I Ex : 9 models ; 5 formulas, min depth = log2(9) = 4

F1 F2 F3 F4 F5
M1 1 1 1 0 0
M2 1 1 0 1 1
M3 1 0 1 0 1
M4 1 0 0 1 0
M5 0 1 0 0 0
M6 0 0 1 0 0
M7 0 0 0 1 0
M8 0 0 0 0 1
M9 0 0 0 0 0

4/5 3/6 3/6 3/6 3/6

621 3 4

8

8−9

9

7

7−9

1−9

1−4 5−9

1−2 3−4 5 6−9

F5

F1

F2 F2

F3

F3 F3

F4

many thanks to S. Vial for this example
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Extraction of experiment schemes

F1 F2 F3 F4 F5
M1 1 1 1 0 0
M2 1 1 0 1 1
M3 1 0 1 0 1
M4 1 0 0 1 0
M5 0 1 0 0 0
M6 0 0 1 0 0
M7 0 0 0 1 0
M8 0 0 0 0 1
M9 0 0 0 0 0

4/5 3/6 3/6 3/6 3/6

21 3 6 4,7 8−9

4 7 8 9

1−9

1−2

1,2,5 3,4,6−9

5 3,6 4,7−9
F3

F5

F2

F1 F3

F5 F4

F1

Choice of an optimal decision tree = NP-complete problem
(reduction to the problem 3-DM, L. Hyafil & R.L. Rivest [1975])



Formal
methods

J-P Comet
G. Bernot

Introduction
Thomas
CTL
Checking hyp
Hoare
Extracting
Timed
Environments

57/75

Extraction of experiment schemes

Algorithm min-max

2 1 2 0 1 2

2

322 3

3 2 4 2 4 3 2 4

3

444 3

31

max

min min

max

1 0

1−9

2 2 2 2 22 2 2 1 4 1 1 444 1

max

min

max

min

22

2

4

5,9

4 4 4

4
1−4

2 1 1 2 2 1 2

3

222 242 2

1 2 4 2 4 2 2 4

444 4

4

4

1 0

1,2,5
2 4

1 0

3

F1 F2 F4 F5 F1 F2 F4 F5

1,3,6

F4 F5F4F3F2F5F3F2

F2F1

F1 F3 F4 F5 F1 F3 F4 F5F3

F1 F2 F3 F4 F5
M1 1 1 1 0 0
M2 1 1 0 1 1
M3 1 0 1 0 1
M4 1 0 0 1 0
M5 0 1 0 0 0
M6 0 0 1 0 0
M7 0 0 0 1 0
M8 0 0 0 0 1
M9 0 0 0 0 0

4/5 3/6 3/6 3/6 3/6
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Outline

1 Formal logic and dynamic models for biology

2 Discrete models for gene networks according to R. Thomas

3 Regulatory networks and temporal logic

4 Models as mediums for checking biological hypotheses

5 Genetically modified Hoare logic, and examples

6 Extracting interesting experiments from models

7 Taking into account time

8 Environments
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Circadian cycle : The target question

Impact of the day length on the persistence of the circadian circle ?

=⇒ framework with time delays / hybrid framework :

I mainly replace the integer Kx ,ω by real numbers Cx ,ω,n,
called celerities, where n is the current state of x

I notice that Cx ,ω,n > 0 if Kx ,ω > n and a few other logical
properties

I extension of temporal logic with delays : AF[t1,t2] and so on
I extension of Hoare logic

Decidability is lost but Hoare logics gives constraints on
celerities (constraint solvers ?)
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Hoare Logic on hybrid Automata

∆t1 ∆t2

∆t4 ∆t3

x−

y− y+
slide+

slide+

x+slide-

x

y

x

y

x

y

a :== > | C... ≤ const | slide ± | noslide ± |
¬a | a ∧ a | a ∨ a

{
DC0
HC0

} ∆t1
slide−(y)

x+

;

 ∆t2
slide+(x)

y+

;

 ∆t3
slide+(y)

x−

;

∆t4
>
y−

{DCf
HCf

}
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Workflow of our approach

{
hi

}( 5.0
noslide(y)

x+

)
;

(
7.0

slide+(x)
y+

)
;

(
8.0

noslide(y)
x−

)
;

(
4.0

slide−(x)
y−

){
hf

}

Approach
Constraints

Computation
Evolutionary

v1

v2

ηv1 =0 ηv1 =1

η v
2

=
0

η v
2

=
1

hi

∆t1 =5 ∆t2 =7

∆t4 =4 ∆t3 =8

↓

↓
Fails in a large-scale case
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Distance between an instance and the specification

Experimentation :
A FE avg stdev min BSR

CMA- f+ 0.9644 1.18 3e-9 0.41
ES f× 0.7661 2.51 4e-10 0.86

DE f+ 0.3102 0.23 0.0171 0.13
f× 0.6004 0.77 0.0373 0.04

GA f+ 0.0029 2e-3 6e-4 1.
f× 0.0172 0.05 0.0016 0.98

PSO f+ 0.8053 0.98 4e-4 0.48
f× 0.6938 1.71 2e-4 0.68

RO f+ 9.1934 1.11 5.1679 0.
f× 16.6763 2.5 7.9144 0.
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Distance between an instance and the specification

Experimentation :
A FE avg stdev min BSR

CMA- f+ 0.9644 1.18 3e-9 0.41
ES f× 0.7661 2.51 4e-10 0.86

DE f+ 0.3102 0.23 0.0171 0.13
f× 0.6004 0.77 0.0373 0.04

GA f+ 0.0029 2e-3 6e-4 1.
f× 0.0172 0.05 0.0016 0.98

PSO f+ 0.8053 0.98 4e-4 0.48
f× 0.6938 1.71 2e-4 0.68

RO f+ 9.1934 1.11 5.1679 0.
f× 16.6763 2.5 7.9144 0.
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Outline

1 Formal logic and dynamic models for biology

2 Discrete models for gene networks according to R. Thomas

3 Regulatory networks and temporal logic

4 Models as mediums for checking biological hypotheses

5 Genetically modified Hoare logic, and examples

6 Extracting interesting experiments from models

7 Taking into account time

8 Environments
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Pseudomonas Aeruginosas Regulatory Network

Pseudomonas CTL Behaviours (ϕ)
Non-mucoid bacterium
never creates mucus

((operon=0) ⇒ AG !(operon=2))

and
Mucoid bacterium
always creates mucus ((operon=2) ⇒ AG !(operon=0))
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Pseudomonas Aeruginosas Models

Use of model
checking tool :

What is a modelM(ϕ) ?
Is a parameter setting P which creates a dynamic that satify
the biological properties ϕ given in CTL.
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New Experimental Data

Update : Calcium promotes the shift from a non-mucoid
bacterium to a mucoid bacterium

Add Calcium to the RN

New Phenotypic behaviour observed
Non-mucoid bacteria never create mucus Mucoid bacteria always create mucus

Without Ca operon = 0 =>AG !(operon = 2) operon = 2 =>AG !(operon = 0)
Bacteria always become mucoid (virulent)

With Ca AF (AG(operon = 2))
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Use of artifacts with Simple R. Thomas Framework

Allows the simulation of several environments :
- It simulates the Ca’s stability in each environment
- Ca stability is made possible through associated fixed
parameters
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Comparison of Both Approach
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Influence Graph and Environments

Influence graph with
environment variables
IGEV = (V ,EV ,M,A) :

- (V ,M,A) is an IG,
- EV ( V is a set of
environment variables
in V ,

- Each environment
variable has no
predecessors :
∀v ∈ EV , d−(v) = 0

Environments
Environment e : EV → N
Set of Environments : E



Formal
methods

J-P Comet
G. Bernot

Introduction
Thomas
CTL
Checking hyp
Hoare
Extracting
Timed
Environments

70/75

Operable Parameter and Regulatory Network

Operable parameters for an
environment
Given IGEV , and an
environment e ∈ E , a
parameter Kv ,ω is operable
if there exists at least a
state where Kv ,ω is
applicable.

Regulatory Network with
Environment
The regulatory network for
environment e ∈ E is the
couple Ne = (IGEV ,Ke)
where Ke ⊂ K is the subset
of operable parameters for
e.
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Model of an Environement and Abstracted Intersection

A Model of an environmental propertyMe(ϕe) : is the set of
parameter settings which validate ϕ in Ne

Abstraction of models
Me(ϕe) relate on diffrents
operable parameters sets
need to be abstracted to a
superset. Since Ke ⊂ K
forall e, each parameter
setting Pe are abstracted
by a subset of parameter
settings in PN .

Intersection of
abstracted models is
then required to obtain
models M(ϕ)
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A Realistic Abstract Model : Metabolism Regulation

Running time :

Global
Approach :
estimated as
49,1 years

Environmental
Approach :
44,6 min
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Take Home Messages

Make explicit the hypotheses that motivate the biologist

A far as possible formalize them to get a computer aided
approach
Behavioural properties are as much important as models
Mathematical models are not reality : let’s use this freedom !
(several views of a same biological object)
Modelling is significant only with respect to the considered
experimental reachability and observability (for refutability)

Formal proofs can suggest wet experiments
“Kleenex” models help understanding main behaviours

Specialized qualitative approaches can make complex models
simple

The more detailed models are not the more comprehensible
ones
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